
Received June 23, 2020, accepted July 9, 2020, date of publication July 13, 2020, date of current version July 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3008911

Optimization of Water Distribution Network
Design for Resisting Cascading Failures
QING SHUANG 1, CHAO RAN HUANG1, AND JUN WANG2
1Department of Construction Management, School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China
2Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS 39762, USA

Corresponding author: Qing Shuang (qings@bjtu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 71501008, in part by the Beijing Social
Sciences Foundation under Grant 18GLC070, in part by the Ministry of education of Humanities and Social Science Foundation under
Grant 20YJC630121, in part by the Fundamental Research Funds for the Central Universities under Grant 2019JBW007, and in part by the
China Scholarship Council under Grant 201707095080.

ABSTRACT Water distribution networks (WDNs) is crucial to ensure social operations and economic
activities. However, WDNs are highly sensitive and vulnerable to disasters. The aim of this study is to
mitigate the catastrophic consequences of cascading failures in WDNs. A flow-based WDN cascading
failure model is built. The extended multi-objective particle swarm optimization model is developed to
resist cascading failures and improve resilience. This model takes pipe diameter as the decision variable
to minimize cost and maximize pressure deficit. Water balance, pressure, and standard pipe diameter are the
constraints. The classical optimal scenario (COS) and the cascading failure scenario (CFS) are simulated.
The model is applied to a small and medium-sized benchmarked WDN. Results show that the extended PSO
can find the optimal solution on the benchmarked WDN. The Pareto fronts are obtained. Compare to the
Pareto fronts between COS and CFS, the pressure deficit under CFS is significantly reduced, and the cost
is reduced while the same pressure deficit increased. Different tolerance parameters are tested. The small
network is not sensitive to the tolerance parameter, but the medium-sized network is sensitive. The model
evaluates a variety of conflicting goals, which help designers and water managers resist cascading failures
in WDNs.

INDEX TERMS Water distribution networks, cascading failure, pressure deficit, multi-objective optimiza-
tion model, particle swarm algorithm.

I. INTRODUCTION
A water distribution network (WDN) is a critical part of a
water supply system, which is a critical infrastructure sys-
tem. A WDN consists of several components such as pipes,
reservoirs, and hydraulic devices. Each component is selected
based on a trade-off between technical and economic consid-
erations [1]. The network as a whole is required to supply and
satisfy the demands and pressure at given points with cost-
effective design.

Since the mid-1970s, advances had been made in WDN
simulation and optimization [2]. They provided promising
and useful decision support tools for WDN design and per-
formance evaluation. The initial WDN design optimization
was a single-objective problem; that is, WDNs focused on
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the minimum cost with conditions on meeting the minimum
pressure or economic flow velocities [3]. However, this prob-
lem did not consider other objectives such as nodal pressure,
water quality, or vulnerability [3]. The best solution for cost
may result in low performance under uncertainties such as
pipe bursts, power outages, or pipe aging.

Because of these shortcomings of the single-objective
problem, the multi-objective design of WDNs has received
increasing attention to identify the trade-off between cost and
performance. Multi-objective design is a nonlinear, discrete,
and large-scale optimization problem. Heuristic algorithms
have been proven effective in searching and finding effec-
tive solutions for such problems [4]. Multi-objective heuris-
tic algorithms have been widely applied in WDN design
problems because of their promising performance compared
to traditional optimization algorithms. They are easy to
understand and implement and can handle nonlinear and
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discrete problems. Further, these population-based methods
can obtain several non-dominated solutions in a run. The
searched Pareto-optimal front is more complex and difficult
to implement for other methods such as linear programming
and gradient search [5].

