
Received June 22, 2020, accepted July 6, 2020, date of publication July 13, 2020, date of current version July 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3008903

An Automated Unified Framework for Video
Deraining and Simultaneous Moving Object
Detection in Surveillance Environments
BAIJU P. S. , (Graduate Student Member, IEEE), AND SUDHISH N. GEORGE , (Member, IEEE)
National Institute of Technology Calicut, Calicut 673601, India

Corresponding author: Baiju P. S. (baijupstvm@gmail.com)

ABSTRACT In many instances, outdoor surveillance systems suffer from atrocious weather conditions such
as rain, since images or videos captured by such vision systems in rainy days may undergo severe visual
dilapidations. This can cause a glitch in those algorithms which are further used for object detection and
tracking. Therefore, an ancillary video processing algorithm namely, video deraining is necessary prior to
the implementation of object detection and tracking. This indicates the requirement of a time-consuming and
complicated two-step process for the detection ofmoving objects in a rainy environment. This paper proposes
an automated single-stage formulation for the conventional three-stage procedure such as rain steak removal,
original data recovery and moving object detection as simultaneous operation in the tensor framework. The
brilliance of this work is confined in the efficient formulation of an operator termed as Slice Rotational
Total Variation (SRTV), to unify the different rain patterns into a common pattern so that any form of rain
pattern can be effectively removed from the rainy data in a visually appealing manner by preserving the
important details of the data. In this paper, SRTV regularization and tensor low-rankminimization are utilized
for the effective deraining as well as efficient retrieval of clean background. Besides, l1 norm and Tensor
Total Variation (TTV) regularizers together with SRTV regularizer are employed for the faithful detection
of derained moving objects. The experimental results show that the proposed method outperforms the state
of the art methods in terms of deraining capability and accurate moving object detection.

INDEX TERMS Low rank approximation, moving object detection, tensor total variation and video
deraining.

I. INTRODUCTION
Usually, most of the modern outdoor vision systems show
adequate performance in clear climatic conditions. However,
certain dynamic weather conditions such as rain will degrade
the visual quality of outdoor scenes, thereby deteriorating the
performance of many image processing and computer vision
algorithms such as object detection, event detection, tracking,
classification, scene analysis and surveillance. Hence it is
essential to remove such undesirable visual artifacts caused
by the rain on outdoor images or videos so that the outdoor
vision system can achieve better performance and greater
accuracy.

Many methods have been proposed in literature to remove
the rain streaks from input rainy video. Existing deraining
algorithms can be classified into four approaches such as
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time domain, frequency domain, learning and reconstruction
approaches. Time domain based techniques basically made
the use of chromatic and temporal properties of the rain for
rain removal. Grag et al. proposed a method to detect and
remove rain from video data using the physical properties
of raindrops [1], [2]. However, this method is incapable of
distinguishing rain streaks from moving objects, when video
data contains heavy rain streaks. Starik et al. introduced a
video deraining algorithm in which each rainy pixel value
was replaced by the median of corresponding pixel values
in temporal frames [3]. However, median filtering brought
blurring artifacts around the moving objects in the videos.
Zhang et al. developed a method for removing the rain streaks
by exploiting the temporal and chromatic properties [4]. This
method debases the visual quality of video with dynamic
background. Park et al. designed a video deraining algorithm
based on Kalman filtering [5]. This algorithm is inefficient
to detect rainy pixels from videos containing moving objects.
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Brewer et al. analyzed the shape characteristics of rain streaks
to identify and remove rain streaks from the video data [6].
This technique misclassifies the rain streaks when either
multiple rain streaks intersect at some point or a rain streak
intersects some other scene motion. These time domain based
methods require all the available frames in a video, even then
all the potential rain streaks may not be detected and removed
effectively.

Barnum et al. suggested a blurred Gaussian model in fre-
quency domain for detecting the rain streaks [7]. This idea
leads to visually unpleasant effects in image space when any
changes are made in frequency space. Lin et al. composed
a bilateral filter to disintegrate the rainy image into low
frequency and high frequency parts and the high frequency
part is further decomposed into rain and non-rain components
[8]. Chen et al. employed a guided filter to transform the input
image into frequency domain and extracted the rain streaks
from high frequency component by means of histogram of
oriented gradients [9]. These frequency domain methods may
not always lead to pleasing effects in spatial domainwhenever
changes are made in frequency domain. Moreover, if the
frequency components corresponding to rain streaks contain
clutters, degraded results will be produced.

Kang et al. presented a dictionary learning based method
that uses Morphological Component Analysis (MCA)
decomposition [10]. Chiang et al. utilized the concept of
dictionary learning to compute the rain streak map [11].
However, this method misdetects the non-rain components
as rain. Li et al. invented a rain removal algorithm using
Gaussian Mixture Models (GMM) [12]. This algorithm is
inadequate on images having patches with a substantial
amount of background details corrupted bymany rain streaks.
Mi et al. employed a fused dictionary for removing the rain
component from videos [13]. However, this method fails to
remove the entire rain streaks from videos. Ren et al. designed
Markov Random Fields (MRFs) to distinguish between mov-
ing objects and rain streaks [14]. This method is unable
to deal with the dynamic components of the video data.
Zhu et al. suggested a method that uses three priors on two
layers of rainy input image [15]. However, this method causes
over-smoothening of the background details. These learning
based methods have high time complexity and cause visually
unpleasant results in the output.

Kim et al. proposed a two stage process to remove the
rain streaks using rain map which is obtained by optical
flow estimation process [16]. However, this method is limited
when the input video contains heavy rain streaks. Jiang et al.
developed an algorithm in which unidirectional tensor total
variation regularizers are used to reconstruct the rain-free
video data [17]. This algorithm is incompetent when the
video is having oblique rain streaks. Wei et al. invented a
method that encodes rain in stochastic manner as patch-based
mixture of Gaussians [18]. This method is not suitable for
removing heavy rain patterns. Wang et al. formulated group
sparsity based optimization model for rain removal from
videos [19]. This method is limited when the rain direction

is far away from vertical direction. Huang et al. invented a
video rain streak removal algorithm using directional gradient
priors [20]. This algorithm was inadequate for handling the
residual rain artifacts and the texture features of the dynamic
objects in the video are not well maintained. Sun et al. pro-
posed an algorithm based on directional regularized tensor for
the rain removal [21]. However, this algorithm was incapable
of removing heavy rain streaks from videos.

