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ABSTRACT Lithium-ion (Li-ion) batteries play a substantial role in energy storage solutions for modern-
day technologies such as hand-held consumer electronics, aerospace, electric vehicles, and renewable energy
systems. For Li-ion batteries, designing a high-quality battery charging algorithm is essential since it
has significant influences on the performance and lifetime of Li-ion batteries. The objectives of a high-
performance charger include high charging efficiency, short charging time, and long cycle life. In this
paper, a model predictive control based charging algorithm is proposed, the presented technique aims to
simultaneously reduce the charging time, and the temperature rise during charging. In this study, the coulomb
counting method is utilized to calculate the future state-of-charge and an artificial neural network trained
by experimental data is also applied to predict the future temperature rise. Comparing with the widely
employed constant current-constant voltage charging method, the proposed charging technique can improve
the charging time and the average temperature rise by 1.2 % and 4.13 %, respectively.

INDEX TERMS Model predictive control, artificial neural network, lithium-ion battery.

I. INTRODUCTION

Recently, the rapid development of electric vehicles and
portable consumer devices has driven further advances in the
technology of rechargeable batteries. Among the numerous
types of rechargeable batteries, Lithium-ion (Li-ion) batteries
featuring high energy density, more cycling lifetime, low
self-discharge rate, and no memory effect have been widely
applied in a variety of applications. From low power con-
sumer electronics products to the high power storage sys-
tem for stabilizing the renewable energy power generation,
techniques related to Li-ion batteries have attracted lots of
attention in the field of power electronics and power systems.
To extract the maximum benefits from Li-ion battery, many
types of research have focused on charging strategy. The most
well-known conventional charging strategy is the constant
current-constant voltage (CC-CV) charging method. In the
CC-CV method, there is a constant current set to charge the
battery cell until the cell voltage reaches an upper voltage
limit. Next, a constant voltage is set to continue charging until
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the charging current decreases to the threshold value. The
CC-CV method is simple to implement; however, there are
issues of high-temperature rise derived by a large charging
current at the CC stage, and long charging time problem
caused by the CV stage. Other commonly adopted charging
algorithms include pule charging techniques and multi-stage
constant current (MSCC) charging methods.

In general, a charging strategy is evaluated by the charging
efficiency, temperature rise, charging time, and its effect on
the battery cycle life. In fact, it is difficult for a charging
technique to improve all of the charging performances simul-
taneously. To some extent, they are in a trade-off relationship,
i.e. alarge charging current can shorten the charging time, but
more power loss may arise along with the rapid temperature
rise. To enhance the charging performances and make a good
balance between charging time and charging losses, many
studies have been proposed. They can be categorized into
three groups, which are (i) CC-CV-based methods [1]-[4]
(i1) pulse charging-based methods [5]-[11] and (iii) MSCC-
based methods [12]-[19]. For category 1, ref. [1] proposed
a fuzzy controller to allow more charging capacity at the
CV stage with the consideration of open-circuit voltage.
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To generate a charging trajectory similar to the CC-CV
method, authors in [2] developed a double loops control
without the requirement of the current measurement. Likely,
authors in [3] implemented phase-locked loop control and
adjust the charging current appropriately using the phase
angle as a control variable. Furthermore, the current pumped
charger developed in [4] utilized the pumped charging current
as in the CC stage and then used pulse current as in the
CV stage, which takes a similar time but reaches a higher
efficiency compared with conventional CC-CV method. For
category 2, different settings of current value, pulse width,
and pause time enable plenty of combinations of charging
configurations. To speed up the charging process and improve
the charging efficiency, the frequency and duty cycle of the
constant voltage charging pulse were adjusted in [5]-[7]
and [8], respectively. An adaptive pulse charging method pro-
posed in [9] was able to obtain the same effect. Reference [10]
employed a model-based optimization technique integrated
with a second-order RC model to realize a pulse-amplitude-
modulated charging method and a pulse-width-modulated
charging method. In [11], temperature rise and the slope of
the temperature rise were taken as inputs of a fuzzy controller
to determine a proper charging current. Thus, the charging
efficiency was improved due to the restricted temperature
rise. For category 3, MSCC method adjusted the charging
current value for different charging stages, so that it is capable
of improving charging performance with more flexibility. But
the determination of the individual current value and the cri-
teria of transitions between stages turns out to be a challenge.
The setting value of the charging current for each stage is very
important since it has a great impact on the overall charg-
ing performance. Researchers have applied soft computing
and design of experiments techniques to search for the opti-
mal charging current value, including orthogonal array [12],
Taguchi method [13]-[15], particle swarm optimization [16],
and ant colony optimization [17]...etc. However, most of
them are very time-consuming. Thus, ref. [18] formulated
an equation that enables the determination of the optimal
charging current value in an efficient way. Also, ref. [19]
obtained optimal charging currents for the MSCC charging
method based on Integer Linear Programming, which reduces
the searching time for the optimal current.