Mehdi and Asghar [6] adjusted the node pressure with
the particle swarm optimization algorithm considering both
the pressure reducing valves and the reliability of WDNs.
Zhang et al. [7] optimized the locations of water meters
based on natural and administrative borders using the genetic
algorithm to improve the hydraulic ability and water quality
of WDNs. Zheng et al. [8] developed a parameter-adaptive
strategy based on an ant colony optimization algorithm
to solve the design problems in two large-scale WDNs.
Zheng et al. [9] calculated and improved the Pareto-optimal
front with a decomposed WDN. Berardi et al. [10] detected
the vulnerable position in a WDN considering both pipe
and node failure. The multi-objective genetic algorithm was
used to optimize the network structure and provide guidance
on reliability enhancement. Gheisi et al. [11] measured the
damage tolerance of WDNs considering the maximum num-
ber for component-failure scenarios. Di Pierro et al. [12]
proved that the WDNs in Southern Italy and UK opti-
mized using hybrid algorithms ParEGO and LEMMO,
respectively, which improved the efficiency in large-scale
WDN design.

However, WDNs are sensitive and vulnerable to disas-
ters [13]. The failure spread and propagation are variances
because of the network structure and resources delivered.
In studies on anti-disaster ability, cascading failure has been
identified as a hotspot in network behavior security. A cas-
cading failure is a dynamic failure process [14]. A small
disturbance in the network may result in a large-scale failure,
where the small disturbance is always triggered by natural
or man-made disasters. The capacity evaluates the largest
impact that a node or an edge could bear. However, this
capacity is limited according to the budget. That is, if the
small disturbance arouses a larger demand that is higher than
the node or edge capacity, a new failure situation is created,
and the processes continue until the whole network returns to
a new stable state.

Although cascading failure was first identified in net-
work behavior, researchers proved that cascading failure also
exists in critical infrastructure systems, especially in power
grids [15]–[18] and transportation networks [19]–[23]. How-
ever, there are few studies on cascading failure in WDNs
as most of the pipes are underground. Sitzenfrei et al. [24]
built a cascading risk map using a geographic information
system. The map combined disaster and cascading vulner-
ability and proved that ignoring cascading failure leads to
the underestimation of risks. Yazdani et al. [25] showed
that WDNs were spatial organized networks. They measured
network structure, efficiency, and connectivity of a complex
network considering the WDN structure and vulnerability.
Yazdani et al. [26] quantified the redundancy and failure
tolerance. The topology metrics could only describe the net-

work structure, but not the network characteristics related
to resources and flow. Hawick [27] explored the concern
that WDNs have developed into highly complex networks.
Yazdani et al. [28] introduced network analysis technology
to assess the relationship among network connectivity, system
reliability, and failure sensitivity. Shuang et al. [29] identified
the critical pipe that dramatically reduces system reliabil-
ity, considering system reliability and cascading propagation
time.

Determining the response and reducing the losses during a
disaster is an urgent problem that both the governments and
society need to address. An efficient strategy is to simulate
and optimize the propagation process of cascading failures
in WDNs. This strategy will helps prevent and control failure
spread. The minimization of cost and total pressure deficit are
considered as two objectives. In this study, two optimization
scenarios are built: (8) the classical optimization scenario
and the cascading optimization scenario. Two benchmark
WDNs are considered to illustrate the differences between
these scenarios. The Pareto-optimal front was obtained using
the particle swarm optimization algorithm. The proposed
optimization design solutions will help planners and decision
makers to determine the most cost-effective strategy to resist
cascading failures, strengthenWDNs, and ensure stable water
supply.

II. PROBLEM FORMULATION
The objective functions are formulated as the minimization of
the total capital costs and the total hydraulic pressure deficit
with a selection of pipe diameter options as the decision
variables. The pipe layout, nodal demand, minimum head
requirements, and the commercially available diameters are
assumed known. Then, the optimization problem of a WDN
can be defined as follows:

Find the least cost and least pressure deficit combi-
nation of pipe diameters while satisfying the following
conditions.

• Conservation of mass: Inflows and outflows must be
balanced at each node.

• Conservation of energy: Head loss in each closed loop
that begin and end at the same point must be zero.

• The head loss across each pipe is calculated by a function
of pipe diameter, pipe length, and material.

• Minimum pressure constraint: Pressure of each node
should not less than the minimum pressure.

