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ABSTRACT In paper production, a jumbo reel is cut into multiple intermediate rolls, and each intermediate
roll is then sheeted as finished goods. This problem is called a cutting stock problem and is proven to be
NP-hard. The objective is to minimize material waste or trim loss from all the cuttings. In the case that any
intermediate roll is not entirely used for its associated order, the intermediate roll itself could turn to be a
dead stock. We use the concept of universal sizes of intermediate rolls to eliminate the dead stock. A pre-
defined number of universal sizes of intermediate rolls is to be used to serve all the orders. The problem is
solved using Reinforcement Artificial Bee Colony algorithm with Integer Linear Programming subroutine.
This proposed approach is then tested with a set of 1,055 orders and 127 different sizes of sheet papers from
a paper manufacturer. The results reveal that our method outperforms other algorithms. Our method offers
the total trim loss of 3.51%, compared to the trim loss reported by the industry of at least 5%. This approach
not only reduces the number of partially cut rolls, but also decreases the number of the jumbo reels needed
to serve all the orders. Therefore, both the inventory cost and material cost can be saved.

INDEX TERMS Stock cutting, optimization, swarm intelligence, artificial bee colony algorithm, pulp and
paper industry.

I. INTRODUCTION
To produce sheets of paper, the process typically starts from
cutting large reels of paper stock—called jumbo reels—
into smaller intermediate rolls of various widths on a cut-
ting machine called winder. These rolls are then further cut
into sheets on sheet cutters as shown in Fig. 1. A common
objective of paper cutting operations is to determine cutting
patterns that minimize material waste or trim loss at both
the winders and the sheet cutters while satisfying various
sizes of paper sheets demanded by the customers. This type
of problem is called the cutting stock problem which is
among the most extensively studied problems due to its wide
range of applications and possible extensions [1], [2]. A huge
number of possible patterns makes this problem prohibitive
to solve to optimality [3], and the problem is known to
be NP-hard [4], [5].
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In order to find the optimum solution of the cutting pro-
cess, the following constraints must be satisfied during the
production.
• The length and the width of jumbo reel are given accord-
ing to the jumbo reels production.

• The width of intermediate rolls is determined by the
various sheet sizes of the orders and their widths can be
variety of sizes that they can cover all the orders.

• The specification of the cutter at the winder is the factors
for determining the minimum trim width, maximum
number of cutting sections, precision of cutting and
range of sheet sizes.

• The specification of slitting knives of the cutters is the
factors for determining the maximum number of cutting
zones and its trim widths (or cutting tolerance).

In the paper production, the optimization process starts
from finding the widths and the length of the intermediate
rolls given the sizes and the number of sheets ordered. The
optimization software such as linear programming and Solver
is usually used to find cutting patterns which will provide
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FIGURE 1. Paper production process.

the optimum trim loss. These intermediate rolls with various
widths are kept in the stock for further cut into sheets.

The number of intermediate rolls is an issue for most
paper production industry. Too many sizes of intermediate
rolls are not desirable because they increase inventory (and
hence inventory cost) and occupy valuable warehouse space.
Certain sizes of the intermediate rolls are odd and unlikely to
suit any future orders. They eventually become dead stock,
or so called leftovers, and must be gotten rid of for an
accounting reason or to make room for other inventories.
A preferred solution is to have universally common sizes
of the intermediate rolls for all the orders so that they are
used repeatedly. These universal sizes could both alleviate
the amount of the dead stock and increase the flow of the
inventory which in turn reduces the storage space needed
to keep the stock. Another benefit of having fast inventory-
turn of intermediate rolls is to decrease jumbo reel stock.
By having better utilization of the intermediate rolls, the need
for additional jumbo reels to be cut into intermediate rolls is
also minimized. A review of the cutting stock problem with
leftover consideration can be found in [6].

This leftover stock could be reduced if the jumbo reels are
cut into intermediate rolls with a limited number of sizes.
Cui et al. [7] were interested in this problem but considered
only one intermediate roll size.

In this study these intermediate roll sizes are permitted to
be up to a pre-determined number and they are referred as
universal sizes. Our goal is to determine a set of common
intermediate roll sizes that serve all demanded sheet sizes,
and yet minimize the total trim loss; whereby the ‘‘ballpark’’
number of the universal sizes is suggested by themanagement
to ensure that the approach is practical to implement. The
limited but sufficient number of universal sizes are neces-
sary because too many universal sizes could result in stock
buildup, but too few could reversely promote trim loss. To our

knowledge, this approach has not yet been proposed in the
literature.

The two-stage cutting stock problem is amathematical pro-
gram with discrete-value variables of valid paper sizes. The
difficulty of this problem is in its extremely large problem
space, i.e. there are too many possible solutions to evaluate
by a brute-force search. Haessler and Sweeney [8] mentioned
that heuristics were only practical approaches in solving this
type of problem. Cherri et al. [6] added that heuristics allow
flexibility to include additional problem-specific features of
this problem.