As fast charging is becoming more desirable regardless
of the applications and products, a large charging current is
commonly used to shorten the charging time. However, the
benefit of time reduction with a large charging current is
usually followed by the issues of high temperature rise and
increased power loss. More significantly, the negative effect
on battery life and even safety concerns may arise at the same
time [20]-[24]. Therefore, it is crucial to propose a charging
strategy to optimize multiple objectives such as temperature
rise and charging time to achieve the improvement of overall
cycling performance.

Model predictive control (MPC) appears to be the most
used optimization-based methodology for charging of Li-ion
batteries [25]-[29]. MPC is selected due to its robustness
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and adaptability. Also, it can control multivariable nonlinear
systems while takes an objective function and constraints on
both inputs and states into account. In the context of Li-ion
battery charging, MPC aims to optimize multiple objectives
such as charging time, temperature rise, and state of health.
In particular, ref. [25] has proposed MPC strategies based on
pseudo-two-dimension (P2D) electrochemical model, while
the works in [26]-[29] have suggested the use of reduced-
order electrochemical models to simplify model complexity.
For MPC configurations, most of the research in this area
utilizes general MPC with the exception of [28] which is
based on the sensitivity-based MPC and [29] which adopts
nonlinear MPC. Using these approaches, the best control
sequence can be analytically obtained by solving quadratic
programming or Diophantine equations. However, the com-
putation burden is high for these control schemes. Conse-
quently, personal computer equips with advanced software
such as MATLAB with optimization toolbox is typically
required. Therefore, all the aforementioned papers provide
only simulation results [25]-[29] or hardware-in-the-loop
experiment results [29].

This paper proposes a novel charging method to reduce
both charging time and temperature rise simultaneously.
It should be noted that charging the Li-ion battery at low
temperatures is likely to trigger lithium plating, which often
leads to severe capacity fade. Consequently, preheating bat-
teries from extremely low temperatures to a pre-defined
temperature using the heat generated during charging may
become thermodynamically favorable [30]. Therefore, the
target application of the proposed charging technique is
for Li-ion batteries operating in normal temperature range.
Firstly, a temperature rise model based on artificial neural
network (ANN) is built for the target battery cell. The pro-
posed ANN can alleviate the complexity of electrochemical
models by taking only input-output descriptions into account.
Then, enumeration-based MPC is applied to determine the
best charging current values for the next three sampling
times. Enumeration-based MPC provides a straightforward
approach to solve the optimization problem efficiently com-
paring with conventional MPC. Therefore, the computa-
tional cost can be reduced, which allows for the real-time
implementation using low-cost microcontrollers. The main
contribution of this study is the realization of the adaptive
charging control based on enumeration-based MPC without
the requirement of an accurate battery equivalent model, and
an efficient way to simultaneously improve charging time and
charging losses. To the best of our knowledge, this is the first
time that such an approach is used in the context of the Li-ion
battery charging. The experimental results validate that the
proposed method can reduce the charging time and average
temperature rise by 1.2% and 4.13%. comparing with the
conventional CC-CV method.

