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ABSTRACT Biometric identification based on electrocardiogram signals has attracted increasing attention.
As the most dominant feature of the electrocardiogram signal, the QRS complex(i.e., the combination of
ECG Q, R, and S waves) has been used for identification in some studies. This study aims to investigate
the intra-individual stability of the QRS complex dynamics to assess its potential for human identification.
The QRS complex dynamics are used as the unique feature to classify the QRS complex, which differs
from the time/frequency domain features used in the literature. It is the fundamental feature of the QRS
complex and contains the underlying information of the QRS complex. The dynamics of training QRS
complexes are extracted and expressed as a constant radial basis function network by using deterministic
learning. A set of estimators is constructed to represent the training QRS complexes using constant radial
basis function networks. By comparing this set of estimators with the test QRS complex, a set of recognition
errors is generated, and the average L1 norms of the errors are taken as the similarity measure between
the dynamics of the training QRS complexes and that of the test QRS complex. Therefore, the test QRS
complex can be recognized according to the smallest error principle. The electrocardiogram is classified
according to the vote of the test QRS complexes recognition results. A private database and PTB diagnostic
ECG database are used to test the proposed method. Experimental results on the private database (PTB
database) showed that the average identification accuracy was 96.12% (97.42%) for 5-fold cross-validation
based on one-lead electrocardiogram and 99.50% (99.23%) for 2-fold cross-validation based on two-lead
electrocardiogram, respectively. These show that the dynamics of the QRS complex are well-differentiated
for different individuals.

INDEX TERMS Electrocardiogram, QRS complex, identity recognition, radial basis function networks,
dynamics.

I. INTRODUCTION
In modern society, the application of identification in security
systems is getting more and more attention. A combination
lock is one of the most common and basic security systems.
However, it has very limited security and can be easily
cracked even with a variety of complex password poli-
cies (such as using a mix of numbers, letters, and special
characters and changing passwords regularly) [1]. Security
systems based on human biometrics (e.g., fingerprints,
face, iris, hand geometry) and behavioral characteristics
(e.g., gait, keystrokes, handwriting, voice) have been
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proposed to achieve higher security [2]. However, these fea-
tures are either less reliable in terms of recognition accuracy
(e.g., keystrokes, gait) or can be easily falsified (e.g., finger-
prints can be copied through latex, voice can be recorded
and played back on a recorder, irises can be faked with
contact lenses printed with copied features, and faces can be
artificially disguised) [3], [4]. As a result, researchers have
been looking for new biometrics that are difficult to fake.

Electrocardiogram (ECG) is a graph of voltage versus time
of the electrical activity of the heart using electrodes placed
on the skin. It comprises three main components: P wave,
QRS complex, and T wave. The QRS complex is the com-
bination of Q, R, and S waves. Compared to other biologi-
cal features such as face, fingerprints, gait, iris, palm print,
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sound, etc., ECG has proven to be the most promising
biometric and stands out among most of the features that
define biometric features [5], [6]. In recent years, ECG-based
biometrics has attracted much attention from the scien-
tific community, and a lot of studies have been conducted
[7]–[14]. The comfort level for collecting ECG signals used
for identity recognition has also evolved (e.g., using dry elec-
trodes to collect ECG signals on the fingers, palm, or wrists)
[15]–[17]. Moreover, preliminary progress has been made in
several commercial applications [18], [19].

ECG-based identity recognition can go back to the pioneer-
ing works [20]–[22]. The main hypothesis of these studies
is that the ECG signal contains enough information for a
high-performance identification system [23]. ECG has the
following characteristics that other biological features do not
have: i) it is difficult to forge and can only be measured
from living individuals [23], [24]; ii) it has good stability and
reproducibility [20], [25], [26]; iii) it contains psychologi-
cally, physically, and clinically relevant information that may
be valuable for some applications [23], [27] such as health
monitoring, health evaluation, emotion recognition, etc.

In ECG-based identity recognition, the primary problem
is to extract features that can realistically depict ECG sig-
nals. We can roughly divide the features used in the existing
research into the following two categories: i) fiducial features
that derived from characteristic points of ECG signals [20],
[21], [24], [27], such as the temporal intervals and amplitude
differences between these characteristic points (e.g., the RR
interval); ii) non-fiducial features derived from segmented
windows of ECG signals [28]–[30] without fiducial points
(or only with the R peaks). Principal components, wavelet
coefficients, and autocorrelation coefficients are some exam-
ples; iii) hybrid features that combine fiducial features with
no-fiducial features to create the feature set [3], [31].