Several methods are devised to solve the cutting stock
problem. Chauhan et al. [9] proposed a binary nonlinear
programming model with normally distributed demands.
They applied a branch and price solution approach since the
problem space was practically too large to be solved by com-
mercial solvers. Chen et al. [10] studied two integer program-
ming models for divisible and indivisible skiving and cutting
stock problems. Kim et al. [11] formulated the two-stage
cutting stock problem as a multiple-choice knapsack prob-
lem and proposed amultiple-choice knapsack-based heuristic
with a mixed integer linear model to solve the problem.
Sanchez et al. [12] applied a method that combined integer
linear programming (ILP) with other metaheuristics for a
binary cutting stock problem. They concluded that ILP with
particle swarm optimization (PSO) yielded the best solution
in high complexity problems. Kallrath et al. [13] used an
improved column generation method to prohibit overproduc-
tion and tested it on some real-world cutting stock problems.

In order to find the optimum solution of the cutting process,
the following constraints must be satisfied during production.
• The length and the width of jumbo reel are given accord-
ing to the jumbo reels production.

• The width of intermediate rolls is determined by the
various sheet sizes of the orders and their widths can be
variety of sizes that they can cover all the orders.

• The specification of the cutter at the winder is the factors
for determining the minimum trim width, maximum
number of cutting sections, precision of cutting and
range of sheet sizes.

• The specification of slitting knives of the cutters is the
factors for determining the maximum number of cutting
zones and its trim widths (or cutting tolerance).

The details are described in subsection B and C of the
Problem Definition section.

Any solution approach of the cutting stock problem is
greatly affected by the problem specifications [14]. Due to
a large problem space required to be explored in the cutting
stock problem, we applied a variant of the ABC algorithm in
our proposed method. This is because ABC algorithm is good
at exploration [15], [16].

Recently, many variants of the ABC algorithm have been
developed. Karaboga and Kaya [17] proposed a variant of the
ABC algorithm called Adaptive and Hybrid ABC algorithm
(aABC). An arithmetic crossover operation was applied in
the solution updating equation. Updating a solution using
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crossover operation with the global best solution generated
promising solution and accelerated the convergence speed.
Zhang et al. [18] proposed a two-archive multi-objective arti-
ficial bee colony algorithm (TMABC-FS) for solving a multi-
objective feature selection. In the TMABC-FS algorithm,
two operators are introduced, which are convergence-guiding
search for employed bees and diversity-guiding search for
onlooker bees. Lu et al. [19] proposed two updating equa-
tions for the onlooker bee phase to increase the convergence
speed. A Cauchy mutation operator is integrated into the
solution updating to balance the global and local searches.
Wang et al. [16] improved the ABC algorithm using a
neighborhood selection mechanism (NS-ABC). Instead of
the probability selection, the NS-ABC algorithm chooses
the best solution in the neighborhood radius to generate a
candidate solution. The scout bee phase was also improved
by using the opposition-based learning and the neighborhood
radius.

Although the ABC algorithm was originally developed
for solving numerical optimization problems, some vari-
ants have been successfully developed for solving combi-
natorial problems, e.g. job shop scheduling problem [20],
travelling salesman problems [21]–[25], colormap quanti-
zation [26], quadratic assignment problem [27], and multi-
attribute decision-making problem [28].

We apply Artificial Bee Colony algorithm with reinforce-
ment solution updating (R-ABC) in [29] and [30] to solve this
two-stage cutting stock problem with universal sizes. R-ABC
is a swarm algorithm and is a variant of the Artificial Bee
Colony (ABC) algorithm [31]. It is used in conjunction with
an ILP based subroutine and tested with an actual demand
data set.

The main contributions are summarized as follows.
• Instead of traditional two-stage paper cutting, we applied
the concept of universal sizes of intermediate rolls.
Rather than various sizes of intermediate rolls, our
proposed method guarantees that the number of sizes
of intermediate rolls in the stock does not exceed a pre-
determined number.

• Finding the universal sizes of intermediate rolls is a com-
binatorial NP-hard problem. Therefore, we modified the
R-ABC algorithm for solving this problem, which is
combinatorial. The R-ABC algorithm was adopted to
generate candidate solutions.

• A feasibility matrix is developed for checking whether a
solution is feasible.

• A loss matrix is defined to calculate the trim loss at the
cutters.

• For a given number of universal sizes, ILP is applied to
obtain the cutting patterns at the winders.

The organization of this paper is as follows. The next
section gives definition of the problem being studied in
more detail. Section 3 introduces the proposed approach
to solve the problem. Section 4 presents the experi-
ment and its results. Finally, Section 5 concludes the
paper.

II. PROBLEM DEFINITION
This section provides more details of the problem and the
concept of the universal sizes. Different types of trim loss are
described, and the mathematical model is formulated.

A. PROBLEM DESCRIPTION
As earlier mentioned, the jumbo reels are cut into smaller
intermediate rolls prior to be sheeted. The planner must deter-
mine the most appropriate patterns that best fit the width of
the reels so that the trim loss at the two edges are minimized.
The intermediate rolls are then cut into sheets. Again, there
is another trim loss at the two edges of the intermediate
rolls when they are being cut at the sheet cutters as shown
in Fig. 1. There is natural material loss threshold at both
winders and cutters because there must be certain space for
the cutting machines to hold the paper in place. The best
cutting patterns are those that cut exactly at this threshold.
However, the chance that the various sheet sizes from the
orders would suit the threshold exactly is rather rare. On the
contrary, it is possible that when a jumbo reel is cut it results
in intermediate rolls with widths that are too large or too small
to suit other remaining orders (i.e. give small trim loss). These
intermediate rolls are considered as leftovers and will be kept
as inventory. Theywill be used onlywhen sheet sizes of future
orders suit the widths of the leftovers by wastingmerely small
trim loss.