One of the prime merits of reconstruction based deraining
methods is that the derained video can be obtained from
the available single input rainy video data. Moreover, the
non-essentialness of prior database makes these methods are
more convenient in nature and a time consuming training
session which is essential for learning based approaches can
be avoided. Hence, our research is mainly focused on the
design of video deraining algorithm using reconstruction
based approach in order to negate the above mentioned draw-
backs of the existing techniques. Hence the aim of this work
is to design an efficient video deraining technique which can
detect and remove the unwanted rain steaks from the rainy
video data and reconstruct the clean data by incorporating the
missing details from the available rainy data alone. Among
various reconstruction based methods, optimization approach
using low rank concept with suitable regularizers is the lead-
ing and emerging technique for various video processing
applications. This is the main motive of the proposed work.

Apart from rain removal methods, several Moving Object
Detection (MOD) algorithms using the concept of sparse and
low rank decomposition technique have been introduced in
the past decade. These techniques are dominant compared
with the conventional MOD techniques in terms of accurate
object detection and exact recovery of background informa-
tion. Candes et al. proposed a low rank approximation based
method for background subtraction using Robust Principal
Component Analysis (RPCA) [22]. Zhou et al. developed
a classical method for object detection using low rank rep-
resentation [23]. Cao et al. invented a modified version of
RPCA for foreground detection by utilizing spatio-temporal
continuity behaviour of moving objects [24]. Chen et al.
developed a method for separating background and mov-
ing objects, by extending the matrix based RPCA into ten-
sor domain [25]. This method is restricted to videos with
less number of frames. Sajid et al. suggested an online
tensor decomposition based method for extracting moving
objects from videos, which is effective for videos containing
more frames [26]. Anju et al. developed tensor based Low
Rank with Total Variation model for MOD applications [27].
Shijila et al. introduced a matrix based technique for parti-
tioning foreground and background by incorporating l1 norm
and Total Variation (TV) regularizations into RPCA [28]. The
same authors extended their work [28] to detect the moving
objects in noisy environment by including an extra term for
inculcating the noise in the observation model [29]. In [30],
an MOD method for extreme surveillance environments by
using twist spatio-temporal total variation to enhance the
detection performance of the foreground and tensor nuclear
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FIGURE 1. Illustration of failure cases of Fastderain [20] in rain removal
process. Top row: Original frames of ‘truck’, ‘highway’ and ‘traffic’ videos
respectively. Middle row: Corresponding derained results obtained by
Fastderain [20]. Bottom row: Corresponding MOD results obtained by
[29]. The circled portions correspond to the moving objects with distorted
texture features.

norm minimization for efficient background separation was
proposed.

However, the object detection algorithms mentioned above
were actually designed for clear weather conditions. Bad
weather conditions such as rain may put these detection
methods into trouble. Even if the the recent reconstruction
based deraining technique such as Fastderain [20] can remove
the rain steaks in a better manner, it will adversely affect the
texture features of the moving objects especially when small
sized moving objects are being considered. This scenario
is depicted in the middle row of Fig. 1. This will diminish
the detection accuracy of moving objects when the derained
data is fed to an MOD system as illustrated in the bottom
row of Fig. 1, where the most recent MOD method [29]
is used for verification. Moreover, blurring of objects may
create some misinterpretation about the data. For example,
it may adversely affect the number plate recognition system
or similar type of computer vision applications.

In summary, even the most recent and popular deraining
techniques cannot preserve texture features of moving objects
and the recent MOD methods cannot detect the moving
objects from a derained data in an effective manner. Thus,
it is beneficial to devise an algorithm to address all these
drawbacks in a single step. Hence the aim of this work is
reformulated as to design an efficient single stage algorithm
for three objectives such as rain streak removal, recovery
of rain-free data and moving object detection in a unified
framework without much computational overhead. In this
work, we model the video data as a third order tensor and
tensor decomposition technique is attempted to address the
above mentioned objective.

The rest of the paper is structured as follows. Section II
provides the mathematical preliminaries required for the bet-
ter description of the proposed method. Section III explains

TABLE 1. Mathematical notations.

the proposed work in which the formulation of the optimiza-
tion and the solution of the proposed model are elaborated.
Section IV discusses experimental results and performance
evaluation. Lastly, section V concludes the paper.

II. MATHEMATICAL PRELIMINARIES AND NOTATIONS
This section presents the preliminaries on the concept of
tensor algebra used in this paper. The mathematical notations
used in this paper are shown in Table 1. A tensor, X ∈

Rm1×m2×....mN is a multi-dimensional array [31]–[36]. In this
paper, Euler’s script is used to denote the tensors. Slice of
a tensor is a two dimensional section defined by all but two
indices [32], [35], [36]. A third order tensor,X ∈ Rm1×m2×m3

has horizontal, lateral and frontal slices denoted by X (k, :, :),
X (:, k, :) and X (:, :, k) respectively, where, k is the slice
number. A fiber of a tensor is a one dimensional segment
defined by fixing all indices except one [37]. A third order
tensor, X has mode-1, mode-2 and mode-3 fibers denoted by
X (:, j, k), X (i, :, k) and X (i, j, :) respectively.

A. TENSOR PRODUCT (T-PRODUCT)
t-product of two 3rd order tensors, X ∈ Rm1×m2×m3 and
Y ∈ Rm2×m4×m3 is defined as [38],

Z = X ∗ Y, Z ∈ Rm1×m4×m3 (1)

and,

Z(x, y, :) =
m2∑
z=1

X (x, z, :)� Y(z, y, :) (2)

where, � is the circular convolution operator.

B. TENSOR SINGULAR VALUE DECOMPOSITION (T-SVD)
t-SVD of a tensor, X ∈ Rm1×m2×m3 is given by [36], [38],
[39],

X = U ∗6 ∗ VT (3)

where, 6 is a rectangular tensor with each frontal slice as
f -diagonal of size m1 × m2 × m3, U and V are orthogonal
tensors of size m1×m1×m3 and m2×m2×m3 respectively
and ‘ ∗’ denotes t-product.