• Available pipe diameters: Diameters are selected from
the commercially available set.

The mathematical formulation of optimization is as fol-
lows.

minimize : C =
np∑
i=1

f (Di, Li) (1)

min imize : Pd =
nn∑
j=1

max
(
Pmin − Pj

)
(2)
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subject to
∑

Qin −
∑

Qout = Qe (3)∑
k∈loopl

1Hk = 0 (4)∑
i∈Ip

HL,i +
∑
j∈Jp

Hp,j = 1E (5)

HL = KQ1.852

= 10.654
(
Q
C

)1.852 1
D4.87 L

Pj > Pj,min (6)

Di ∈ D (7)

where Eq. (1) describes the first objective function—the min-
imization the total costs. C is the total cost the WDN; Di,
the diameter of the ith pipe selected from the commercially
available set {D}; Li, the length of the ith pipe; and np,
the number of pipes. Eq. (2) describes the second objective
function—the minimization of the total hydraulic pressure
deficit. In this equation, Pd is the total hydraulic pressure
deficit; Pj,min, the minimum required pressure at node j; Hj,
the simulated pressure at node j; and nn, the number of
nodes. Eq. (3) represents the conservation of mass for each
junction node. The inflows and outflows must be balanced.
Qin and Qout are the pipe inflow and outflows of the node,
respectively. Qe is the external demand or supply. Eq. (4)
represents the conservation of energy for each closed loop;
here, 1Hk is the head loss in pipe k . Eq. (5) expresses the
head loss along each pipe. In this equation, HL,i is the head
loss across pipe i; Hp,j, the head added by pump j; and 1E ,
the difference in energy between the points of pipe. The
Hazen–Williams equation is introduced to compute friction
HL . Eq. (6) requires that the nodal pressure Pj is greater than
or equal to the minimum pressure Pj,min. Eq. (7) requires that
pipe diameter Dj belongs to the commercially available pipe
set D.

III. CLASSICAL OPTIMAL AND CASCADING FAILURE
SCENARIOS
Two scenarios are considered in this study—the classical
optimal scenario and cascading failure scenario. In the clas-
sical optimal scenario, a WDN is optimized to meet multiple
objectives with selected pipe diameters. Cascading failures
involve a conductive failure process [14]. Shuang et al. [30]
proved that cascading failures exists inWDNs and can reduce
WDN performance drastically.

Urban expansion may be one cause of cascading fail-
ures. For example, the water demand has increased because
of the sharp rise in population and industries. The nodal
demand pattern is much more intensive than the initial
design, and it requires the WDN to supply large-scale or
high-pressure water. In this case, the nodes in the WDN
perform well in the original design but do not meet the new
requirements.

A comparison between these two scenarios is provided in
Section IV. Case Study for a small and medium-size bench-
mark WDN.

A. GRAPH REPRESENTATION
A WDN is a network containing connected pipes and other
appurtenances to supply, store, and convey water for given
demand and pressure requirements. One way to model the
structure of a WDN is to use a mathematical graph with
node-edge representation [26]. Nodes represent components
at specific locations, such as reservoirs, tanks, and consumer
junctions. Edges represent pipes and express the connectivity
between nodes.

Amathematical graph is represented asG=G(V, E), where
V is the set of nodes, and E is the set of edges. AWDN can be
considered as a directed graph owing to its flow and pressure
requirements. Usually, the incidence matrix (A) is introduced
to show the topological structure. Aij shows the connectivity
relationship between node i and edge j, and it is used in the
hydraulic analysis process to update flow direction. Aij is
defined as follows.

Aij =


1, Node i is the initial node of edge j
−1, Node i is the terminal node of edge j
0 Node i is the unconnected node of edge j

(8)

B. PARAMETER SETTING
Acascading failure can be observed by considering the capac-
ity and load. Load is defined as the network flow that is
transferred between the network components. A WDN is a
physical network with resource supply and constrains. It has
to balance the water supply and water demand according to
its network structure. The nodal pressure is a metric that is
related to the hydraulic characteristic. Nodes will be fully
supplied if the nodal pressure is greater than the service
pressure [31]. The service pressure is selected as the initial
load.