However, these static features do not adequately char-
acterize ECG signals because ECG signals are inherently
time-varying patterns with large morphological changes [32],
[33]. From the perspective of pattern recognition, ECG-based
identification is essentially a temporal pattern recognition
problem. Existing classification methods developed for static
patterns may not be the most suitable for ECG-based identifi-
cation [33]. In [34], [35], it has been stated that time-varying
pattern recognition methods should be fundamentally dif-
ferent from static pattern recognition methods. It is well
known that the recognition of temporal patterns is one of the
most difficult tasks in pattern recognition. Recently, a new
algorithm, deterministic learning theory, has been proposed to
deal with temporal patterns [35]–[37]. By using deterministic
learning, the dynamics of temporal patterns can be accurately
modeled and expressed in time-invariant form. This mod-
eling result contains all the information about the temporal
pattern. Therefore, it may be more suitable for recognizing
those temporal patterns with large morphological changes
(e.g., ECG, electroencephalogram) that are difficult to
describe accurately with static features. Based on the
time-invariant representation, Wang and Hill proposed a

temporal pattern similarity measurement and a rapid recog-
nition algorithm for temporal patterns in [37].

In this paper, we propose a new ECG-based method for
identity recognition based on the QRS complex dynamics.
The QRS complex usually appears as the center and most
prominent part of the signal. It represents a single event,
the depolarization of the left and right ventricles. Biometric
identification based on the QRS complex can be advanta-
geous because it provides the most relevant and unique infor-
mation in the ECG signal, and it is the part of the ECG that
is less sensitive to physical and emotional changes relative to
other parts of the ECG signal [10], [38], [39]. Although the
information on other parts of the ECG signal ismissing, it also
avoids negative effects on identity recognition performance
due to the sensitivity of these parts to various noise distur-
bances. This may be more beneficial for identity recognition
in cases where the ECG signal is subject to complex noise
interference. This paper intends to conduct identity recog-
nition research based on the QRS complex, which aims to
investigate the intra-individual stability of the dynamics of the
QRS complex to assess its potential for human identification.

Compared to existing ECG-based identity recognition
studies, the proposed method has the following features:
i) QRS complex dynamics is a holographic representation
of QRS complex, and it can characterize various variations
of the QRS complex more accurately; ii) the hard work
in most of existing literature, finding suitable feature vec-
tors for classification, is overcome by the proposed method;
iii) the recognition of test QRS complexes not only needs
not to extract any of its features (whether static features or
dynamics) but also need not to directly compare the dynamics
of the test and training QRS complexes by any form of
numerical computation.

The rest of the paper is arranged as follows. Section II
describes the proposed method. Section III describes the two
databases used in this paper. Section IV shows the experi-
mental results. Sections V and VI present the discussion and
conclusions, respectively.

II. METHODS
A. DETERMINISTIC LEARNING
Deterministic learning theory [36] is a promising technology
proposed for modeling and recognizing temporal patterns.
It was developed mainly based on the theory and concepts
of adaptive control, system identification, and radial basis
function (RBF) networks. For a temporal pattern, which is
defined as a periodic or recurrent trajectory generated by
dynamic systems, the dynamics of the temporal pattern can
be accurately modeled and stored as constant RBF networks,
a time-invariant and spatially distributed manner [35], [37].

Consider a general nonlinear dynamic system of the
following form:

u̇ = G(u; p), u(t0) = u0 (1)

whereG(u; p) = [g1(u; p), . . . , gn(u; p)]T is a continuous but
unknown nonlinear function vector, u = [u1, . . . , un]T ∈ Rn
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is the system state, p is a vector of constant parameters,
respectively.

To accurately model the unknown system dynamics
G(u; p) underlying a temporal pattern ϕζ (i.e., a periodic or
recurrent orbit), the following state estimator is constructed:

˙̂ui = −di(ûi − ui)+ Ŵ T
i Si(u), (2)

where ûi is system state of state estimator, u is the state of sys-
tem (1), di > 0 is the design constant, and the RBF networks
Ŵ T
i Si(u) for approximating gi(u; p), Ŵi = [wi1, . . . ,wiN ]T ∈

RN and Si(u) = [si1(‖ u− ξ1 ‖), . . . , siN (‖ u− ξN ‖)]T , with
sij(‖u−ξj‖) = exp[−(u−ξj)

T (u−ξj)
η2

] being a Gaussian function,
ξj(j = 1, 2, · · · ,N ) being distinct points in state space and η
is the width of the receptive field.