C. TENSOR MULTI-RANK
The multi-rank of a tensor, X ∈ Rm1×m2×m3 is a vector, r ∈
Rm3 , whose individual elements are the ranks of frontal slices
of Fourier transform of the tensor, X [36], [40].

multi-rank(X ) = [r1, r2, . . . , rm3 ] (4)

where, ri = rank(X (i)
f ), i = 1, 2, ..,m3 and X (i)

f denotes
the Fourier transform of ith frontal slice of X .
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D. l1 NORM
The l1 norm of a 3rd order tensor, X ∈ Rm1×m2×m3 is given
by [37],

‖X‖1 =
∑
x,y,z

|X (x, y, z)|. (5)

E. TENSOR NUCLEAR NORM (TNN)
The tensor nuclear norm of a tensor, X ∈ Rm1×m2×m3 is
defined as [38], [39],

‖X‖~ =
m3∑
z=1

min(m1,m2)∑
x=1

|6f (x, x, z)|. (6)

where, 6f is the Fourier transform of a rectangular tensor, 6
with each frontal slice as f -diagonal of size m1 × m1 × m3.

F. WEIGHTED TENSOR NUCLEAR NORM (WTNN)
For a tensor, X ∈ Rm1×m2×m3 with 6f ∈ Rmin (m1,m2)×m3 as
its singular value tensor in Fourier domain, Weighted Tensor
Nuclear Norm operator ‖.‖~W is defined as [37],

‖X‖~W =
m3∑
z=1

min(m1,m2)∑
x=1

WX (x, x, z)|6f (x, x, z)| (7)

where, WX ∈ Rmin (m1,m2)×m3 is a weight tensor whose
individual element is given by

WX (x, x, z) = 1
6f (x,x,z)+ε

, ε > 0

G. TENSOR TOTAL VARIATION (TTV) NORM
For a given tensor, X ∈ Rm1×m2×m3 , anisotropic total varia-
tion is defined as [24],

‖X‖TTV =
∑
x,y,z

(DhX + DvX + DtX ) (8)

where, DhX = |X(x,y,z) − X(x+1,y,z)| and DvX = |X(x,y,z) −

X(x,y+1,z)| and DtX = |X(x,y,z) − X(x,y,z+1)|

In the following section, the proposed method for video
deraining and simultaneous moving object detection by uti-
lizing the above mentioned concepts in tensor algebra is
presented.

III. PROPOSED METHOD
Video deraining task generally aims at removing the rain
streaks and recovering the original data from the outdoor
rainy videos. However, object detection is the main operation
of many surveillance systems where an additional step is
required for detecting the objects from derained videos. This
two step process takes more execution time and is not suitable
for real time applications. Moreover, the texture features of
dynamic objects will be lost during the deraining process even
for themost recent deraining algorithmswhichmay adversely
affect the detection performance of the MOD system. Hence,
our method proposes a single stage optimization method
for deraining and moving object detection in an effective

manner. The objectives of the this problem consists of effi-
cient removal of the rain components without affecting the
important features of the original rain-free data and accurate
detection of moving objects in surveillance videos.

In the proposed method, rainy video, V is modeled as a
third order tensor in order to effectively utilize the spatial
and temporal features of the data. It is because of the fact
that the application of matrix algebra ignores the temporal
redundancy present in the data as it is restricted to 2D space
only. However, the different operators in tensor algebra help
to negate this drawback to a certain extend by considering
the data as a whole instead of individual slices. The proposed
method decomposes the rainy data, V into three 3rd order
tensors as given below.

V = B + F +R (9)

where, B, F and R are background, moving objects or
foreground and rain components respectively. The proposed
decomposition model is illustrated in Fig 2. Hence the objec-
tive is to accurately decompose B, F and R components
for the efficient separation of background component from
the foreground component for moving object detection suc-
ceeded by the integration of these components for obtaining
the rain-free data.

FIGURE 2. Three way decomposition of rainy video.

The significant contributions of the proposed method are
summarized below.
• To the best of our understanding, this is the first attempt
to introduce rain steak removal, rain-free data recovery
and moving object detection for outdoor surveillance
videos by solving a single objective function in a uni-
fied framework from the available rainy data in the
tensor framework. This objective is accomplished by
decomposing the 3rd order rainy tensor as the sum of
three tensors such as rainy, background and foreground
components.

• A new operator termed as Slice Rotational Total Varia-
tion (SRTV) is formulated to amalgamate the different
types of rain patterns such as vertical and oblique rain
streaks to a single pattern so that the further processing
can become more simplified and efficient.

• A tensor low rank regularization term is incorporated
in the formulated optimization model for exploiting the
low rank nature of background component. The low rank
regularization term together with SRTV regularization
helps to increase the efficacy of exact background sepa-
ration without rain steaks from the rainy input data.

• In order to extract the sparse moving objects, a greedy
sparsity regularization term such as l1 minimization
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term is included. The inclusion of Tensor Total Varia-
tion (TTV) regularization helps the fine tuning of exact
foreground and background separation. Moreover, the
inclusion of SRTV regularization terms removes the rain
steaks from the foreground component. The integra-
tion of decomposed and derained foreground and back-
ground components provides the rain-free video data.

• The formulated three-way objective function is solved
using Augmented Lagrangian Method (ALM) with
Alternating Direction Method of Multipliers (ADMM)
technique. Themost popular and recent techniques in the
domain of video deraining and moving object detection
are compared with the proposed scheme. It is found
that the proposed method excels in majority cases com-
pared with the other schemes. However, none of these
compared techniques can perform video deraining and
simultaneous MOD as a single stage operation like the
proposed method.

A. THEORY BEHIND THE PROPOSED MODEL
In this section, the basic idea behind the decomposition of
rainy video into foreground, background and rainy compo-
nents are outlined.

1) REMOVAL OF RAINY COMPONENT
Rain streak removal is the crucial stage of deraining pro-
cess. This is because of the fact that the nature of rain
streaks such as light and heavy and the direction of rain
streaks such as vertical and oblique may differently affect
the removal process of the rain component. To diminish
this problem, a unique operator called Slice Rotational Total
Variation (SRTV) is introduced for the effective elimination
of rain streaks from background and foreground components
irrespective of nature as well as direction of the rain streaks.

a: SLICE ROTATIONAL TOTAL VARIATION (SRTV) OPERATOR
In this technique, each horizontal slice of the rainy data is
transformed into frontal slice by rotating an angle of 900

and then two dimensional Total Variation (TV) is applied
to each rotated frontal slice. Fig. 3 shows that despite the
fact that the frontal slices of heavy and oblique rainy videos
are having different rain pattens, their corresponding hori-
zontal slices look alike and occupy dot-like pattern. Hence,
if all the horizontal slices are converted to frontal slices by
means of rotation, minimization of simple two dimensional
Total Variation (TV) operator will be adequate to remove
such dot-like pattern and thereafter the reverse process of
slice rotation yields the clear background /foreground. Thus,
SRTV operator is an efficacious method for eradicating rain
component from videos having complex rain patterns such
as heavy and oblique rain streaks. SRTV operator can be
mathematically expressed as follows.