Capacity is defined as the maximum load that can be borne
by a component in the network. A failure in the WDN may
trigger flow redistribution [30]. If the load is larger than the
capacity, the node fails to supply water.

The maximum capacity is defined as

Pk,max = (1+ α)Pk,ser (9)

where Pk,ser is the service pressure of node k under normal
conditions. Here, α > 0 is the tolerance parameter and
indicates the extra head that a node in the WDN can bear.
A high nodal pressure may increase the risk of leakage, while
an extremely high nodal pressure may lead to pipe bursts. The
nodal pressure should be controlled within a reasonable range
to ensure effective WDN operation.

C. EDGE-BASED FAILURE
Failures are usually classified as random failures and tar-
geted failures. Random failures generally refer to external or
internal threats, such as natural disasters and human-made
damage, and their impacts on the WDNs, for instance, com-
ponent failures. Random failures have been widely stud-
ied [32]–[34]. Although infrastructure systems are robust to
random failures, they are extremely vulnerable to targeted
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failures [35], [36]. Targeted failures usually refer to failure
of certain components under cyber, chemical, and biological
attacks [37]. The failure of some critical nodes or pipes will
make the entire WDN vulnerable.

Therefore, in this study, the focus is on target failures. The
target failures are further classified into node-based and edge-
based failures, which refer to failures that start from a node
and an edge, respectively. Since pipe failure is more common
in WDNs, edge-based failures are simulated in this study.

D. PRESSURE-DRIVEN ANALYSIS
The nodal pressure under normal and failure conditions are
simulated by hydraulic engine EPANET 2. EPANET 2 [38]
is developed by the US Environmental Protection Agency.
It has been widely adopted in hydraulic calculation and water
quality simulation. EPANET 2 Programmer’s Toolkit can
be easily combined with other commercial software. In this
study, MATLAB is used to call EPANET 2 Toolkit functions.

EPANET 2 follows the demand-driven analysis. In this
analysis, the assumption is that the node demand can always
be satisfied. However, water supply and demand change con-
stantly. Under failure conditions, the supply cannot meet the
requirement of demand. In this case, the actual demand may
less than the required demand under the pressure-deficient
condition.

The pressure-driven analysis assumes that the demands
depend on pressure, thereby providing a more realistic calcu-
lation. AWDNperforms normally if all the imposed demands
meet with pressures above the service pressure. If the pres-
sure is lower than the service pressure but higher than the
minimum pressure, the node cannot supply the full demand,
which means that node supplies at a reduced level. Wagner’s
model [31] has been proven to provide good performance
in describing the actual water demand in a pressure-driven
analysis [39], [40]. Hence, this model is used for the pressure-
driven analysis. Wagner’s model is expressed as follows:

Qk,act =


0 Pk ≤ Pk,min

Qk,req

√
Pk − Pk,min

Pk,ser − Pk,min
Pk,min < Pk<Pk,ser

Qk,req Pk,ser≤Pk
(10)

where Pk,min is the minimum pressure of node k; Pk,max ,
the maximum pressure; Pk,ser , the service pressure; Pk ,
the calculated node pressure; Qk,act , the actual demand; and
Qk,req, the required water demand.

E. ASSUMPTIONS AND SIMULATION PROCESS
The assumptions of the cascading failure model for a WDN
are as follows:

Node: Nodes have effective supply, failure, and pressure-
deficient states. In the effective supply state, the nodal pres-
sure is neither higher than the maximum pressure, nor lower
than the minimum pressure. In the failure state, the nodal
pressure is either higher than the maximum pressure, or lower

than the minimum pressure. In the pressure-deficient state,
the node pressure is lower than the service pressure but higher
than the minimum pressure.

Pipe: Pipes have effective supply and failure states. In the
former, water can be transferred from the initial node to the
terminal node, while in the latter, the pipe cannot transfer
water.