Another possibility is that order quantities do not need the
entire length of the roll or conversely just exceed that length.
The case study manufacturer resolves this difficulty by hav-
ing an agreement with the customers that the manufacturer
may adjust the order quantity within +/− 5% range to cope
with this particular mismatch.

Although the physical cutting of the jumbo reels and inter-
mediate rolls occur independently, their cutting pattern deci-
sions are not. This is because the cutting of the jumbo reels
determines the width of the intermediate rolls. Therefore,
the cutting decisions must balance between the trim loss at
the winders and the sheet cutters to reduce the total trim loss.

B. TRIM LOSS
In two-stage cutting stock problem, the cutting at the winders
and another at the sheet cutters generate trim loss. Fig. 2
shows a jumbo reel is cut into intermediate rolls (sections)
and then further to sheets (zones).

A winder winds and cuts a jumbo reel at the same time.
Each jumbo reel is slit into multiple sections (or intermediate
rolls). Intermediate rolls from the same jumbo reel could have
different widths. The remainder after cutting a jumbo reel
into intermediate rolls is the trim loss at the winder. Each
intermediate roll is then sheeted by a sheet cutter. The number
of sheets cut by the sheet cutter is called the number of zones.
It is required by the sheet cutter specification that all the zones
must have equal width and all sheets of that intermediate roll
must be in the same size. Again, the excess after cutting an
intermediate roll into sheets is the trim loss at the sheet cutter.
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FIGURE 2. Parts of a jumbo reel.

There areminimum trim loss thresholds at both thewinders
and the sheet cutters due to the machine specifications as
earlier mentioned. To prevent a large amount of material loss
from trimming the jumbo reels and the intermediate rolls,
the manufacturer sets maximum widths of the trim at the
winders and the sheet cutters. There are also limits for the
maximum number of sections and zones that the machines
can perform. These values are shown in Table 1.

There are four possible cases that may happen when an
intermediate roll is sheeted. Fig. 3 illustrates these cases.
Fig. 3(a) shows a rare case where the number of sheets
ordered can perfectly use the entire length of the roll without
any material loss at the end. Fig. 3(b) is a case when an
order does not completely need the entire length of the roll,
and so there is some small remaining at the end of the roll.
This remaining is too small to produce any product, so it
is considered as loss. Fig. 3(c) shows a case that the order
is already fulfilled, but there is still considerable amount of
paper at the end of the roll. If the remaining is within a certain
percentage of the order, this order will be prolonged so that
the entire length of the roll is used. Fig. 3(d) is a case that
the order is already fulfilled, but there is a large amount of
remaining paper in the roll. This roll will be kept as stock to
match future orders.

The case in Fig. 3(d) is undesirable since it increases the
inventory. The agreement between the manufacturer and the
customers that an order may be shrunk or extended to a
certain percentages (1shrunk and 1extended ) to resolve this

TABLE 1. Parameter values in paper cutting process.

particular problem. This order quantity adjustment is to
change from a 3(d) case to other cases.

C. PROBLEM FORMULATION
The cutting machines can only cut with certain precision, δ.
Let xmin and xmax be the minimum and the maximum sizes of
the intermediate rolls. The set of valid (producible) universal
sizes is:

validX = {xmin, xmin + δ, xmin + 2δ, . . . , xmax} (1)

The proposed method utilizes the R-ABC algorithm which
is a population-based search. Let SN be the number of popu-
lation and i ∈ {1, 2, 3, . . . , SN } be the index of the population
set. Each population, Exi, is a vector with D dimensions where
D is the number of universal sizes. Each of the dimensions
in Exi is to be selected from the set validX . The population Exi
vector can be written as:

Exi = 〈xi,1, xi,2, xi,3, . . . , xi,d , . . . , xi,D〉 (2)

where d is the index of the dimension. Table 2 summarizes
the notation used in problem formulation.

Fig. 4 and Fig. 5 depict cutting at a winder and a sheet
cutter, respectively. For example, let us assume that the 4th

jumbo reel (p = 4) is being cut into two sections. The first
section (q = 1) may have a size xi,3, and the second section
(q = 2) has a size xi,6. These trigger the variables yi,3,4,1 and
yi,6,4,2 to be 1.

The intermediate roll with the size of xi,6 from section 2 of
jumbo reel 4 is to serve order 21,Ord21. The number of sheets
to be produced for order Ord21 is n21,4,2. The number of
zones of this intermediate roll can be calculated by (3).

numZoness,d =
⌊
xi,d
ws,p,q

⌋
; if yi,d,p,q = 1 (3)
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FIGURE 3. Four cases of trim loss at the sheet cutters.

where numZoness,d denotes the number of zones to be cut
from the intermediate roll, and each zone is cut with the size
xi,d for order Ord s.