Let Y ∈ Rm3×m2×m1 be the resultant tensor obtained by
applying slice rotation on a tensor, X ∈ Rm1×m2×m3 . Then,
the entries in each horizontal slice of X are same as those in

FIGURE 3. (a) and (c) Frontal slices with vertical rain streaks and oblique
rain streaks respectively, (b) and (d) Horizontal slices (obtained by
rotation) of (a) and (c) respectively.

the corresponding frontal slice of Y .

ie.X (i, :, :) ≡ Y(:, :, i) for i = 1, 2, . . . ,m1 (10)

Now, SRTV of X is defined as,

‖X‖SRTV =
∑
z

∑
x,y

[DhY(:, :, z)+ DvY(:, :, z)]

 (11)

where,

DhY(:, :, z) = |Y(x,y,z) − Y(x+1,y,z)| (12)

and

DvY(:, :, z) = |Y(x,y,z) − X(x,y+1,z)| (13)

2) SEPARATION OF BACKGROUND COMPONENT
The background component has spatial correlation within
each frame and temporal correlation among the frames. This
spatio-temporal consistency reveals that the background is
low rank in nature [41]. The popular tensor robust principal
component analysis (TRPCA) suggests themodeling of back-
ground component as a low rank tensor [42]. Hence tensor
multi-rank minimization is the best solution for recovering
background from videos. Since multi-rank minimization is
not convex in nature, unique solution can be obtained by
replacing the problem by Tensor Nuclear Norm (TNN) min-
imization, where, TNN is assumed to be the best convex
surrogate of tensor multi-rank [40]. However, in [38], Baburaj
et al. proposed that re-weighting the singular values in terms
of their significance improves the performance of low rank
recovery in a more fruitful manner. Hence, the proposed
model utilizesWeighted Tensor Nuclear Norm (WTNN)min-
imization for enhancing the efficient recovery of background
components. The WTNN minimization of foreground com-
ponent together with SRTV minimization on the rainy com-
ponent will yield the retrieval of rain-free component.
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3) SEPARATION OF FOREGROUND COMPONENT
The moving objects in each frame usually contain lesser
number of pixels. As a result, they exhibit sparse nature.
Therefore, l0 norm minimization can provide foreground
component. Since l0 norm is non-convex in nature, l1 norm
minimization is considered as the best substitute for the same
[43]. Moreover, the moving objects have salient and continu-
ous change in intensity along the spatial as well as temporal
directions. Hence the more accurate foreground detection can
be achieved by exploiting this spatio-temporal continuity of
the data. Tensor Total Variation (TTV) minimization is the
superior method for detecting moving objects by imposing
the spatio-temporal continuity constraints [24]. Thus, the
combined usage of l1 norm and TTV norm minimization
along with SRTV regularization will provide the detection of
rain-free foreground components.

B. FORMULATION OF OPTIMIZATION MODEL
The aforementioned mathematical ingredients for the pro-
posed method are recapped in terms of the following short
comments;
• Introduction of the joint processing by applying WTNN
minimzation on background component and SRTV
norm minimization on rainy component accomplishes
mutual exclusiveness between background and rain
streaks. The joint action of these two regularization
terms results a visually pleasing background video with-
out rain steaks.

• Since it is assumed that the foreground component poses
sparse nature, sparsity greedy l1 norm minimization is
incorporated. In order to ensure the piecewise smooth-
ness, TTV norm minimization term is included so that
the fine tuning of exact foreground component can be
ensured. Moreover, the formulated SRTV norm mini-
mization term ensures the removal of rain steaks from
the foreground component.

Considering all the above-mentioned points, an optimization
model can be formulated as,

argmin
B,F ,R

‖B‖~W + λ1 ‖F‖1 + λ2 ‖G‖TTV + λ3 ‖R‖SRTV

s.t V = B + F +R and F = G (14)

where, ‖.‖~W , ‖.‖1, ‖.‖TTV and ‖.‖SRTV represent
WTNN, l1, TTV and SRTV oprerators respectively.
The Augmented Lagrangian function for Eq. (14) is

defined as,

Lµ,λ1,λ2,λ3,(R,F ,G,B,Y1,Y2)

= ‖B‖~W + λ1 ‖F‖1
+λ2 ‖G‖TTV + λ3 ‖R‖SRTV
+ < Y1,V − B − F −R > + < Y2,G − F

> +
µ

2
‖V − B − F −R‖2F +

µ

2
‖G − F‖2F (15)

The problem defined in Eq. (15) can be solved by using
Alternating Direction Method of Multipliers (ADMM) in

which the whole problem is divided into four subproblems
and each one is solved in an iterative manner as follows [44].

1) B SUBPROBELM

B[n+1]
= argmin

B
‖B‖~W

+
µ

2

∥∥∥∥∥B −
[
V −R[n]

− F [n]
+

Y [n]
1

µ

]∥∥∥∥∥
2

F

(16)

The closed form solution of Eq. (16) is given by,

B[n+1]
= DW[n]

µ

[
V −R[n]

− F [n]
+

Y [n]
1

µ

]
(17)

where, Dδ(X ) is the singular value convolution operator
defined on a tensor X ∈ Rm1×m2×m3 having t-SVD X =
U ∗6 ∗ VT given by [38],

Dδ(X ) = U ∗ Cδ(6) ∗ VT (18)

where, Cδ(6) = 6 ∗ J and J is an f -diagonal tensor whose
diagonal element in Fourier domain is

Jf (x, x, z) =
(
1−

δ

6f (x, x, z)

)
(19)

here, 6f is the Fourier transform of 6 and 1 ≤ x ≤ m1,
1 ≤ z ≤ m3, m1 < m2

2) F SUBPROBELM

F [n+1]
= argmin

F
λ1 ‖F‖1 +

µ

2

∥∥∥F −K[n+1]
∥∥∥2
F

(20)

where,

K[n+1]
=

[
V − B[n+1]

−R[n]
+ G[n]

2

]
+

[
Y [n]
1 + Y [n]

2

2µ

]
(21)

The closed form solution of Eq. (20) is given by,

F [n+1]
= S λ1

2µ

[
K[n+1]

]
(22)

where, Sτ (X ) = sgn(X )×max (X − τ, 0) is the soft thresh-
olding operation [42].