Multi-failure scenario: Failure of one pipe may lead to
the failure of several pipes or nodes. For example, if the
pipe connecting the source node, such as a tank or reservoir,
and the demand node fails, the following nodes will lose
their function. In the model, a pipe may trigger the failure
of several nodes. These failed nodes will further lead to the
failure of other pipes. The failure condition depends on the
topological and hydraulic analysis.

Stable condition: A WDN is in the stable condition until
no new failed pipe or node is generated.

EPANET Toolkit is called using MATLAB, and the basic
information in aWDN, such as the topological structure, node
elevation, base demand, pipe diameter, pipe length, and pipe
material, are read. The service pressure under the normal
condition is obtained using EPANET. The demand multiplier
is introduced to analyze the supply and demand relationship.
Further, the tolerance parameter helped calculate the maxi-
mum pressure.

The pressure deficit is the average value of the total pres-
sure deficit of each pipe with regard to cascading failures.
Initial failure starts from a certain pipe. Three analyses are
performed for the cascading failure process: (1) The failed
component that is disconnected with others is identified by
isolation detection. For example, a pipe is an isolated pipe
if both its nodes, i.e., the initial and terminal nodes, fail.
(2) The components states are simulated, and nodal pressure
and flow under failure condition are calculated in a hydraulic
analysis. The subsequent failure node is recognized according
to the node failure state. The actual demand of this node
is set as zero. (3) The network structure is updated via a
topological analysis. The incidencematrix is updatedwith the
flow direction. The pipes that are connected to the subsequent
failure nodes are set as the new failure components. The
processes are simulated until the WDN attained a new stable
condition, i.e., no new failure components are found. The total
hydraulic pressure deficit is calculated according to the actual
and required demands for this new stable state of the WDN.

IV. PARTICLE SWARM OPTIMIZATION
PSO is inspired by the behavior of a flock of birds. PSO
performs discrete multi-dimensional searches. Each particle
is affected by both the global optimal individual and the
local optimal individual. The historical optimal record found
by the particle is combined with global searching to attain
convergence. The PSO can attain convergence with high
speed in single-objective optimization [41]. Coello et al. [42]
developed an extended PSO to deal with multi-objective
optimization problems. They used a secondary repository of
particles to guide the flight of other particles. A mutation
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FIGURE 1. Flowchart of multi-objective particle swarm optimization.

operator is added to enrich the exploratory ability. The extend
PSO is validated to realize high performance in exploring the
full Pareto front with lower computational times than other
standard multi-objective optimization algorithms. Therefore,
the multi-objective PSO algorithm proposed by Coello et al.
is used in this study to examine the minimum cost and
maximum pressure deficit. Figure 1 shows the optimization
flowchart.
Step 1 (Load Basic Information of the WDN): Input the

pipe lengths, roughness coefficients, node elevations, base
demands, demand multiplier, and network structure.
Step 2 (Set Parameters in PSO): Diameters of the pipes in

the WDN are the decision variables. The decision interval is
the commercial standard pipe diameter. The diameter of each
pipe is set as a solution with particles to search.
Step 3 (Randomly Initialize the Position and Velocity of

EACH Particle Within the Population): Copy the particle set
into the population matrix. Initialize the particles to gener-
ate the initialization matrix. Calculate the cost and pressure
deficit according to the particle initialization matrix
Step 4 (Evaluate Each Particle):
(1) Update the speed and location of each particle.
Calculate the speed of each particle:

vi = wvi + c1r1(pbesti − xi)+ c2r2(reph − xi) (11)

Calculate the location of each particle:

xi = xi + vi (12)

where w is the inertial weight; c1 and c2 are the personal
learning coefficient and group learning coefficient, respec-
tively; r1 and r2 are random numbers between 0 and 1; pbests
is the personal best position of particle i; rep is the global
best position; and reph is a leader value selected from the
repository.

Searching is started from a dominant particle from the
nondominant solutions. The velocity and position of each par-
ticle are computed. The updated particle position is controlled
within the search space. If a decision variable goes beyond the
boundary, it is assigned the lower or upper boundary, and its
velocity ismultiplied by (−1) to search the opposite direction.