Il. METHODOLOGY
Fig. 1 shows a block diagram of the proposed charging strat-
egy. An ANN model of temperature rise is built and trained in
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FIGURE 1. Block diagram of the proposed charging strategy.

advance. In this way, temperature rise can be calculated using
the ANN model according to the inputted charging current
and state of charge (SOC). Then, MPC is implemented to
realize the on-line optimization of charging current based
on instantaneous SOC which is estimated by the coulomb
counting method and temperature rise value obtained from
the trained ANN model. In this section, the temperature rise
model based on ANN will be introduced, including the neural
network design, data collection, and training as well as vali-
dation. In addition, implementation of the enumeration-based
MPC and design of the objective function will be explained.

Hidden layer j

Input vector i Output layer k
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: Output
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FIGURE 2. The structure of a backpropagation artificial neural network.

A. DESIGN AND IMPLEMENTATION OF THE NEURAL
NETWORK MODEL

ANN is an algorithm inspired by biological neural systems.
It has the capability of performing similar behavior of statisti-
cal methods such as regression, clustering, and classification.
Moreover, its adaptability makes it particularly suitable for
a system where the behavior is difficult to model or for a
system lacks a mathematical model. Fig. 2 shows a typi-
cal backpropagation ANN. It is composed of several layers,
including the input layer, hidden layer, and output layer. The
layers consist of nodes, also known as “‘neuron”. A node
is regarded as a computation unit as given in Fig. 3. There
are weightings connected between nodes, which determines
which input signal and to what degree of the input signal
should progress through the network to affect the outcome.
To recognize the underlying relationship between input and
output, ‘“training” based on the database is needed. The
training of ANN implies a continuous update of weightings
and biases until training data consistently yield corresponding
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FIGURE 3. A mathematical model for artificial neuron.

outputs. The mathematical model of a node can be formulated
asin (1) [31], [32].

Y =F() WX —b) M

where X is the input of a neuron, W is weighting, b is
the bias, F' is activation function and Y is the output of a
neuron. The weighted inputs W.X are added with a bias b.
Then, the weighted summation passes through the activation
function F, which ensures the unbounded input to turn into
an output scaled in a certain range. Eventually, the desired
output Y can be obtained.

The structure of an ANN consists of plenty of interconnec-
tions between nodes. In the input layer, the number of input
neurons is dependent on the number of inputs of training data.
In the middle is the hidden layer. The hidden layer can be
single or multiple layers and it enables the representation of
the nonlinear relationship between input and output. In fact,
it is difficult to summarize the design process for the hidden
layer with a few simple rules. The number of the hidden
layer is associated with the complexity of the problem itself.
Similar to the input layer, the number of output neurons
for the output layer is determined by the numbers of the
predicted target. There is no general designing rule that can be
applied to determine the network topology for all situations;
hence, it is typically determined by experience. Therefore,
the selection of ANN network topology can be divided into
two categories. The first type is to select a larger network
first and remove redundant connections or nodes gradually
through the experimental verifications. The second type is
to select a smaller network first and expand the required
connections and nodes. In this paper, the first type is adopted.
If the training is completed, and the data is sufficient. The
output can then be properly generated with any reasonable
experimental data and values.

Fig. 4 shows the structure of the proposed ANN model for
temperature rise estimation. There are four layers, including
one input layer, two hidden layers, and one output layer.
The battery charging current and SOC are taken as input
parameters for the ANN model and the desired output is
temperature rise. There are 35 nodes in the individual hidden
layer. Tansig function shown in (2) is used as the activa-
tion function and training algorithm Trainlm (Levenberg -
Marquardt) is applied in this study.

n —n

e —e .
y(n) = —— = Tansig(n) 2)
en + e n
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FIGURE 4. The proposed ANN structure for the temperature rise
prediction.

Moreover, it is noted that the training data has a signif-
icant effect on the performance of the ANN for accurately
predicting the desired output. The collection procedure of the
training data is described as below:

TABLE 1. Database for ANN model for training.

Number of training data set
0.5C 0.6C 0.7C 0.8C 0.9C 1.0C
84 64 52 43 35 29

TABLE 2. Database for ANN model for validation.