3) G SUBPROBELM

G[n+1]
= argmin

G
λ2 ‖G‖TTV+

µ

2

∥∥∥∥∥G−
[
F [n+1]

−
Y [n]
2

µ

]∥∥∥∥∥
2

F
(23)

The Eq. (23) can be solved as,

G[n+1]
= TTV λ2

µ

[
F [n+1]

−
Y [n]
2

µ

]
(24)

where, TTV [.] denotes tensor TV minimization algorithm
in [45].
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4) R SUBPROBELM

R[n+1]

= argmin
R

λ3 ‖R‖SRTV

+
µ

2

∥∥∥∥∥R−
[
V − B[n+1]

− F [n+1]
+

Y [n]
1

µ

]∥∥∥∥∥
2

F

(25)

The solution of the Eq. (25) is given by,

R[n+1]
= SRTV λ3

µ

[
V − B[n+1]

− F [n+1]
+

Y [n]
1

µ

]
(26)

where, SRTV [.] is the slice rotational TV minimization oper-
ator defined by,

SRTV [X ] = P ↑

where, P ↑ is the frontal to horizontal slice rotated version
of the tensor,

P = TV [X ↓].

where, X ↓ is the horizontal to frontal slice rotated version
of the tensor X and TV [.] is the two dimensional TV mini-
mization procedure applied to each frontal slice of X ↓ [46].
Finally, the Lagrangian multipliers are updated by the fol-

lowing equations,

Y [n+1]
1 = Y [n]

1 + µ
[
V − B[n+1]

− F [n+1]
−R[n+1]

]
(27)

Y [n+1]
2 = Y [n]

2 + µ
[
G[n+1]

− F [n+1]
]

(28)

Here, the final updates of B and F can provide clear
background and foreground components respectively. Since,
the resultant F component does not contain rain streaks, our
algorithm is able to precisely detect the moving objects in
rainy environments. Moreover, the original rain-free video
can be effectively regained by simply adding the last updates
of B and F components together.
The algorithm description for solving the aforementioned

optimization problem is summarized in Algorithm 1.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
The performance evaluation of the proposed method is done
on synthetic and real video sequences. In order to assess the
efficacy of the proposed method for removing rain streaks
from videos, we compare our method with latest state of
the art deraining methods such as Kim et al.’s Low Rank
Matrix Completion (LRMC)method [16],Wei et al.’smethod
[18], Huang et al.’s Fast Derain method [20] and Sun et al.’s
method [21]. Morevover, the capability of our method for
detecting moving objects is validated by comparing with the
recent MOD techniques such as Sajid et al.’s Online Tensor
Decomposition (OTD) method [26], Chen et al.’s method
[25] and Shijila et al.’s method [29]. None of these method
can perform the deraining and moving object detection as a
simultaneous action.

The proposed method is implemented on the platform of
Linux 14.04 and Matlab (2016a) with an Intel(R) Xenon(R)

Algorithm 1 Rain Removal and Foreground Extraction

Data: Rainy video, V ∈ Rm1×m2×m3

Result: Foreground video, F and Derained video, B+F
Initialization: λ1 > 0, λ2 > 0, µ(0) > 0, µmax =
104, ρ > 0,R(0)

= F (0)
= B(0)

= Y (0)
1 = Y (0)

2 = 0
converged = false
while not converged do

B[n+1]
= DW[n]

µ

[
V −R[n]

− F [n]
+

Y [n]
1
µ

]
K[n+1]

=

[
V−B[n+1]

−R[n]
+G[n]

2

]
+

[
Y [n]
1 +Y

[n]
2

2µ

]
F [n+1]

= S λ1
2µ

[
K[n+1]

]
G[n+1]

= TTV λ2
µ

[
F [n+1]

−
Y [n]
2
µ

]
R[n+1]

= SRTV λ3
µ

[
V − B[n+1]

− F [n+1]
+

Y [n]
1
µ

]
Y [n+1]
1 = Y [n]

1 + µ
[
V − B[n+1]

− F [n+1]
−R[n+1]

]
Y [n+1]
2 = Y [n]

2 + µ
[
G[n+1]

− F [n+1]
]

µ[n+1]
= min (ρµ[n], µmax)

if
∥∥V−B[n+1]

−F [n+1]
−R[n+1]

∥∥
F

‖V‖F ≤ threshold then
converged = true

end
n = n+ 1

end

E5-1620 CPU at 3.70GHz and 8GB RAM. Since our method
is capable of removing rain streaks as well as detecting mov-
ing objects, we need to analyse both deraining performance
and object detection performance separately.

A. DERAINING PERFORMANCE ANALYSIS
In order to validate the capacity of our method for removing
rain streaks, synthetic videos with different rain patterns such
as light, heavy and oblique, and certain real rainy videos are
utilized.

1) SYNTHETIC DATA
Synthetic rainy videos are obtained by adding three types of
simulated rain streaks such as light rain, heavy rain and rain
at an arbitrary angle with ground truth videos named ‘truck’,
‘highway’, ‘pedestrian’, ‘park’, ‘backdoor’ and ‘bungalows’,
which are collected fromCD.net and SABS datasets. The size
of the videos is set to 256× 256× 3× 100. The parameters,
ρ and ε are experimentally set as, ρ = 2.5 and ε = 0.01

For the comparison purpose of our method with existing
video deraining techniques such as [16], [18], [20] and [21],
the quality metrics such as peak signal-to-noise ratio (PSNR)
in dB, structural similarity (SSIM) [47] and inverse Relative
Error (iRSE) in dB [38] are calculated for each frame of
the aforementioned synthetic videos and the corresponding
mean values of such parameters along with execution time
are entered in Table 2. As shown in Table 2, the proposed
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TABLE 2. Quantitative comparisons of rain removal results on synthetic videos.