III. PROPOSED ALGORITHM
This section gives an overview of the proposed method, then
discusses considerations of the algorithm regarding actual
practice. The mathematical model and the procedure of the
algorithm are then explained.

Because of the large problem space as discussed in
section B, a swarm-based algorithm with a reinforcement
learning mechanism, called R-ABC algorithm, is applied
to solve the problem. The R-ABC algorithm puts an
emphasis on dimensions that previously find better solu-
tions. Specifically, universal sizes close to the dimen-
sions that frequently give smaller trim loss have higher
chances to be sampled through the reinforcement learn-
ing mechanism of the algorithm. This mechanism tends
to perform well in high-dimensional problems [29]. Every
newly generated solution must be checked for its fea-

TABLE 2. Notation used in the trim loss optimization problem.

sibility. If the solution is a feasible one, the trim loss
at the sheet cutters is calculated. The output of the
R-ABC algorithm is a set of universal sizes that can
serve all the orders and becomes constraints for the ILP
subroutine [32]–[34]. The outputs from the ILP subroutine
are cutting patterns at the winders, and the total number of
jumbo reels required. Fig. 6 recapitulates this optimization
procedure.

A. NUMBER OF UNIVERSAL SIZES SELECTION
To illustrate how large the problem space is, let K be the
number of possible width sizes of the intermediate rolls,
and D be the number of universal sizes selected from these
possible sizes. Then there areC(K ,D) possible combinations
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FIGURE 4. An example of cutting a jumbo reel by the winder.

FIGURE 5. An example of cutting an intermediate roll by the sheet cutter.

FIGURE 6. Overview of the trim loss optimization procedure.

of the solutions. Using the data from the numerical example
in section IV, the value K is 205 and suppose that D is 20.
Thus, there are C(205, 20) or 2.71E+27 possible solutions.

In practice, K is rarely changed because it is the result of
the cutting precision of the winders, so the problem space or
the number of possible solutions of C(K ,D) usually depends
solely on the value D. Fig. 7 plots the number of possible
solutions as a function of D when K = 205.

FIGURE 7. The number of possible solution when K = 205.

From the computational point of view, the two ends of the
rangeD are preferred because their search spaces are smaller.
For the purpose ofmerelyminimizing the trim loss, the higher
number of universal sizes is more desirable because there
are more cutting patterns that could be generated from these
universal sizes. Hence, there are more possibilities that some
of these patterns may better fit the width of the jumbo
reels and reduce the trim loss. From the inventory perspec-
tive however, the planner wants only adequate number of
universal sizes to reduce the leftover inventory. A solution
to this caveat is to have a sufficient number of universal
sizes to accommodate different sheet sizes in the orders and
keep the leftover inventory low, and yet be computationally
tractable.

B. TOTAL TRIM LOSS CALCULATION
The objective function is to minimize the total trim loss as
shown in (4). The first term in (4) is the trim loss occurred at
the winders, and the other term from the sheet cutters.

totalTrimLossi =
∑P

p=1

∑Qp

q=1

(∑D

j=1

(
xi,d× L× yi,d,p,q

)
−
(
ws,p,q × ls,p,q × ns,p,q

))
+

∑P

p=1

(
(W × L)−

∑Qp

q=1

∑D

d=1

×
(
xi,d × L × yi,d,p,q

))
(4)

where totalTrimLossi denotes the trim loss of solution Exi, and
xi,d refers to the d th universal size in the solution Exi and
d ∈ {1, 2, 3, . . . ,D}. W and L are the width and length of
the jumbo reel. For jumbo reel q, let Qp be the number of
sections to be cut from this reel, andws,p,q, ls,p,q, and ns,p,q be
the width, length, and number of sheets to be produced from
section p for order Ord s. yi,d,p,q is 1 if the universal size xi,d
is cut from section p of this jumbo reel q; otherwise yi,d,p,q is
0. The index i is the solution index and i ∈ {1, 2, 3, . . . , SN }.
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The above objective function is to be minimized under
constraints (5)-(10).
D∑
d=1

Qp∑
q=1

yi,d,p,q ≤ Qp ≤ numSectionsmax ,

p ∈ {1, 2, 3, . . . ,P} (5)

1 ≤ numZoness,d ≤ numZonesmax ,

p ∈ {1, 2, 3, . . . ,P} , q ∈
{
1, 2, 3, . . . ,Qp

}
(6)

Qp∑
q

D∑
j=1

(
xi,d × yi,d,p,q

)
+ winderTrimmin ≤ W ,

p ∈ {1, 2, 3, . . . ,P} (7)

cutterTrimmin ≤ xi,d −
(
ws,p,q × numZoness,d

)
≤ cutterTrimmax , yi,d,p,q = 1,

p ∈ {1, 2, 3, . . . ,P} , q ∈
{
1, 2, 3, . . . ,Qp

}
(8)∑D

d=1
yi,d,p,q = 1,

p ∈ {1, 2, 3, . . . ,P} , q ∈
{
1, 2, 3, . . . ,Qp

}
(9)

Ns × (1−1shrunk) ≤
∑P

p=1

∑Qp

q=1
ns,p,q

≤ Ns × (1+1extended ) (10)

Equation (5) restricts the number of sections to be cut from
any jumbo reel to be only integers from 1 to numSectionsmax.
Equation (6) limits the number of zones in any section to be an
integer between 1 to numZonesmax. Equation (7) specifies that
the sum of selected universal sizes and the minimum trim at
the winder must not exceed the width of the jumbo reel. Equa-
tion (8) indicates that the difference between the universal
size and the total width summed from multiple zones must be
within an acceptable range of [cutterTrimmin, cutterTrimmax].
Equation (9) allows only one universal size to be cut in any
given zone. Equation (10) permits that the total number of
sheets could be shrunk or extended up a certain percentage of
the original order.