From equations (1) and (2), the derivative of the state
estimation error ũi = ûi− ui satisfies the following equation:

˙̃ui = −diũi + Ŵ T
i Si(u)− gi(u; p)

= −diũi + W̃ T
i Si(u)− ei, (3)

where W̃i = Ŵi−W ∗i ,W
∗
i is the ideal constant weight vector,

and ei = gi(u; p)−W ∗Ti Si(u) is the ideal approximation error.
The weight estimate Ŵi is updated by the following

Lyapunov-based learning law:

˙̂Wi = −0iSi(u)ũi − σi0iŴi, (4)

where σi > 0 is a small constant parameter, 0i = 0Ti > 0.
It has been shown that for almost all temporal patterns

the unknown dynamics within them can be accurately identi-
fied using deterministic learning [35]–[37] and expressed as
follows:

gi(ϕζ ; p) = Ŵ T
i Si(ϕζ )+ eζ i

= W̄ T
i Si(ϕζ )+ eζ i1, (5)

where W̄i = meant∈[ts,tf ]Ŵi(t), mean is the arithmetic
mean, [ts, tf ] is a short time after the weight is converged,
eζ i1 = O(eζ i) = O(ei) is the actual modeling error.
That is, the temporal pattern can be represented by a

constant RBF network W̄ T
i Si(ϕζ ), which is a time-invariant

neural network approximation of the system dynamics
gi(ϕζ ; p). Moreover, since information about the system
dynamics is stored in many neurons, this representation
W̄ T
i Si(ϕζ ) is also spatially distributed.

B. MECHANISM FOR IDENTITY RECOGNITION
1) PREPROCESSING
ECG is susceptible to various artifacts and noises during the
measurement process, such as electromyography interference
and power frequency interference. These noises will affect
the accurate analysis and interpretation of ECG and then
affect the recognition and classification performance of ECG.
Therefore, the preprocessing of ECG signals is very impor-
tant and necessary for related research on ECG identification
and classification.

The filter for noise removal of raw ECG signals consists
of the following steps [40]: 1) bandpass filter (5-15 Hz);
2) derivative filter to highlight the QRS complex; 3) Signal
is squared; 4) Signal is averaged of noise (0.150 seconds
length). More details and Matlab code for this filter can be
found in [40].

To unify the statistical distribution of the QRS complexes
and make them more comparable, the filtered ECGs are
normalized to zero mean and unit variance by subtracting
the mean and dividing by the standard deviation. This also
facilitates the to unify the distribution of neurons in the RBF
network.

2) MODELING OF QRS COMPLEX
As a comprehensive manifestation of cardiac electrical
activity on the surface of the human body, the ECG signal
is essentially a temporal pattern produced by the extremely
complex high-dimensional continuous nonlinear dynamics
system of cardiac electrical activity. We can express the
dynamic system as follows:

ė(t) = f (e(t)) (6)

where e(t) = [e1(t), . . . , en(t)]T is the system state and
represents the ECG signal, n is the number of the leads,
f (e(t)) = [f1(e(t)), . . . , fn(e(t))]T is the system dynamics
that represents the cardiac electrical activity, an unknown
nonlinear function vector. It is clear that e(t) is completely
determined by system dynamics f (e(t)). The accurate identi-
fication of f (e(t)) will be important for studies related to ECG
recognition and classification.

Construct the following dynamic model to identify the
dynamics fi(e(t))(i = 1, 2, · · · , n):

˙̂ei(t) = −ai(êi(t)− ei(t))+ Ŵ T
i Si(e(t)) (7)

where êi(t) is the estimation of ei(t) in the dynamic system
(6), 0 < |ai| < 1 is a design constant, and the RBF networks
Ŵ T
i Si(e(t)) is used to approximate fi(e(t)).
The weight estimate Ŵi is updated by the following update

law:

˙̂Wi =
˙̃Wi = −0(Si(e(t))ẽi(t)+ σiŴi) (8)

where 0i = 0Ti > 0, ẽi(t) = êi(t) − ei(t), and σi > 0 is a
small value.