FIGURE 4. (a) Sample frames of ‘truck’ video with light, heavy and
oblique rain streaks, (b) corresponding frames of rain-free video,
deraining results obtained by (c) LRMC [16], (d) Wei et al. [18], (e) Fast
Derain [20], (f) Sun et al. [21], (g) Proposed method.

FIGURE 5. (a) Sample frames of ‘highway’ video with light, heavy and
oblique rain streaks, (b) corresponding frames of rain-free video,
deraining results obtained by (c) LRMC [16], (d) Wei et al. [18], (e) Fast
Derain [20], (f) Sun et al. [21], (g) Proposed method.

method remarkably outperformed the state of the art methods
in terms of chosen quality metrics. However, the execution
time for Fast Derain [20] is very less compared with other
methods including proposed method. However, the proposed

FIGURE 6. (a) Sample frames of rainy ‘traffic’, ‘wall’ and ‘banana’
videos, deraining results obtained by (b) LRMC [16], (c) Wei et al. [18],
(d) Fast Derain [20], (e) Sun et al. [21], (f) Proposed method.

TABLE 3. Quantitative comparisons of rain removal results on real videos.

method can provide dual solutions such as deraining and
MOD in a reasonable computational time. Fig 4 and 5 rep-
resent derained results and comparison of sample frames
taken from synthetic videos named ‘truck’ and ‘highway’
respectively with three different rain patterns as light, heavy
and oblique. It can be obviously seen that rain removal task
is effectively carried out by the proposed method.
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FIGURE 7. (a) Sample frames of rainy vidoes named ‘highway’, ‘pedestrain’, ‘Backdoor’ and ‘Bungalows’ with light, heavy and oblique rain streaks,
(b) Corresponding frames of groundtruth, foreground masks obtained by (c) Sajid et al. [26], (d) Chen et al. [25], (e) Shijila et al. [29], (f) Proposed
method, (g)-(i) Corresponding frames of foreground, background and derained result obtained by proposed method, (j) Original frame.

2) REAL DATA
Natural rainy videos such as ‘traffic’, ‘wall’, ‘banana’ and
‘backyard’ of size 256 × 256 × 3 × 100 are collected from

various database including ‘Storyblocks’ and are utilized to
verify how the proposed method performs rain removal for
real data. To substantiate the ability of proposed method to
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TABLE 4. Quantitative comparison of proposed method with different object detection algorithms.

remove rain streaks on real videos, visual quality parameters
called Natural Image Quality Evaluator (NIQE) [48], Blind or
Referenceless Image Spatial Quality Evaluator (BRISQUE)
[49] and Sharpness Index (SI) [50] are calculated for each
frame and the corresponding mean values of such parameters
for whole video are entered in Table 3. Smaller values of
NIQE and higher values of BRISQUE and SI indicate better
performance. As seen from Table 3, the proposed method
gives better results for all the four real videos. Fig 6 shows
the visual comparison of our method with existing methods
as [16], [18], [20] and [21]. It is clear that our method outper-
forms the other state of the art methods.

B. OBJECT DETECTION PERFORMANCE ANALYSIS
In order to analyse the performance effectiveness of our
method for detectingmoving objects, we have done a compar-
ison with recent object detection methods such as [25], [26]
and [29]. Videos used for comparison, such as ‘highway’,
‘pedestrian’, ‘backdoor’ and ‘bungalows’ are collected from
CD.net dataset and simulated rain streaks with different pat-
terns are added. The performance evaluation for background
as well as foreground detection can be measured in terms of
parameters such as f0 measure, f1 measure and fj measure
[30], [51]. These parameters can be formulated as follows.

f0 measure =
2R0P0
R0 + P0

(29)

f1 measure =
2R1P1
R1 + P1

(30)

fj measure =
2f0f1
f0 + f1

(31)

where,

R0 =
TN

TN + FP
, R1 =

TP
TP+ FN

(32)

and

P0 =
TN

TN + FN
, P1 =

TP
TP+ FP

(33)

Here, FP, FN, TP and TN indicate false positives, false nega-
tives, true positives, and true negatives, respectively. By using
the above expressions, the selected parameters are calculated
for each frame of the videos and the corresponding mean val-
ues are entered in Table 4. It is clear that the proposed method
shows better performance than the state of the art methods

with respect to the selected quality metrics. Fig 7 shows
the visual comparison of our method with existing object
detection methods. From Fig 7, it is seen that the proposed
method can efficiently detect the foreground irrespective of
the nature of rain streaks.

V. CONCLUSION
A new method for video deraining and simultaneous mov-
ing object detection is proposed and implemented in this
paper. A 3-way tensor decomposition model is introduced
for the retrieval of rain-free background and extraction of
foreground from the rainy video data. A new operator termed
as Slice Rotational Total Variation (SRTV) norm is formu-
lated for transforming the all different rain patterns into
unique dot-like pattern. SRTV combined with Weighted Ten-
sor Nuclear Norm (WTNN) regularizations on rainy and low
rank components are employed for effectively removing the
rain streak outlier from background. Moreover, l1 norm min-
imization along with TTV regularizers are incorporated for
the proper detection of moving objects from rainy video. The
quantitative comparison of the proposed method for derain-
ing performance with the existing methods such as, LRMC
method [16], Wei et al. [18], Fast Derain [20], Sun et al. [21]
was done. Moreover, the proposed method was compared for
analysing the object detection performance with the recent
MOD techniques such as, Javed et al. [26], Chen et al. [25]
and Shijila et al. [29]. In both the above cases, our method
brought good results. The main contributions of this work are
the formulation of the new operator, SRTV norm for address-
ing the all types of rain patterns and the simultaneous video
deraining and moving object detection by iteratively solv-
ing a single optimization model without any training phase.
In this work, we have considered only videos with static
backgrounds. In future, we can reformulate the optimization
model for addressing videos with dynamic backgrounds.

REFERENCES
[1] K. Garg and S. K. Nayar, ‘‘Detection and removal of rain from videos,’’ in

Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR),
vol. 1, Jun. 2004, pp. 1–8.

[2] K. Garg and S. K. Nayar, ‘‘Vision and rain,’’ Int. J. Comput. Vis., vol. 75,
no. 1, pp. 3–27, Jul. 2007.

[3] S. Starik and M. Werman, ‘‘Simulation of rain in videos,’’ in Proc. Texture
Workshop ICCV, vol. 2, 2003, pp. 406–409.