C. FEASIBILITY CHECKING
A solution Exi is considered feasible if each of the orders can
be served by at least one of the universal sizes. To check
if a solution is feasible, a feasibility matrix is introduced.
An order Ord s contains information of the width, length,
and number of sheets, which are denoted by Ws, Ls, and Ns,
respectively.

The feasibility matrix FM (Exi) is a function of solution Exi
and has numOrders× D dimensions as shown in (11).

FM (Exi)

=


f1,xi,1 f1,xi,2 · · · f1,xi,D
f2,xi,1 f2,xi,2 . . . f2,xi,D
...

...
. . .

...

fnumOrders,xi,1 fnumOrders,xi,2 · · · fnumOrders,xi,D


(11)

where fs,xi,d, is a flag indicating whether intermediate rolls of
the size of xi,d can serve order Ord s.

The values of fs,xi,d, depend on two conditions. Let P1
in (12) be true if the number of zones is between 1 and
numZonesmax, and P2 in (13) be true if the trim loss at the
sheet cutter is within cutterTrimmin to cutterTrimmax range,
given universal size xi,d and order Ord s. Then the value of
fs,xi,d, can be determined from (14).

P1 : 1 ≤ numZoness,d ≤ numZonesmax (12)

P2 : cutterTrimmin ≤ xi,d −Ws × numZoness,d
≤ cutterTrimmax (13)

fs,xi,d =

{
1; P1 ∧ P2 ≡ TRUE
0; Otherwise

(14)

A solution Exi is said to be feasible if (15) is true. On the
contrary, if the value of

∑D
d=1 fs,xi,d for any orderOrd s equals

to zero, then it means that no universal size in solution ⇀x i can
serve order Ord s, or the solution is infeasible.

∀s
(
s ∈ {1, 2, 3, . . . , numOrders} →

∑D

d=1
fs,xi,d ≥ 1

)
(15)

D. LOSS MATRIX
To calculate trimming loss at the sheet cutters, which is the
first term in (4), a loss matrix LM (Exi) is introduced. The
matrix is a function of solution Exi with numOrders × D
dimensions. The loss matrix is defined as:

LM (Exi)

=


m1,xi,1 m1,xi,2 · · · m1,xi,D
m2,xi,1 m2,xi,2 . . . m2,xi,D
...

...
. . .

...

mnumOrders,xi,1 mnumOrders,xi,2 · · · mnumOrders,xi,D


(16)

The entry ms,xi,d denotes the trim loss at the sheet cutter
when intermediate rolls with universal size xi,d are cut for
orderOrd s. Equation (17), as shown at the bottom of the next
page, is used to calculate each entry of the loss matrix, where
Us refers to the number of sheets that are actually cut for
order Ord s, and

⌈
Us

numZoness,d

⌉
×Ls denotes the total length of

intermediate rolls with the size xi,d needed for this particular
order.

The value of Us depends on two conditions described
by (18) and (19). Equation (18) shows a condition (condition
I) in which orderOrd s is already satisfied, but there is enough
remaining material to produce additional sheets that do not
exceed1extended percent of the order. Equation (19) is another
condition (condition II) in which order Ord s is not fully
fulfilled, but the rest of the order is less than1shrunk percent of
the original order. If neither condition is satisfied, the actual
number of sheets is set to be equal to the number of sheets
ordered. Table 3 shows the conditions under which the value
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TABLE 3. Actual values of number of sheets in different conditions.

of Us is to be calculated.

Ns ≤


⌈

Ns
numZoness,d

⌉
× Ls

L

× numZoness,d ×
⌊
L
Ls

⌋

≤ Ns ×
(
1+

1extended

100

)
(18)

Ns ≥


⌈

Ns
numZoness,d

⌉
× Ls

L

× numZoness,d × ⌊ LLs
⌋

≥ Ns ×
(
1−

1shrunk

100

)
(19)

If the solution Exi is feasible, then each order Ord s is assigned
with the universal size that best fits the order. The universal
size xi,fit(s) is considered as best-fit for order Ord s if for all
xi,j ∈ Exi we have ms,xi,fit(s) ≤ ms,xi,j where the value ms,xi,fit(s)
is the trim loss at the sheet cutter.