Consider the system consisiting of the nonlinear dynamic
system (6), the dynamic model (7), and the weight update
law (8). It has been proven that for almost any temporal
pattern, the unknown dynamics along the temporal pattern
trajectory can be accurately modeled based on the deter-
ministic learning [35]–[37]. Since the ECG signal ei(t) is
quasi-periodic signal (a type of recurrent trajectory), the fol-
lowing conclusions can be drawn: (i) The state estimation
error ẽi(t) = êi(t)−ei(t) converges to zero; (ii) fi(e(t)) can be
represented as follows:

fi(e(t)) = W̄ T
i Si(e(t))+ εi, (9)
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where W̄i = meant∈[tl ,tr ]Ŵi, mean is the arithmetic mean,
[tl, tr ] is a short time after the weight estimate is converged,
and εi is the approximation error that can be arbitrarily small.

In this way, we have achieved an accurate modeling of
ECG dynamics, which is represented in the form of a constant
RBF network W̄i, a time-invariant form. Since it stores the
basic information in neurons distributed along the state trajec-
tory of ECG, the representation is also spatially distributed.
Thus, this expression contains both state information and
dynamic information of ECG. On this basis, we can extract
the QRS complex dynamics according to the start and end
points of the QRS complex in the ECG signal.

Since there have been many studies on the extraction of
QRS complexes, here we extract QRS complexes directly
based on the position of the R-peak, which is detected by
using Pan-Tompkins algorithm proposed in [41]. To ensure
that all QRS complexes have the same length, we extract QRS
complexes empirically by choosing a window of -160 ms to
340 ms around the R-peak. As the sampling frequency is
500 HZ, each extracted QRS complex contains 251 samples.
Denote the start and end points of the QRS complex as
kQ and kS , respectively. Then, the QRS complex can be rep-
resented as e(t)|t=kSt=kQ . For simplicity, denote e(t)|t=kSt=kQ as eqrs
in the following text. Then, we can represent the dynamics of
the QRS complex as follows:

f (e(t))|t=kSt=kQ ≈ W̄ T S(eqrs) (10)

Figures 1 and 2 show the modeling results of one-lead
(lead I) QRS complexes and two-lead (leads V2 and V3)
QRS complexes for 4 subjects, respectively. In these figures,
different colored lines are the modeling results of different
QRS complexes, which are extracted from a 20-second ECG
without selection. We can see that: i) the QRS complexes
dynamics of the same subject are very similar in morphology;
ii) the QRS complexes dynamics of different subjects differ
greatly from each other. These show that the QRS complex
dynamics can distinguish individuals.
Remark 1: The subscript of the QRS complexes modeling

results of different leads is consistent with their order in
standard 12-lead ECG. Figure 1 shows themodeling results of
QRS complexes extracted from lead I, which is the first lead
in the standard 12-lead ECG, so the y-axis is W̄ T

1 S1(eqrs).
Figure 2 shows the modeling results of QRS complexes
extracted from leads V2 and V3, which are the eighth and
ninth leads in the standard 12-lead ECG respectively, so the
x-axis is W̄ T

8 S8(eqrs) corresponding to leadV2, and the y-axis
is W̄ T

9 S9(eqrs) corresponding to lead V3.

3) MECHANISM FOR SUBJECT IDENTITY RECOGNITION
Based on the modeling of the QRS complexes dynamics of
the ECG signals in the training set, for an ECG signal to be
recognized, first extract its QRS complexes (i.e., test QRS
complexes), and then build a set of state estimators based on
the modeling results of the training QRS complexes:

˙̂ekqrs = −B(ê
k
qrs − eqrs)+ W̄

kT S(eqrs) (11)

where êkqrs is the system state, eqrs is the test QRS complex
state, B = diag{b1, . . . , bn} is a diagonal matrix, bi > 0
(i = 1, . . . , n) is the design constant, and W̄ kT is constant
neural network weights of the k-th training QRS complex
modeling result. Then we can obtain the following error
system corresponding to the dynamic model (11) and the test
QRS complex:

˙̃ekqrs = −Bẽ
k
qrs + W̄

kT S(eqrs)− f (eqrs) (12)

where ẽkqrs is the tracking error between the k-th training
QRS complex and the test QRS complex. According to the
dynamic pattern recognition theory proposed in [37], the state
tracking error ẽkqrs is approximately proportional to the
dynamics difference between the test and the training QRS
complexes. Thus, the state tracking error can be used as a
measure of the similarity between the test and the training
QRS complexes. The test QRS complex can be classified
according to the principle of minimum errors. Each test QRS
complex classification result is a vote for the candidate sub-
ject of the test ECG signal classification, which is elected by
a majority of votes (i.e., the candidate with the most votes
is the test ECG classification result). For example, if a test
ECG signal contains 20 QRS complexes, of which 10, 6, and
4 QRS complexes are classified in the category of subjects A,
B, and C, respectively, then this test ECG signal is classified
in the category of subject A.