Number of the validation data set
0.5C 0.6C 0.7C 0.8C 0.9C 1.0C
4 4 4 4 4 4

Firstly, the battery cell is discharged using 0.2 C until the
open-circuit voltage (OCV) reaches its lower limit. Then, to
acquire the temperature rise under different charging currents,
6 charging currents ranging from 0.5 C to 1.0 C with the
interval of 0.1 C are set to charge the battery cell as given
in Table 1 and Table 2. In this paper, the utilized battery is the
NCR18650B Li-ion battery manufactured by PANASONIC
corp. The battery specifications are shown in Table 3. In this
study, the tested battery cell is located in the isothermal
chamber to ensure the ambient temperature always kept at
25 °C. The surface temperature is recorded with the sampling
time of 2 minutes during the entire constant current charging
period. In this way, there are 331 data sets obtained in total.
Among them, 307 data sets are for training while 24 data sets
are for validation. It should be noted that the charging time
varies with the charging currents. Thus, the total number of
the data points for 6 charging conditions are different from
each other due to the fixed sampling time. Eventually, the
training data is composed of two input vectors for SOC and
charging C-rate with the size of [1 x 307] and an output
target vector for temperature rise with the size of [1 x 307].
Fig. 5 shows the training data in the plot of temperature rise
versus SOC under different charging currents. In Fig. 5, the
temperature rise is defined as the difference between the sur-
face temperature and the ambient temperature. From Fig. 5,
high temperature rise can be observed at low SOC due to the
fact that the total heat generation inside the battery includes
reversible entropic heat and joule heat loss, while the latter is
a function of the battery internal resistance and the charging
current. Since the heat generation is proportional to internal

VOLUME 8, 2020

%

——0.5("
—a—0.6C

0.7C
——0.8C
~-0.9C

e
9

Temperature rise (°C)
S e e e
(=] == %] w S wn [=Y

&

10 20 30 40 50 60 70 80
SOC (%)

FIGURE 5. Temperature rise versus SOC under different charging current.

TABLE 3. NCR18650B specifications [33].

PANASONIC NCR18650B Li-Ion Battery

Nominal Capacity 3350 mAh
Nominal Voltage 3.6V
Cut-off Voltage 25V

Standard Charge CC-CV - 1625mA » 42V
Dimension 18.5 mm (diameter) > 63 mm (height)
Weight 485¢g
Charge Temperature 0°Cto+45°C
Discharge Temperature -20 °C to +60 °C

resistance; hence, high resistance at low SOC will result in
high temperature loss.

In this paper, the implementation of proposed backpropa-
gation ANN, as well as the training and validation, are real-
ized by MATLAB software. The predicted output is evaluated
by calculating the mean squared error. After the completion
of the ANN training, 24 sets of data that are distributed
uniformly in the overall data set are inputted to the trained
ANN model to validate the accuracy of the obtained ANN.
Fig. 6 shows the error between the predicted result and the
actual measured value. It can be observed that the maximum
error of temperature rise is 0.05°C, which is acceptable for
modeling the temperature behavior of the battery cell.

B. THE PROPOSED ENUMERATION-BASED MPC

Model predictive control had been broadly applied in the
nonlinear and time-variant system in the industry due to the
advantages of high robustness and adaptability [34]. Espe-
cially, MPC allows the current timeslot to be optimized, while
takes future timeslot into account. Fig. 7 shows the basic
concept of an MPC where k represents sampling time, u is
input, y is past output, y is predicted output, and P is the
length of the prediction steps. The error between target and
output y is evaluated by objective function and then optimized
to determine the control command for the next step [35].

In this paper, the enumeration-based MPC method is
used to determine the control parameters, namely the value
of the charging current for the next three sampling time
sequence. Enumeration-based MPC is applied hereby due
to its superiority of moderate computational complexity
and simplicity [36]. Based on the trained ANN model and
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FIGURE 6. Validation results of the proposed ANN model.
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coulomb counting, the performance (temperature rise and
SOC) of all possible control sequences derived from MPC
can be obtained, and then evaluated by the objective function.
To realize an optimal charging strategy where more capac-
ity can be charged with less temperature rise, the objective
function is design as given in (3). In this way, the result
is evaluated by considering both the increment of SOC and
the temperature rise, i.e. ASOC and AT, respectively. Also,
the importance of these two terms can be adjusted by the
weighting factor «. In this paper, two objective functions
with different weighting factors are investigated. They are
(i) MPC-ANN: a fixed weighting factor with « = 0.65
and (i) MPC-ANN-VW: the weighting factor is varied with
the charging current as given in (4).