(2) Mutation operator
Calculate the mutation operator:

po =
(
1−

k − 1
Maxk − 1

) 1
µ

(13)

where po is the mutation operator; k , the current number
of iterations; Maxk, the total number of iterations; and µ,
the mutation rate. Although PSO has high convergence speed,
it may converge to a local optimum. Here, the mutation
operator motivates more particles to explore the Pareto front.

A random number is generated for each particle. If this ran-
dom number is less than the mutation operator, the location of
a particle is mutated. The cost and pressure deficit are calcu-
lated with the original and mutated particle, respectively. The
pbest is the dominant one among the original and mutated
particle.

Otherwise, if the random number is greater than or equal
to the mutation operator, no mutation is performed.
Step 5 (Update the Repository): The non-dominated loca-

tions are inserted into the repository. A new repository is
generated with all non-dominated locations after comparing
the updated and existing locations. Any dominated locations
in the repository are eliminated. An adaptive grid [43] is
generated to produce well-distributed Pareto fronts. The grid
has to be recalculated if a solution is located outside the
current bounds. Therefore, the grid ensures that all solutions
are well located.
Step 6 (End the Search): If the required accuracy or the

number of iterations is reached, the search is stopped. The
Pareto fronts are drawn with the adaptive grid. The results
with non-dominated solutions are converted into a matrix.

Otherwise, if the required accuracy or number of iterations
is not attained, step 4 is repeated, and the number of iterations
increases.

V. CASE STUDY
The classical optimization scenario and the cascading failure
optimization scenario are investigated for two well-known
WDNs, namely, the two-loop network (TLN) and the Hanoi
network (HAN).

A. TWO-LOOP WDN
The TLN was originally presented by Alperovits and
Shamir [44]. The network layout is shown in Figure 2.
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FIGURE 2. Layout of the two-loop network (TLN).

TABLE 1. Data for two-loop network (TLN).

TABLE 2. Cost data for TLN.

TLN data are provided in Table 1. The TLN consists of eight
pipes organized in two loops, six demand nodes, and one
reservoir with a 210.0 m fixed head. The length of each pipe
is 1000 m. The minimum pressure is 30 m above the ground
level for each node. The Hazen–Williams coefficient C is
130 for each pipe with w = 10.5088. Commercially, 14 pipe
diameters, ranging from 25.4 mm (1.0 in) to 609.6 mm (24 in)
are available. The search space is equal to 148 different
network designs. The pipe costs are listed in Table 2.

B. HANOI NETWORK
The HAN was first presented by Fujiwara and Khang [45].
The network layout is shown in Figure 3, and HAN data
are listed Table 3. The HAN consists of 32 nodes, 34 pipes,
and three loops. It has one reservoir with a 100.0 m
fixed head. The minimum pressure is 30 m above ground
level for each node. The Hazen–Williams coefficient C
is 130 for each pipe. In all, six pipe diameters, ranging
between 304.8 mm (12 in) and 1016 mm (40 in) are com-
mercially available. The search space is equal to 634 dif-
ferent possible network designs. The pipe costs are listed
in Table 4.

FIGURE 3. Hanoi network (HAN) layout.

TABLE 3. Data for Hanoi network (HAN).

TABLE 4. Cost data for HAN.

C. CLASSICAL OPTIMAL SCENARIO OPTIMIZATION
RESULTS
The PSO solutions of TLN are shown in Figure 4. The least-
cost solution (419,000 units) is the identical to the solutions
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FIGURE 4. Pareto fronts of the TLN problem.

FIGURE 5. Pareto fronts of the HAN problem.

obtained by Savic and Walters [3], Cunha and Sousa [46],
Eusuff and Lansey [1], Liong and Atiquzzaman [47].

The PSO solutions of HAN are shown in Figure 5. The
least-cost solution is 6.24 million along with a head deficit
of 373 (m). The least-cost solution is lower than that obtained
by Fujiwara and Khang (6.32 million) [45].