Through the above description, we can summarize the
proposed method for identity recognition as the following
steps:
Step 1: Extract the dynamic features of the training QRS

complexes and store it with the corresponding
identity labels to build an identity pattern library;

Step 2: Extract the QRS complexes of the test ECG signal;
Step 3: Construct a set of state estimators based on the train-

ing QRS complexes modeling results as (11), where
the RBF networks input is the test QRS complex’s
state;

Step 4: A set of state errors can be obtained according to the
error system as (12), compute the average L1 norm
of the state estimation error;

Step 5: Classify the test QRS complex according to the
principle of the minimum error;

Step 6: Vote according to the classification results of all test
QRS complexes to achieve the classification of the
test ECG, i.e., identity recognition;

Figure 3 illustrates the general flowchart of the proposed
method.

The performance of the proposed method was evaluated
by the classification accuracy of the QRS complex, the
Macro-F1 score of the QRS complex classification, and the
identification accuracy of ECG. The classification accuracy
of the QRS complex is defined as

AccQ = NQ/Nte × 100%

where NQ and Nte are the number of correctly classified
test QRS complexes and the total number of test QRS
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FIGURE 1. The modeling results of QRS complexes extracted from lead I of 4 subjects. Different colored lines are the modeling
results of different QRS complexes, which are extracted from a 20-second ECG without selection.

complexes, respectively. The identification accuracy of test
ECG signals is defined as

AccE = NE/NtE × 100%

where NE and NtE are the number of correctly classified
test ECG signals and the total number of test ECG signals,
respectively. The Macro-F1 score is calculated by averaging
the F1 scores for each individual category:

F1 = 2×
precision× recall
precision+ recall

precision =
TP

TP+ FP

recall =
TP

TP+ FN
where TP, FP, and FN are the number of the true positive set,
the false positive set, and the false negative set, respectively.
Remark 2: In practice, the number of training QRS

complexes in the pattern library depends on the number of
subjects to be identified. The recognition of test QRS com-
plexes not only needs not to extract any of its features but
also need not to directly compare the dynamics of the test and
training QRS complexes by any form of numerical computa-
tion. It reduces the amount of computation to a greater extent.

The rapid increase in computing power (e.g., GPU parallel
computing, cloud computing) also guarantees the real-time
nature of the proposed method. In addition, considering that
ECG signals may change with age, regular updates to the
ECG in the pattern library may be necessary. In future work,
we will conduct further research on the application of the
proposed method.

III. DATABASES
We believe that the difference in ECG signals of the healthy
subjects in the same age group is much smaller than that
of the subjects with various heart diseases in the different
age groups. The identity recognition of healthy people in the
same age group can better demonstrate the effectiveness of
the proposed method. Two ECG databases of healthy subjects
are used to evaluate the proposed method. The first database
is a private database called the GGH database, which contains
ECGs from 94 healthy subjects. The second database is a
subset of the PTB diagnostic ECG database, which contains
ECGs from 52 healthy subjects.

The GGH database was collected from a local hospi-
tal (General Hospital of Southern Theatre Command). The
ethics committee approved the study, and the subjects were
informed and gave verbal consent to our study but not to
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FIGURE 2. The modeling results of QRS complexes extracted from leads V2 and V3 of 4 subjects. Different colored lines are the
modeling results of different QRS complexes, which are extracted from a 20-second ECG without selection.

FIGURE 3. The flow diagram of the proposed method.

our disclosure of the data. The inclusion criteria are as fol-
lows: aged 18-45 years old, physical and clinical examination
report with normal findings; no history of cardiovascular dis-
ease or any other disease. A total of 94 subjects were enrolled
with informed consent, and two 12-lead ECGs of 20 seconds
in length were collected from each subject. The two ECGs for
each subject were measured at two different sessions of the
same day, with a two-hour interval. The subjects remained

supine for 20 seconds before the data collection. That is,
the GGH database contains 188 20-second standard 12-lead
ECG records. The equipment used to measure ECG records is
an ECG sampling module named AIKD812-256 (Changsha
Aikang Electronics Company, Ltd., Changsha, China), with
a sampling rate of 500HZ and a resolution of 12-bit.