3

3 . .
SOCyax — SOC DT
J=ad ( SOCome (l)> BAUDD DTnii ©

i=1 i=1

where J is the fitness value, o is weighting factor, SOC(i) is
SOC at the time step i, SOCyqy s the maximum SOC for all
possible control sequences, DT{(i) is temperature rise at time
step 1, DTy,4¢ 1S maximum temperature rise for all possible
control sequences.

a=—-1x Icharge_c—mte +1.5 “4)

where Icparge_c—rate TEPresents the charging current command
in C-rate.
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In Eq. (3), the first term represents the normalized charged
capacity and the second term describes the normalized tem-
perature rise value. By changing the value of «, the impor-
tance of both term can be adjusted. In Eq. (4), the weighting
factor is inverse proportional to the charging current. For
example, a high charging current (Icharge c—rate = 1.0 C)
results in a low « value, which means the importance of
temperature rise will be emphasized. On the other hand, a low
charging current will highlight the importance of charged
capacity.

XA

Best trajectory

FIGURE 8. Conceptual diagram of the MPC with enumeration.

Fig. 8 shows the conceptual diagram of the proposed
enumeration-based MPC method. When there are N possible
settings of charging current in the next P time steps, the total
possible combinations of the charging configurations will be
NP. In this paper, the prediction is made for 3-time steps, and
for each step, there are 5 settings of the charging current.
In other words, N = 5 and P = 3. Hence, the proposed
enumeration-based MPC has to deal with 125 combinations
of the possible charging current sequences. Fig. 9 presents the
flowchart of the proposed charging strategy. Firstly, SOC at
the current time step is estimated by the coulomb counting
approach. Next, based on the estimated SOC and 125 com-
binations of the charging current sequence derived from the
enumeration, the ANN model can predict the temperature
rise. Also, the charged capacity can be calculated. Then,
both performance indexes, i.e. temperature rise and charged
capacity, are normalized into a range of 0 to 1 for the current
time step. The best charging sequence can then be obtained
by finding the charging current sequence with minimal fitness
value as shown in (3). Finally, the first element in the optimal
charging current sequence is selected as the charging current
command. The charging current keeps updating until the
termination criterion is satisfied.

Ill. EXPERIMENTAL RESULTS

Fig. 10 shows the experimental platform utilized to realize
and validate the proposed charging strategy. All the battery
cells are in the isothermal chamber to ensure the ambient
temperature always kept at 25 °C. Temperature is moni-
tored using temperature acquisition tool USB N1 9211 and is
plotted in the user-interface using LabView. Three charging
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methods are implemented for comparison, including the con-
ventional CC-CV method and the proposed charging strategy
with two different objective functions, namely MPC-ANN
and MPC-ANN-VW.

Fig. 11 and Fig. 12 shows the recorded voltage, current,
and temperature rise data of MPC-ANN and MPC-ANN-VW,
respectively. It can be observed that both charging currents
decrease with the rising temperature. Moreover, the conven-
tional CC-CV method with charging current ranging from
0.7 C to 1.0 C in the interval of 0.1 C is compared with the
proposed methods. Fig. 13 shows the result of the temperature
rise of each charging strategy. The overall charging perfor-
mances are given in Table. 3, including charging time and the
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average temperature rise during the charging process. Due to
different charging currents, the resulted charging time varied
from each other. To compare temperature rise fairly, two indi-
cators are defined. The average temperature rise, denoted as
AVGl, is calculated by (5) where tepq,j is the charging time of
method i. AVGI1 can be regarded as the average temperature
rise over the whole period of the charging method itself.
On the other hand, the average temperature rise in a specific
time interval, denoted as AVG2, is defined as (6), where
tend,ccev 18 the charging time of the 1C CC-CV method. AVG2
represents the comparison based on the same time interval
with the 1C CC-CV method, i.e. the average temperature rise
within 6103 seconds.