The results of TLN and HAN problems show that the
extended PSO can not only find the optimal solution with
the least cost, but also obtain the Pareto fronts, which supply
more solutions to meet different design requirements. The
Pareto fronts in the classical optimal scenario are used as
a base line to confirm the effectiveness of simulation under
cascading failure.

D. CASCADING FAILURE SCENARIO OPTIMIZATION
RESULTS
Figures 6 and 7 show the Pareto fronts for comparing the
performance of TLN and HAN in the classical optimal sce-
nario (COS) and cascading failure scenario (CFS).

FIGURE 6. Pareto fronts under the cascading failure scenario (CFS) and
classical optimal scenario (COS) of the TLN problem.

FIGURE 7. Pareto fronts under the CFS and COS of the HAN problem.

To compare the differences between the CFS and COS,
the tolerance parameter is set as α = 30. This parameter limits
themaximum nodal pressure according to Eq. (9). If the nodal
pressure is much higher than the service pressure, pipe bursts
and leakage are more likely. Hence in this case, the failures
caused by high pressure are not considered.

Particles randomly generate the pipe diameter. Only the
pipe diameter solutions that meet the minimum nodal pres-
sure requirements can be further tested for CFS simulation.
They are used to simulate the cascading failure process, and
then calculate the cost and head deficit. Each pipe is selected
as an initial target for attack. The head deficit and cost are
calculated after the WDN returns to a stable state. All pipes
are selected as initial attack targets. The head deficit is the
average value of the whole WDN simulated with the failure
of each pipe.
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The results show that the Pareto front of the COS performs
better than that of the CFS. When the nodal pressure deficit is
identical for the two scenarios, the cost for the CFS is higher
than that for the COS. When the cost is the same, the nodal
pressure deficit of the CFS is lower than that of the COS.

In the TLN, the minimum cost under the CFS is 5.35 units,
which is higher than that under the COS by 1.16 units. The
maximum pressure deficit of the CFS is 86.53 m, which is
less than that of the COS by 40.98 m.

In the HAN, the minimum cost under CFS is 6.53 million,
which is higher than that under COS by 0.28 million. The
maximum pressure deficit of the CFS is 488 m, which is less
than that of the COS by 251 m.

The Pareto fronts of the CFS and COS on the small
WDN, TLN, and the medium-sized WDN, HAN, show the
same trend. Under the CFS, the pressure deficit and cost
are reduced, and the identical pressure deficits increases.
Cascading failure is a low-probability but high-loss scenario.
It may trigger large-scale failure propagation with a small
disturbance. A WDN will be vulnerable to cascading fail-
ures if only the cost and pressure deficit optimization is
considered.

E. COMPARISON OF DIFFERENT TOLERANCE
PARAMETERS
The tolerance parameter α expresses the extra pressure that
a node can bear. It indicates the aging condition of pipes
by expressing their capacity. A larger α indicates a healthier
WDN with a higher capacity to resist failure. Nodes can
withstand bigger pressure changes. In contrast, a smaller α
indicates a higher aging WDN with a decreased capacity.
Nodes are sensitive to pressure changes, and they easily lose
service functions under excess pressure.

Figure 8 compares the effect of different tolerance param-
eters to the Pareto font in the TLN under the CFS. The Pareto
fronts based on α = 0.1, 0.3, 0.5, and 30 are shown in the
figure. The TLN is not sensitive to the tolerance parameters.
The Pareto fronts are overlapped with different tolerance
parameters. It is found that cascading failure will reduce the
performance of the WDN. However, the TLN is a small net-
work. The failures will either cause a large-scale loss, or will
be absorbed by the network. In this case, the damage caused
by cascading failures with different tolerance parameters are
not obvious.