The PTB Diagnostic ECG Database is a public database
and has been used by many studies on biometric recognition
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TABLE 1. The experimental results based on one-lead ECG. NQ and NE are the number of correctly classified test QRS complexes and correctly identified
test ECG signals, respectively. AccQ and AccE are the classification accuracy of the test QRS complexes and identification accuracy of the test ECG signals,
respectively.

methods based on ECG signals. It contains 549 recordings
from 290 subjects (52 healthy subjects and 238 patients)
with different time durations of around 2 minutes. Each
ECG recording consists of standard 12-lead ECG signals and
three Frank leads ECG signals. For comparison with other
methods, we selected the ECG signals of the 52 healthy sub-
jects, which are commonly used in other studies. 14 of these
52 healthy subjects hadmore than two ECG recordings, while
the others had only one ECG recording. For these 14 healthy
subjects, we selected two of the ECG recordings, each lasting
20 seconds. For healthy subjects with only one ECG record-
ing, we intercepted two ECG signals of 20 seconds’ length
from this ECG recording. That is, the subset of the PTB
database contains 104 ECG signals from 52 healthy subjects,
each of whom had two ECG signals of 20 seconds duration.
For the sake of simplicity, we will refer to this subset of the
PTB database as the PTB-H database in the following context.
Remark 3: The GGH database cannot be fully disclosed,

both because it is not authorized by the subject and because of

the sensitivity of the subject’s identity. Interested researchers
can contact us for access to this database.

IV. RESULTS
A. EXPERIMENTS BASED ON ONE-LEAD ECG
To reduce the bias in the selection of training and testing sets
for QRS complexes classification, the k-fold cross-validation
method is used in the study. The average accuracy of classifi-
cation is used as a benchmark for comparison. To facilitate
direct comparison with relevant studies, we conducted the
same experiments based on the PTB-H and GGH databases,
respectively.

As each subject has two 12-lead ECG records in the
GGH database and PTB-H database, we first use the 2-fold
cross-validation method to test the proposed method. In the
experiments based on the GGH database (PTB-H database),
the 188 (104) ECG records are divided into two subsets, each
subset containing 94 (52) ECG records from 94 (52) subjects,
one for each subject.
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TABLE 2. The experimental results of 5-fold cross-validation experiments on lead I. NQ and NE are the number of correctly classified test QRS complexes
and correctly identified test ECG signals, respectively. AccQ and AccE are the classification accuracy of the test QRS complexes and identification accuracy
of the test ECG signals, respectively.

TABLE 3. The average accuracy of the 5-fold cross-validation experiments on one-lead ECG. AccQ and AccE are the classification accuracy of the test QRS
complexes and the identification accuracy of the test ECG signals, respectively.

The results of the 2-fold cross-validation experiments
are shown in Table 1. We can see that in the experiments
based on the GGH database (PTB-H database): the clas-
sification accuracy of QRS complexes is between 75.86%
and 89.88% (between 77.35% and 89.71%), and the average
accuracy is 83.92% (84.34%); theMacro-F1 score is between
0.8627 and 0.9467 (between 0.8723 and 0.9458), and the
averageMacro-F1 score is 0.9118 (0.9145); the identification
accuracy of test ECG (i.e., identity recognition) is between
92.55% and 96.81% (between 94.23% and 100%), and the
average accuracy is 94.64% (97.20%). The highest classifica-
tion accuracy of QRS complexes and identification accuracy
of test ECG are the experiments on lead V1 and lead III, and
the lowest accuracy is the experiment on lead V6.

We further test the generalization ability of the proposed
method on one-lead ECG using a 5-fold cross-validation
method. To be precise, in each fold experiment, 20% of the
QRS complexes of each ECG signal are selected as the test
pattern, and the rest is used as the training pattern. That
is, 20% of each original ECG record is used as a test pat-
tern, and the test sets for the GGH database and the PTB-H

database comprised 188 and 104 processed ECG records,
respectively.