The required number of intermediate rolls zi,d of universal
size xi,d for order Ord s is calculated by:

zi,d =
∑S

s=1

Us⌊
xi,d
Ws

⌋
×

⌊
L
Ls

⌋ (20)

To calculate the trim loss at the winder, intermediate rolls
(with only sizes within the set of universal sizes) are first
arranged in order to be cut from jumbo reels. Cutting vari-
ous sizes of intermediate rolls from a jumbo reel using the
universal sizes from solution Exi is a one-dimensional cutting
stock problem. This problem can be formulated as an ILP as:

Min
∑P

p=1

(
W −

∑Qp

q=1

∑D

d=1

(
xi,d × yi,d,p,q

))
(21)

subject to (5), (7), (9), and :

P∑
p=1

Qp∑
q=1

yi,d,p,q = zi,d ;

d ∈ {1, 2, 3, . . . ,D} ; yi,d,p,q ∈ {0, 1} (22)

The objective function (21) is to minimize the total trim
loss at the winder from all the jumbo reels under a set of
cutting condition constraints.

Finally, using the total trim loss of solution Exi calculated
in (4), the fitness value of this solution is:

Fit (Exi) =
1

1+ totalTrimLossi
(23)

E. OPTIMIZATION APPROACH
Fig. 8 shows the flowchart of the proposed trim loss optimiza-
tion procedure upon which the R-ABC algorithm is based.

In the initialization phase, SN random initial solutions
and SN initial reinforcement vectors are generated. For a D-
dimension problem, each initial solution Ex0i in (24) comprises
a set ofD random distinct universal sizes. Each initial univer-
sal size x0i,d in (25) must be a member of validX as defined
in (1).

Ex0i = 〈x
0
i,1, x

0
i,2, x

0
i,3, . . . , x

0
i,d , . . . , x

0
i,D〉 (24)

x0i,d ∈ validX; d ∈ {1, 2, 3, . . . ,D} (25)

The trim losses of this initial solution are then calcu-
lated. The initial reinforcement vector, Er0, is associated with
this initial solution. The initial reinforcement values are set
by (26).

Er0 = 〈r0i,1, r
0
i,2, r

0
i,3, . . . , r

0
i,D〉; r

0
d =

1
D

(26)

The optimization process starts with the employed bee
phase. To generate a new candidate solution, an employed bee
selects a random dimension and updates the value of universal
size in the selected dimension using (27). The value of the
universal size after updating must differ from the values in
other dimensions.

vti,d = x ti,d + rand [−1, 1] ·
(
x ti,d − x

t
k,d
)

(27)

where vti,d denotes the d
th dimension of candidate solution ⇀v

t
i

in iteration t . The value of d is a random integer in the interval
of [1,D]. The index of solution k for k 6= i is randomly
selected in the interval of [1, SN ]. If k = i then the last part
of (27) would be zero, and the value of vti,d would be the same
as the value of x ti,d .
However, the values of universal sizes xi,d must be mem-

bers of the set validX . The value in the selected dimension
after updating is rounded to the nearest possible width.

ms,xi,d =


(
xi,d−Ws×numZoness,d

)
×

(⌈
Us

numZoness,d

⌉
×Ls

)
, cutterTrimmin ≤ xi,d−Ws×numZoness,d ≤ cutterTrimmax

invalid,Otherwise
(17)
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FIGURE 8. Flowchart of the proposed trim loss optimization procedure.

After solution updating by an employed bee, a feasibility
matrix in (11) is generated to check whether the candidate
solution (⇀v

t
i ) is feasible. A feasible solution must be able to

serve all the orders, and all constraints regarding the cutters

must be satisfied. If the candidate solution passes the fea-
sibility check, a loss matrix corresponding to the candidate
solution is computed. Otherwise, the employed bee keeps
updating the value in the selected dimension until reaching

VOLUME 8, 2020 130655



S. Fairee et al.: Trim Loss Optimization in Paper Production Using Reinforcement ABC

100 times. If there is no feasible solution found, the employed
bee randomly selects another dimension and updates the
value in the selected dimension. If there is no feasible solution
found by the employed bee after selecting a random dimen-
sion 100 times, the current solution is kept.

When the employed bee updates and finds a feasible can-
didate solution, a loss matrix is generated to calculate the
trim loss at the cutters from the candidate solution as well as
the number of intermediate rolls needed. The cutting pattern
and the trim loss at the winder are calculated using the ILP
in (21), and all constraints regarding the winder, i.e. (5), (7)
and (9), must be satisfied. The total trim loss is then calculated
using (4).

If the trim loss of the candidate solution is less than that
of the current solution, the employed bee replaces the current
solution with the candidate one, and a positive reinforcement
is applied to the selected dimension using (28). Then the
value of TRIAL is reset. Otherwise, the employed bee keeps
the current solution, and TRIAL of the current solution is
increased by 1. Consequently, a negative reinforcement is
applied to the selected dimension using (29). The values of
reward factor α and penalty factor β are calculated as shown
in (30).

r t+1j =

{
r tj + α

(
1− r tj

)
, j = d

r tj × (1− α) , j 6= d
(28)

r t+1j =

 r tj + (1− β) , j = d
β

D− 1
+ r tj × (1− β) , j 6= d

(29)