Figure 9 shows a comparison of the Pareto fronts with
different tolerance parameters for the HAN. The Pareto front
with α = 30 yields the best performance. Thus, if the WDN
has more capacity, less cost is incurred to ensure the same
water supply. For example, the required cost is 7 million to
ensure a pressure deficit of 200 m. Considering the same
pressure deficit, the required cost is 8.31 million (α = 0.3)
and 8.32 million (α = 0.3), which is much larger than the
cost corresponding to α = 0.3.
If there is only little room in the water supply network,

even considering the higher construction cost, the purpose
of effectively resisting cascading failure cannot be achieved.

FIGURE 8. Pareto fronts under the CFS and COS for the TLN.

FIGURE 9. Pareto fronts under the CFS and COS for the HAN.

The maximum pressure deficit is only 14.27 m when
α = 0.1. The number of non-dominated solutions is much
lower than those under other conditions. Maintenance is
important to ensure the cascading failure resistance of the
WDN.

In addition, the Pareto fronts change only slightly for
α = 0.3 and 0.5. There are overlaps in the case of these two
fronts, showing that the aging state of theHAN is not sensitive
to cascading failures. There will be a significant change only
when α is very small.

Figures 8 and 9 shows that the damage caused by cas-
cading failures to WDN performance. However, different
tolerance parameters have different effects corresponding to
the size of the WDN. The TLN is a small WDN. Its Pareto
fronts for different tolerance parameters are identical. HAN
is a medium-sized WDN, and it is sensitive to the tolerance
parameters. The smaller the tolerance parameter, the lower is
theWDNperformance and the higher is the cost for achieving
the same performance.

The model provides the Pareto fronts under the COS and
CFS. It does not focus on single-objective problems, such as
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the minimum cost or maximum pressure deficit. In contrast,
the model combines these two objectives and provides a
set of nondominant solutions. These solutions present more
choices to decision makers. For example, the Pareto fronts
can provide solutionswith least-cost, maximum functionality,
or any solutions that meet the needs of decision makers.
The choice of a solution on the Pareto front depends on
the urban water demand, municipal budget, and the expec-
tations of decision makers regarding the resilience of the
network.

VI. CONCLUSION
A multi-objective optimization model was built for resisting
cascading failures in a WDN. The objectives considered both
the maximum pressure deficit and the minimum cost. The
optimal variables were the pipe diameters. The laws of con-
servation ofmass and energy, nodal pressure, and the standard
pipe diameter were set as the constraints.

The Pareto fronts were determined with the extended PSO.
Two scenarios—the COS that considers both the maximum
pressure deficit and the minimum cost and the CFS—were
considered. Only the variables that met the minimum nodal
pressure requirement were used to perform the simulation.

Further, two benchmark WDNs were considered—the
small TLN and the medium-sized HAN. For the COS,
the results showed that both WDNs could find the minimum
cost solution. Further, the CFS was tested.

The results for the CFS showed that both WDNs experi-
enced cascading failures. The Pareto fronts under the COS
were better than those under the CFS. The pressure deficit and
cost were reduced and the same pressure deficit increased.
We further tested different tolerance parameters under the
CFS. The small TLN was not sensitive to the tolerance
parameter. The same Pareto fronts were obtained for different
tolerance parameters. However, the medium-sized HAN was
sensitive to the tolerance parameter and only a few nondom-
inant solutions were found for α = 0.1.
In the future, we wish to explore several aspects. It is

interesting that the small- network is not sensitive to the
tolerance parameter, but the medium-sized network is. More
WDNs should be examined to test the relationship between
the network size and the Pareto fronts under the CFS. Further,
the edge-based targeted failures were the focus of this study.
More failure types, such as leakage and combinations of
random and targeted failures should be considered in future
research for comprehensive WDN performance evaluation.
Besides, multi-objective design problems were considered
in this study. The optimal variables were pipe diameters.
However, it is impossible to change all pipe diameters in an
existing WDN. The critical pipes and their optimal diameters
should be determined in future research. This will provide
a more realistic solution for maintenance and replacement
for WDNs. Back-up operations such as introduction of extra
pumps, extra valves, and redundancy network restructures
could also be included in the multi-objective problems to
obtain more feasible solutions.
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