The results of the 5-fold cross-validation experiments on
lead I are shown in Table 2 as an example. For the experiments
based on the GGH database (PTB-H database): the classi-
fication accuracy of the QRS complex is between 92.69%
and 96.12% (between 93.58% and 96.05%), and the aver-
age accuracy is 94.27% (94.72%); the Macro-F1 score is
between 0.8627 and 0.9467 (between 0.8723 and 0.9458),
and the average Macro-F1 score is 0.9118 (0.9145); the
classification accuracy of test ECG is between 94.68% and
97.34% (between 95.19% and 99.04%), the average accuracy
is 95.85% (97.31%), respectively. The average accuracies of
the 5-fold cross-validation experiments on the 12 leads are
shown in Table 2.

In the 5-fold cross-validation experiments, the best
classification performance was obtained based on lead III
and lead V1, and the worst classification performance was
obtained based on lead V6. These are the same as the
2-fold cross-validation experiments. However, since the num-
ber of training QRS complexes is 4 times that of the test
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TABLE 4. Experimental results of group A. NQ and NE are the number of correctly classified test QRS complexes and correctly identified test ECG signals,
respectively. AccQ and AccE are the classification accuracy of the test QRS complexes and identification accuracy of the test ECG signals, respectively.

QRS complexes, the difference in classification performance
based on different leads is smaller than that of the 2-fold
cross-validation experiments.

B. EXPERIMENTS BASED ON TWO-LEAD ECG
In this subsection, we will test the proposed method on
two-lead ECG. Since no standard indicates which lead com-
bination is optimal, we will conduct two sets of experiments:
experiment group A and experiment group B. In the exper-
iment group A, the two leads ECG is selected from lead I,
lead II, lead III, lead aVR, lead aVL, and lead aVF, a total
of 15 two-lead combinations. In the experiment group B,
the two leads ECG is selected from lead V1, lead V2, lead

V3, lead V4, lead V5, and lead V6, also a total of 15 two-lead
combinations.

Similar to experiments based on one-lead ECG, 2-fold
cross-validation experiments are conducted on each two-lead
combination, where one ECG record of each subject is still
used as the training pattern, and another ECG record is used
as the test pattern. The results of the experiment group A
and experiment group A are shown in Table 4 and Table 5,
respectively.

From the experiment results, we can see that the
classification performance on two-lead ECG is improved
compared with one-lead ECG. For the GGH database, in the
2-fold cross-validation experiments of experiment group A
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TABLE 5. The experimental results of experiment group B. NQ and NE are the number of correctly classified test QRS complexes and correctly identified
test ECG signals, respectively. AccQ and AccE are the classification accuracy of the test QRS complexes and identification accuracy of the test ECG signals,
respectively.

(experiment group B), the classification accuracy of QRS
complexes is between 82.92% and 99.05% (between 82.69%
and 99.19%), and the average accuracy is 89.56% (93.29%),
the Macro-F1 score is between 0.9066 and 0.9952 (between
0.9052 and 0.9959), and the average Macro-F1 score is
0.9444 (0.9648), the classification accuracy of test ECG
(i.e., identity recognition) is between 96.81% and 100%
(between 96.81% and 100%), and the average accuracy is
98.94% (99.50%). For the PTB-H database, in the 2-fold
cross-validation experiments of experiment group A (exper-
iment group B): the classification accuracy of QRS com-
plexes is between 84.02% and 99.12% (between 83.82%
and 98.53%), and the average accuracy is 90.01% (93.43%);

the Macro-F1 score is between 0.9132 and 0.9956 (between
0.9120 and 0.9926), and the average Macro-F1 score is
0.9471 (0.9658); the classification accuracy of test ECG is
between 96.15% and 100% (between 94.23% and 100%), and
the average accuracy is 98.40% (99.23%).
Remark 4: Due to the high average classification

accuracy of 98.94% (99.5%) for the two-lead ECG in the
2-fold cross-validation experiments, no other multi-fold
cross-validation experiments will be performed here.

V. DISCUSSION
In the paper, we propose a novel method for identity
recognition via the QRS dynamics of ECG. The QRS
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TABLE 6. Summary of the key features of different studies. NS: Number of subjects. NL: Number of leads.

complexes are first classified, and then the test ECG is classi-
fied according to the voting of the QRS classification result.
Thus, the focus of the proposed method is the classification
of the QRS complex. Most of the existing methods use the
time-domain features or frequency-domain features, which
can not describe subtle changes and hidden complexities in
QRS [42], for classifying the QRS complexes. QRS dynamics
is used as a unique feature for QRS classification. Since the
dynamics contain complete information on theQRS complex,
it also includes the subtle changes of the QRS complex.
It would be more suitable for the QRS classification, espe-
cially for the classification of QRS with wide variations in
morphology. It is the main feature of the proposed method.
Experimental results show that the proposedmethod has good
classification performance for different leads ECG.