α = β =
Fit
(
⇀v
t
i

)
SN∑
n=1

Fit
(
⇀v
t
n

) (30)

where r tj denotes the reinforcement value of the jth dimension
in iteration t , and j ∈ {1, 2, 3, . . . ,D}.
After updating by all employed bees, solutions are further

updated by onlooker bees. Each onlooker bee selects some
dimensions to update based on the reinforcement values.
For each dimension, an onlooker bee generates a real random
number in [0, 1/D]. If the random number is smaller than
the reinforcement value of that dimension, the onlooker bee
selects the dimension to update. Therefore, the dimension
with a high reinforcement value has a higher probability to
be selected than that with a low reinforcement value. The
onlooker bee updates the values in the selected dimensions
using (31).

vti,d = x ti,d + rand [−1, 1] · r
t
d ·
(
x ti,k − x

t
BSF,k

)
(31)

where vti,d denotes the optimization parameter of a candidate

solution ⇀v
t
i for the dimension d ∈ {1, 2, 3, . . . ,D} in itera-

tion t . The index k ∈ {1, 2, 3, . . . ,D} is a random dimension
for all dimension d . The rand [−1, 1] is a random real num-
ber in the range of [−1, 1]. The x tBSF,k is the optimization
parameter of the best solution found so far in dimension k .

After solution updating, the onlooker bees work in a similar
fashion as the employed bees. The values in the selected
dimension after updating are rounded to the nearest possible
widths. Each onlooker bee generates a feasibility matrix to
check whether the candidate solution is feasible. If a candi-
date solution provides less trim loss than the current solution,
the current solution is replaced by the candidate solution, and
the stagnant counter is reset. Otherwise, the stagnant counter
of the current solution is increased by 1.

In the scout bee phase, if the stagnant counter of any
solution reaches a stagnant limit which is counted by the
number of function evaluations (FEs), the solution is aban-
doned. The associated employed bee turns itself into a scout
bee and discovers a set of new random distinct universal sizes
using (32).

x ti,d ∈ validX; d ∈ {1, 2, 3, . . . ,D} (32)

IV. EXPERIMENTS AND RESULTS
The method of using universal sizes is unique. Hence, there is
no existing benchmark problem in the literature. To evaluate
the performance of the proposed method, we compare the
quality of the solutions obtained from the R-ABC algorithm
[29], [30] with those from the ABC algorithm [35] and two
state-of-the-art ABC algorithms, which are aABC [17] and
TMABC [18], as well as the randomly generating solutions
(referred as Random).

The code for ABC and R-ABC was provided by the
original authors, whereas that of aABC and TMABC was
rewritten based on published literature. The code for aABC
was validated against the numerical results of benchmark
functions in [36]. Because the TMABC-FS algorithm in the
original paper [18] was designed for solving a feature section
problem, some modifications were required. The followings
are the key differences between the TMABC-FS and the
TMABC in our experiment.
• Two objective values of the TMABC-FS algorithm
which were the classification accuracy and the feature
cost were replaced with only one objective value which
was the trim loss at the cutters.

• Because the crowding distance values of the solution
cannot be calculated in this problem, the probability
function of the TMABC-FS algorithmwas replacedwith
that of the ABC algorithm.

All the algorithms listed in the previous paragraph were
applied to a data set with slight adjustment from a paper man-
ufacturer in Thailand. The data contained 1,055 orders with
different quantities of sheet sizes. The widths of these sheets
are used to create cutting patterns. From the demand data,
certain sheet sizes were ordered repeatedly and there were
only 127 distinct sheet widths ranging from 15.5 to 80 inches.
Fig. 9 shows the distribution of the sheet widths and the total
sum of all sheet lengths from the orders.

The values of the parameters used in the experiment are
shown in Table 4. The number of solutions equals to half
of the colony size. The initial solutions of each algorithm
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TABLE 4. Values of parameters.

TABLE 5. Results obtained for a Set of 1,055 orders.

FIGURE 9. The distribution of the sheet width and their total length.

were independently uniform-randomly generated. For each
algorithm, the experiment was independently run 10 times on
a computer with Intel R©CoreTMi7-7500U 2.70GHz CPU and
8GB physical memory. The maximum number of FEs was
10,000. The percentage of total trim loss is calculated by (33).

%loss =
totalTrimLoss− minLoss
areaOfPaper − minLoss

× 100 (33)

where totalTrimLoss denotes the trim loss was calculated
from (4), andminLoss is the minimum trim loss. The notation
areaOfPaper refers to the total areas of jumbo reels used to
cut the sheets for all orders.

Table 5 shows the results obtained from the Random, ABC,
aABC, TMABC and R-ABC algorithms. The R-ABC algo-
rithm provides the best of average, minimum, and maximum
percentage of loss. The aABC algorithm provides the smallest

value of the standard deviation. The number of jumbo reels
used by the R-ABC algorithm is less than that of the other
algorithms. This means that the solutions provided by the
R-ABC algorithm require the least raw material to serve the
same orders when compared to the other algorithms. Since
leftover rolls are in different sizes, we measure how algo-
rithms perform in this regard using average area of partially
cut rolls. The average area of partially cut rolls provided
by the R-ABC algorithm is also the least among the results
obtained from all the algorithms.

The Random consumes the least average execution time,
but it provides the worst of average, minimum, and maximum
percentage of loss. The R-ABC algorithm consumes the aver-
age execution time of 168.30 minutes, which is practical.