Tend i

[ AT(@)dt
0

AVGl = ———— 5
tend, 1

tend ,CCCV
[ AT(@dr
0

AVG2 = ———
tend, CC — CV

(6)

According to Table 4, a larger charging current results
in shorter charging time but increases the temperature rise.
It can also be observed that the performance of the proposed
charging strategy is close to the ones using 0.7 C and 0.8 C
CC-CV method. Thus, an additional experiment of 0.75 C
CC-CV is carried out for comparison. It can be seen from
Table 5 that MPC-ANN has the best AVG1 value while MPC-
ANN-VW has the best AVG2 value. Tables 5 and 6 show
the improvement of MPC-ANN and MPC-ANN-VW com-
pared with the CC-CV method, respectively. From Table 5,
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TABLE 4. Experimental result of CC-CV method, MPC-ANN, and
MPC-ANN-VW.

TABLE 6. Improvement of MPC-ANN-VW compared with CC-CV method.

Charging strategy Charging time (s) AVGl1 AVG2
Charging strategy Charging time (s) AVGI (°C) AVG2 (°C) 0.7C CC-CV 5.11% 4.95% 2.77%
0.7C CC-CV 7022 2.54 2.18 0.75C CC-CV 1.20% 4.34% 4.13%
0.75C CC-CV 6860 2.56 221 0.8C CC-CV -0.71% 22.14% 24.10%
0.8C CC-CV 6616 3.10 2.80 0.9C CC-CV -5.46% 32.20% 36.97%
0.9C CC-CV 6318 3.55 337 1C CC-CV -9.18% 42.81% 49.66%
1C CC-CV 6103 421 4.21
MPC-ANN 6909 227 2.18 ) ) ] ]
MPC-ANN-VW 6663 241 212 rise of the battery cell can be predicted. With the trained ANN

TABLE 5. Improvement of MPC-ANN compared with CC-CV method.

Charging strategy Charging time (s) AVGl AVG2
0.7C CC-CV 1.61% 10.31% 0.22%
0.75C CC-CV -2.45% 9.73% 1.61%
0.8C CCc-Ccv -4.43% 26.53% 22.10%
0.9C CC-CV -9.35% 36.02% 35.32%
1C CC-CV -13.21% 46.03% 48.33%

MPC-ANN shows the improvement on AVG1 and AVG2 by
9.73%, 1.61%, while the time consumption is increased by
2.45% compared with 0.75 C CC-CV method. From Table 6,
MPC-ANN-VW shows the improvement of charging time,
AVGl1, and AVG2 by 1.2%, 4.34%, and 4.13% compared
with 0.75C CC-CV method. In conclusion, MPC-ANN has
better performance in temperature rise with the similar time
consumption of 0.75C CC-CV method. On the other hand,
MPC-ANN-VW shows a better balance between charging
time and temperature rise.

IV. CONCLUSION
This paper proposes a novel charging strategy that combines
the ANN model and MPC. Based on ANN, the temperature
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model, enumeration-based MPC enables the optimization of
the charging current. In this way, the temperature rise can
be reduced during the charging process, which achieves the
power loss reduction and thus prolongs battery lifetime. The
highlights of the proposed charging strategy are:

o It can predict future battery states under any possible
future charging sequence and hence evaluate charging
performance over a prediction period.

o It calculates the best charging sequence using an
optimization method, which can solve multi-objective
problems.

« It utilizes a receding horizon strategy and only applies
the first element of the best charging sequence at each
control moment. The prediction error caused by model
inaccuracy will not accumulate because instantaneous
measurements correctly update each initial prediction
value.

Besides, the design of the objective function is investi-
gated with two different weighting factors. Compared with
the 0.75 C CC-CV method, the MPC-ANN-VW method
improves the charging time by 1.2%, and the average tem-
perature rise by 4.13%. MPC-ANN method improves the
average temperature rise by 9.73% but it requires 2.45% more
charging time. Future directions of research will focus on
the experimental validation of the cycle-life improvement
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of the proposed method, and to investigate the possibility
of generating training data of ANN using electrochemical
models.
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