Table 6 summarizes the state-of-the-art in ECG-based
identity recognition methods using PTB databases and pro-
vides a direct comparison with the proposed method. It can
be seen that the identity recognition accuracy of the proposed
method is comparable to or even better than some of the exist-
ing methods. In [10], [43], the convolutional neural network
was used for identity recognition and obtained satisfactory
results. Nevertheless, it requires a large amount of data to
train the model as there are a lot of neuron weights need
to be adjusted. While, in this paper, the RBF networks used

in extracting the dynamics of one-lead and two-lead QRS
complexes were only 201 and 1600 neurons, respectively,
far fewer than the number of neurons in convolutional neural
networks. In addition, the trained model may not be suitable
for other databases.

In summary, it can be seen from Table 6: 1) QRS complex
dynamics is used as a unique feature for identity recognition
in the proposed method, avoids the feature selection which is
a hard task that needs various techniques [44]; 2) the proposed
method has comparable performance to other state-of-the-art
methods for identity recognition; 3) the good performance
of the proposed method based on 12 one-lead ECG and
30 two-lead ECG shows that the proposed method has good
generalization for different leads of 12-lead ECG.

Finally, it is important to note that while ECG-based
identification has come a long way, it is still far from practical
application. In our opinion, there are still several open ques-
tions in ECG-based identity recognition as follows: 1) The
morphology of ECG signals is influenced by physical and
emotional state, various heart diseases, diet or drug use,
and other factors. Therefore, it is necessary to evaluate the
impact of various factors on the ECG biometric. 2) The
morphology of ECG signals can also change with lifestyle,
age, etc., causing a decrease in identification performance.
More attention should be paid to the impact of cross-sessions
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on ECG biometrics. 3) Real-time measurement of ECG sig-
nals from mobile devices will be the inevitable trend, but
the quality of ECG signals will be low due to the unstable
external environment. How to extract sufficiently discrimi-
nating features from this-low quality ECG signal will be a
research direction. 4) ECG signals contain private informa-
tion about the subject’s health, and how to effectively protect
the subject’s privacy is also a worthwhile research direction.
Remark 5: Compared to our previous works [32] and [45],

the approach of this paper has the following advantages and
improvements: (1) The method reduces the requirement for
the number and location of ECG lead. The VX, VY, and
VZ leads were used in [32], and the 12-lead ECG signal was
used in [45], while the single-lead or double-lead ECG signal
selected arbitrarily from the standard 12-lead ECG signal
was used in this paper, making this method more applicable;
(2) The method reduces the amount of computation. Both
[32] and [45] performed identity recognition based on the
entire ECG signal, whereas in this paper, identity recognition
based only on the QRS complex of the ECG signal was
performed; (3) Most importantly, good recognition accuracy
is obtained on each lead, indicating that the method has good
generalization capabilities. Moreover, the present study is
also different from another study [46]. In this paper, we clas-
sify QRS complexes according to identity tags, while in
[46], we classify QRS complexes according to heartbeat type,
which essentially belongs to the research area of arrhythmia
detection.

VI. CONCLUSION
In this paper, we propose a new method for identity recog-
nition via QRS complexes dynamics. The QRS complex
extracted from training ECG is accurately modeled by using
deterministic learning. The modeling results and correspond-
ing identity labels are stored as a pattern library. For QRS
complex classification, a set of state estimator is constructed
by using the modeling results, and then a set of errors can
be obtained. The test QRS complex is classified according to
the principle of minimum error. Finally, the classification of
the test ECG, i.e., identity recognition, is achieved according
to the voting of all test QRS complexes classification results.
Experimental results show the effectiveness and feasibility of
the method for identity recognition.

The results of the present study are based on ECG
recordings obtained under calm conditions, where heart rate
changes of the signal measurement process can be expected
to be minimal. However, in practice, individuals are not
usually in a normal resting state. In future work, we will
investigate the robustness of the proposed method to changes
in ECG morphology caused by subjects in different physical
and emotional states. Furthermore, given the simplicity and
comfort of practical applications, it may be more acceptable
to collect ECGs in an off-the-person manner in practice.
Therefore, we will also conduct further studies based on the
off-the-person ECG database, such as the CYBHi database
[51] and the UofTDB database [52].
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