Table 5 also shows the results from the normality tests,
two-samples t-tests, and ranking by the Friedman’s test. The
Shapiro-Wilk test for normality is chosen because it is rec-
ommended when the sample size is fewer than 50 [37], [38].
The null hypothesis of the Shapiro-Wilk test is that the data
is normally distributed. The Shapiro-Wilk test was performed
by using the code from [39]. The p values of the normal-
ity test for all algorithms are greater than 0.05. Therefore,
we may conclude that the data of each algorithm is normally
distributed at the 95% level of confidence. The two-samples
t-tests were conducted to compare the results from the
R-ABC and those of the other algorithms. The null hypothesis
of the t-test was to check if the percentage of total trim
loss (indicated as t-tests for equality of means with unequal
variances (two-tailed)) from the R-ABC was the same as that
of the other algorithms. The t-tests was executed in a pairwise
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fashion where one of the algorithms must be R-ABC. The
p value from each of the pair that the R-ABC was being
contested against was lower than 0.05. This indicates that
the mean of the total trim loss obtained from the R-ABC
algorithm is statistically significantly different from those
from the other algorithms at the 95% level of confidence.
The Friedman’s test was conducted by using KEEL [40], [41]
to rank the performance of these algorithms in term of the
percentage of the total trim loss. The ranking results by
the Friedman’s test revealed that R-ABC was the leading
algorithm among all the candidates with the rank of 1.5. The
second-best algorithms were tie between ABC and aABC
with the rank of 2.9. The TMABC and Random were ranked
at 3.0 and 4.7, orderly.

FIGURE 10. Convergence performance on the trim loss optimization.

Fig. 10 shows the convergence speed of the algorithms.
The horizonal axis is the number of FEs, and the vertical
axis is the average percentage of total trim loss calculated
by (33) in a logarithmic scale. Each line shows the average
of the best solutions found so far of an individual algorithm.
The Random initially converges more quickly than the other
algorithms, but it stagnates after 2,000 FEs. The R-ABC
algorithm on the other hand outperforms the other algorithms
after about 1,000 FEs.

V. CONCLUSION
The two-stage one-dimensional cutting stock problem is
addressed in this paper. In addition to total trim loss mini-
mization as the objective to the problem, the leftover stock
which incurs inventory holding cost is also being minimized
by having a limited but sufficient number of universal inter-
mediate roll sizes. This leftover inventory although persists
in the cutting stock problem, but has rarely been resolved in
the literature.

Due to a large problem space of the problem, a metaheuris-
tic, called R-ABC algorithm, is applied to cope with the issue.
Conceptually, the algorithm is used to sample new feasible
solutions, while an ILP subroutine is called to evaluate the
solutions.

There are five main steps in the proposed method; sam-
pling a new solution and check its feasibility through the
feasibility matrix, calculating the trim loss at the sheet cut-
ters using the loss matrix, determining the optimal cutting
patterns at the winder by the ILP subroutine, computing the
total trim loss, and updating the reinforcement vector and
solutions. The new solutions are sampled based on the R-
ABC approach which focuses its computational effort more
on feasible solutions which in turn reduces the problem
space. All steps are repeated until the termination condition is
satisfied.

The R-ABC approach is evaluated with a revised data
set provided by a paper manufacturer in Thailand. The data
contains 1,055 orders of 127 distinct sheet sizes. The results
from the experiments show that the proposed method with
the R-ABC algorithm provides average, minimum, and max-
imum loss percentages less than those of other algorithms.
Several statistic tests were performed, and the results showed
that the R-ABC approach statistically significantly gave the
best performance in term of the average percentage total
trim loss. Moreover, compared with the current total trim
loss of approximately 5% reported by the manufacturer, the
R-ABC algorithm yields a better loss at 3.51%. The conver-
gence plot shows that the R-ABC algorithm outperforms the
other algorithms. The average execution time required by the
R-ABC approach is at least comparable to that of the other
candidate algorithms. Thus, the proposed method with the
R-ABC algorithm is effective in respect to the solution qual-
ity, convergence speed, and practical execution time.

Furthermore, when compare the results of the ABC, aABC,
and TMABC algorithms, the R-ABC algorithm offers a
smaller percentage of total trim loss of 4.80− 3.51= 1.29%,
4.28− 3.51 = 0.77%, and 5.07− 3.51 = 1.56%, or a saving
of more than 84, 65, and 115 jumbo reels, respectively. This
jumbo reels requirement reduction is equivalent to a saving
of material cost over 3.9, 3.0, and 5.3 million in Thai Baht or
123,000, 95,000, 170,000 USD, respectively, for this partic-
ular set of data (a jumbo reel costs about 45,800 Thai Baht
or 1,470 USD). Additional potential saving by this approach
could be obtained if it is applied to other existing gram-
grade variety of papers currently produced by the manufac-
turer. The reduction in the number of partially cut rolls is
also another potential saving in the inventory holding cost.
The partially cut rolls is reduced as a result of limiting the
pre-determined number of allowable universal sizes of the
intermediate rolls. This limitation facilitates faster inventory
turns of the universal-size rolls. If the distribution of future
orders remains similar to that of the test data set, the D
universal sizes can still serve those orders, and the leftover
inventory should be depleted.
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