[4] X. Zhang, H. Li, Y. Qi, W. Leow, and T. Ng, ‘‘Rain removal in video by
combining temporal and chromatic properties,’’ in Proc. IEEE Int. Conf.
Multimedia Expo, Jul. 2006, pp. 461–464.

128970 VOLUME 8, 2020



B. P. S., S. N. George: Automated Unified Framework for Video Deraining and Simultaneous Moving Object Detection

[5] W.-J. Park and K.-H. Lee, ‘‘Rain removal using Kalman filter in video,’’ in
Proc. Int. Conf. Smart Manuf. Appl., Apr. 2008, pp. 494–497.

[6] N. Brewer and N. Liu, ‘‘Using the shape characteristics of rain to identify
and remove rain from video,’’ in Proc. Joint IAPR Int. Workshops Stat.
Techn. Pattern Recognit. (SPR) Struct. Syntactic Pattern Recognit. (SSPR).
Berlin, Germany: Springer, 2008, pp. 451–458.

[7] P. C. Barnum, S. Narasimhan, and T. Kanade, ‘‘Analysis of rain and snow
in frequency space,’’ Int. J. Comput. Vis., vol. 86, nos. 2–3, pp. 256–274,
Jan. 2010.

[8] Y.-H. Fu, L.-W. Kang, C.-W. Lin, and C.-T. Hsu, ‘‘Single-frame-based
rain removal via image decomposition,’’ in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), May 2011, pp. 1453–1456.

[9] D.-Y. Chen, C.-C. Chen, and L.-W. Kang, ‘‘Visual depth guided color
image rain streaks removal using sparse coding,’’ IEEE Trans. Circuits
Syst. Video Technol., vol. 24, no. 8, pp. 1430–1455, Aug. 2014.

[10] L.-W. Kang, C.-W. Lin, and Y.-H. Fu, ‘‘Automatic single-image-based rain
streaks removal via image decomposition,’’ IEEE Trans. Image Process.,
vol. 21, no. 4, pp. 1742–1755, Apr. 2012.

[11] S.-H. Sun, S.-P. Fan, and Y.-C.-F. Wang, ‘‘Exploiting image structural
similarity for single image rain removal,’’ in Proc. IEEE Int. Conf. Image
Process. (ICIP), Oct. 2014, pp. 4482–4486.

[12] Y. Li, R. T. Tan, X. Guo, J. Lu, and M. S. Brown, ‘‘Rain streak removal
using layer priors,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 2736–2744.

[13] Z. Mi, J. Shang, H. Zhou, and M. Wang, ‘‘Image fusion-based video
deraining using sparse representation,’’ Electron. Lett., vol. 52, no. 18,
pp. 1528–1529, Sep. 2016.

[14] W. Ren, J. Tian, Z. Han, A. Chan, and Y. Tang, ‘‘Video desnowing and
deraining based on matrix decomposition,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2838–2847.

[15] L. Zhu, C.-W. Fu, D. Lischinski, and P.-A. Heng, ‘‘Joint bi-layer opti-
mization for single-image rain streak removal,’’ in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Oct. 2017, pp. 2526–2534.

[16] J.-H. Kim, J.-Y. Sim, and C.-S. Kim, ‘‘Video deraining and desnowing
using temporal correlation and low-rank matrix completion,’’ IEEE Trans.
Image Process., vol. 24, no. 9, pp. 2658–2670, Sep. 2015.

[17] T.-X. Jiang, T.-Z. Huang, X.-L. Zhao, L.-J. Deng, and Y. Wang, ‘‘A novel
tensor-based video rain streaks removal approach via utilizing discrimina-
tively intrinsic priors,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jul. 2017, pp. 4057–4066.

[18] W. Wei, L. Yi, Q. Xie, Q. Zhao, D. Meng, and Z. Xu, ‘‘Should we encode
rain streaks in video as deterministic or stochastic?’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2516–2525.

[19] Y.-T. Wang, X.-L. Zhao, T.-X. Jiang, L.-J. Deng, T.-H. Ma, Y.-T. Zhang,
and T.-Z. Huang, ‘‘A total variation and group sparsity based tensor opti-
mization model for video rain streak removal,’’ Signal Process., Image
Commun., vol. 73, pp. 96–108, Apr. 2019.

[20] T.-X. Jiang, T.-Z. Huang, X.-L. Zhao, L.-J. Deng, and Y. Wang,
‘‘FastDeRain: A novel video rain streak removal method using direc-
tional gradient priors,’’ IEEE Trans. Image Process., vol. 28, no. 4,
pp. 2089–2102, Apr. 2019.

[21] Z. Sun, S. Xiong, and R. Wen Liu, ‘‘Directional regularized tensor mod-
eling for video rain streaks removal,’’ 2019, arXiv:1902.07090. [Online].
Available: http://arxiv.org/abs/1902.07090

[22] E. J. Candès, X. Li, Y. Ma, and J. Wright, ‘‘Robust principal component
analysis?’’ J. ACM, vol. 58, no. 3, pp. 11–20, 2011.

[23] X. Zhou, C. Yang, and W. Yu, ‘‘Moving object detection by detecting
contiguous outliers in the low-rank representation,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 3, pp. 597–610, Mar. 2013.

[24] X. Cao, L. Yang, and X. Guo, ‘‘Total variation regularized RPCA for
irregularly moving object detection under dynamic background,’’ IEEE
Trans. Cybern., vol. 46, no. 4, pp. 1014–1027, Apr. 2016.

[25] L. Chen, Y. Liu, and C. Zhu, ‘‘Iterative block tensor singular value thresh-
olding for extraction of lowrank component of image data,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2017,
pp. 1862–1866.

[26] S. Javed, T. Bouwmans, and S. K. Jung, ‘‘Stochastic decomposition into
low rank and sparse tensor for robust background subtraction,’’ in Proc.
6th Int. Conf. Imag. Crime Prevention Detection (ICDP), 2015, pp. 1–6.

[27] A. J. Tom and S. N. George, ‘‘Tensor total variation regularized moving
object detection for surveillance videos,’’ in Proc. Int. Conf. Signal Pro-
cess. Commun. (SPCOM), Jul. 2018, pp. 327–331.

[28] B. Shijila, A. J. Tom, and S. N. George, ‘‘Moving object detection by low
rank approximation and l1-TV regularization on RPCA framework,’’ J. Vis.
Commun. Image Represent., vol. 56, pp. 188–200, Oct. 2018.

[29] B. Shilila, A. J. Tom, and S. N. George, ‘‘Simultaneous denoising and
moving object detection using low rank approximation,’’ Future Gener.
Comput. Syst., vol. 90, pp. 198–210, Jan. 2019.

[30] A. J. Tom and S. N. George, ‘‘Video completion and simultaneous moving
object detection for extreme surveillance environments,’’ IEEE Signal
Process. Lett., vol. 26, no. 4, pp. 577–581, Apr. 2019.

[31] P. Comon, ‘‘Tensors: A brief introduction,’’ IEEE Signal Process. Mag.,
vol. 31, no. 3, pp. 44–53, May 2014.

[32] J. D. Carroll and J.-J. Chang, ‘‘Analysis of individual differences in
multidimensional scaling via an N-way generalization of ‘Eckart-Young’
decomposition,’’ Psychometrika, vol. 35, no. 3, pp. 283–319, Sep. 1970.

[33] E. Kernfeld, M. Kilmer, and S. Aeron, ‘‘Tensor–tensor products with
invertible linear transforms,’’ Linear Algebra Appl., vol. 485, pp. 545–570,
Nov. 2015.

[34] M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover, ‘‘Third-order tensors
as operators on matrices: A theoretical and computational framework with
applications in imaging,’’ SIAM J. Matrix Anal. Appl., vol. 34, no. 1,
pp. 148–172, Jan. 2013.

[35] L. De Lathauwer, B. De Moor, and J. Vandewalle, ‘‘A multilinear sin-
gular value decomposition,’’ SIAM J. Matrix Anal. Appl., vol. 21, no. 4,
pp. 1253–1278, 2000.

[36] C. D. Martin, R. Shafer, and B. LaRue, ‘‘An order-p tensor factorization
with applications in imaging,’’ SIAM J. Sci. Comput., vol. 35, no. 1,
pp. A474–A490, Jan. 2013.

[37] B. Madathil and S. N. George, ‘‘DCT based weighted adaptive multi-linear
data completion and denoising,’’ Neurocomputing, vol. 318, pp. 120–136,
Nov. 2018.

[38] B. Madathil and S. N. George, ‘‘Twist tensor total variation regularized-
reweighted nuclear norm based tensor completion for video missing area
recovery,’’ Inf. Sci., vol. 423, pp. 376–397, Jan. 2018.

[39] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer, ‘‘Novel methods for
multilinear data completion and de-noising based on tensor-SVD,’’ inProc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 3842–3849.

[40] M. Baburaj and S. N. George, ‘‘Tensor based approach for inpainting
of video containing sparse text,’’ Multimedia Tools Appl., vol. 78, no. 2,
pp. 1805–1829, Jan. 2019.

[41] H. Wang, F. Nie, and H. Huang, ‘‘Low-rank tensor completion with
spatio-temporal consistency,’’ in Proc. 28th AAAI Conf. Artif. Intell., 2014,
pp. 2846–2852.

[42] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, ‘‘Tensor robust princi-
pal component analysis: Exact recovery of corrupted low-rank tensors via
convex optimization,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 5249–5257.

[43] W. Hu, Y. Yang, W. Zhang, and Y. Xie, ‘‘Moving object detection using
tensor-based low-rank and saliently fused-sparse decomposition,’’ IEEE
Trans. Image Process., vol. 26, no. 2, pp. 724–737, Feb. 2017.

[44] S. Boyd, ‘‘Distributed optimization and statistical learning via the alternat-
ing direction method of multipliers,’’ Found. Trends Mach. Learn., vol. 3,
no. 1, pp. 1–122, 2010.

[45] S. Yang, J. Wang, W. Fan, X. Zhang, P. Wonka, and J. Ye, ‘‘An effi-
cient ADMM algorithm for multidimensional anisotropic total variation
regularization problems,’’ in Proc. 19th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), 2013, pp. 641–649.

[46] M. Sakurai, S. Kiriyama, T. Goto, and S. Hirano, ‘‘Fast algorithm for total
variation minimization,’’ in Proc. 18th IEEE Int. Conf. Image Process.,
Sep. 2011, pp. 1461–1464.

[47] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[48] A. Mittal, R. Soundararajan, and A. C. Bovik, ‘‘Making a ‘completely
blind’ image quality analyzer,’’ IEEE Signal Process. Lett., vol. 20, no. 3,
pp. 209–212, Mar. 2013.

[49] A. Mittal, A. K. Moorthy, and A. C. Bovik, ‘‘No-reference image quality
assessment in the spatial domain,’’ IEEE Trans. Image Process., vol. 21,
no. 12, pp. 4695–4708, Dec. 2012.

[50] G. Blanchet and L. Moisan, ‘‘An explicit sharpness index related to global
phase coherence,’’ inProc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Mar. 2012, pp. 1065–1068.

[51] D. Giveki, G. A. Montazer, and M. A. Soltanshahi, ‘‘Atanassov’s intu-
itionistic fuzzy Histon for robust moving object detection,’’ Int. J. Approx.
Reasoning, vol. 91, pp. 80–95, Dec. 2017.

VOLUME 8, 2020 128971



B. P. S., S. N. George: Automated Unified Framework for Video Deraining and Simultaneous Moving Object Detection

BAIJU P. S. (Graduate Student Member, IEEE)
received the B.Tech. degree in electronics and
communication engineering and the M.Tech.
degree in signal processing from the Uni-
versity of Kerala, India, in 2005 and 2013,
respectively. He is currently pursuing the Ph.D.
degree with the National Institute of Technology
Calicut. His research interests include image and
video processing, low rank approximation, video
deweathering.

SUDHISH N. GEORGE (Member, IEEE) received
the B.Tech. degree from the Mar Athanasius Col-
lege of Engineering, Mahatma Gandhi University,
Kottayam, India, in 2004, theM.Tech. degree from
the College of Engineering Thiruvananthapuram,
University of Kerala, Thiruvananthapuram, India,
in 2007, and the Ph.D. degree from the National
Institute of Technology Calicut, Kozhikode, India,
in 2014. He is currently an Assistant Professor
with the Department of Electronics and Commu-

nication Engineering, National Institute of Technology Calicut. His research
interests include sparse signal processing and computer vision.

128972 VOLUME 8, 2020


