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ABSTRACT The Structure Light System (SLS) is a general concept and it is one of the cheapest methods
for the non-contact-based 3D reconstruction. The existing single-shot SLS which is primarily based on the
spatial encoding techniques are not optimal in terms of resolution and digitally encoded patterns. Those
schemes are not flexible, controllable, and designed up to the level of the pixel. So, to increase the resolution
and to implement a flexible controllable pattern we proposed a novel heuristic method based on the spatial
neighborhood. In this paper, we propose a multi-resolution SLS which can be implemented with a set
of 25 geometrical shaped distinct symbols or alphabets to use in the projection pattern as shape primitive.
The size of each symbol is well defined in pixels which enabled us to have access and control up to the full
resolution of the projector. The shape descriptive parameters for each symbol or alphabet are also defined
and computed. To spread the alphabets in a controllable manner, a method is defined to generate a robust
pseudo-random sequence of any required size with a certain number of alphanumeric bases, to be employed
in the projection pattern concerning the measured resolution. This arrangement will enable us to design the
projection patterns according to the required surface area and the resolution. A new technique is developed
for the decoding of the captured image pattern. The decoding process depends upon the classification of
symbols which is based on shape descriptive parameters. The searching in the neighborhood of a symbol is
carried out through computing the location information, grid distance, and direction information to find the
codewords which are used to establish the correspondence.

INDEX TERMS Structure light, stereovision, robust pseudo-random sequence, m-arrays, perfect maps,
shape descriptors, grid distance.

I. INTRODUCTION
Fast, real-time, single-shot 3D measurement has become
the most challenging task and it has been widely used
in industrial manufacturing, the range sensing applica-
tions, the inspection and modeling in the automation indus-
try, reverse engineering, and medical imaging applications.
In this research, we will define a complete procedure for
the development of the fast, single shot, dynamic 3D vision
measurement techniques based on the structured light spatial
encoding projection.

Many techniques have been evolved during the past
two decades for the designing of SLS. Many reviews are
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available [1]–[3]. Structure light uses the principle of tri-
angulation for the 3D measurement. In the stereo vision
techniques, more than one camera was utilized to solve
the correspondence problem between two or more views of
the object [4]. In the structure light projection technique,
one of the stereo vision cameras is replaced with a light-
emitting projector [5]–[7]. Thus, the correspondence between
two images is transformed into a perspective looking for
corresponding points between the projected pattern and the
captured image [8]. The structure light techniques can be
divided into two main classes: spatial neighborhood and tem-
poral coding [9]. Geng [10] further differentiates the temporal
encoding techniques into the sequential projection techniques
which include binary patterns, gray coding, phase shift, pho-
tometric, and hybrid techniques. He differentiated the spatial
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projection techniques into full-frame spatially varying color
patterns, Stripe Indexing (Single Shot), and Grid Indexing:
2D Spatial Grid Patterns.

Fast 3D measurement techniques have become more vital
during the past few decades since it was used in the devel-
opment of real-time applications. The researchers in optical
metrology emphasize the techniques based on fringe pat-
terns [11] which were used for the development of real-time
3D applications [12]. The fringe patterns have limitations
of lower accuracy and resolution. Rusinkiewicz et al. [13],
Hall-Holt and Rusinkiewicz [14] developed a real-time 3D
shape measurement system based on the stripe boundary
code. In their approach the image acquisition and processing
time was high and four patterns were required to reconstruct
one 3D model. Their technique was not a single-shot, and it
was difficult to reach a pixel-level spatial resolution at high
speed since the stripe width must be larger enough to cover
the whole projector resolution. Consequently, the single-shot
3D measurement techniques remained the hot research area.
The researchers from the computer vision proposed spatial
neighborhood encoding techniques that are being single shot
as well as fast, which can be used for the development of real-
time and dynamic applications.

In the spatial codification techniques, the codeword of a
specific location is extracted from the surrounding points.
The key idea is to ensure the distinctiveness of the code-
word at any location in the whole range of the pattern. The
examples of spatial neighborhood are the patterns based on
De Bruijn sequence [15]–[20], non-formal coding [21], and
M-arrays [22]–[30].

The De Bruijn pattern was designed by Boyer and
Kak [15], used in a single encoded grid of colored light
stripes to measure 3D. Similarly, Hugli and Maitre [16] and
Je et al. [17] proposed color encoded strip patterns. Like-
wise, Zhang et al. [18] use alternating color strips and a
multi-pass dynamic programming algorithm, which aids in
the elimination of global smoothness and strict ordering con-
straints. Pages et al. [19] proposed an optimized pattern for
single-shot shape acquisition. Vuylsteke and Oosterlinck [20]
proposed a single shot binary encoded pattern derived from
the pseudorandom noise sequence. This approach was used
for extensive feature extraction but at the cost of more time
consumption. All of these techniques were not suitable for
high-speed measurements, and practical for a colored object
or dynamic scenes.

The two-dimensional spatial neighborhood techniques
evolved from the grid encoding. Pennington and Will [31]
were the first who introduce grid-coding for automatic extrac-
tion of the range data. Thus, the grid pattern combines the
advantages of both the simple point and the line pattern as
sharp discontinuities may indicate abrupt changes at sev-
eral points on the object surface. But grid coding implies
weak constrictions on the physical objects [32], since the
labeling of intersecting points of the grid is time-consuming,
especially if some parts of lines are occluded [27]. So,
each new label is dependent on previously labeled points.

When compared to the simple coding technique such as
point and shoot through laser light, as proposed by Strat and
Oliveira [33], which is based on a relative labeling approach,
but were not able to robustly deal with the occlusion prob-
lem. Chen et al. [34], [35] proposed a grid-pattern based
on uniquely color-encoded codeword. The codeword at any
location is defined from the color value at that location and
its 4 adjacent neighbors. Since the pattern was designed with
multi colors and so it was immune to noise and can be warp
through the intrinsic color of the measuring surface. Our
technique is employed with all the advantages of grid coding
while ignoring the limitation of dependency on the labeling
process of previous values since we employ a predefined
labeling scheme.

Griffin et al. [23] used a multi-valued pseudo-random
array, instead of a binary array. In his pattern, each spatial
position is represented with a mini-pattern as a special code-
word. He used multiple colors to illuminate the projection
which has problems in the colored scene and measured sur-
face reflections. These developments lead several researchers
to use the theory of perfect maps [36] for employment in the
structured-light spatial encoding schemes. The spatial encod-
ing techniques proposed in [24]–[26] are based on the small
size pseudo-random sequences which resulted in lower res-
olution. Petriu et al. [24] introduced a pseudo-random four-
color encoded grid pattern composed of the rows and columns
grid lines applied on a simple cubic surface. The pattern was
based on small pseudo-random sequences and only 59% of
feature points were detected successfully. Morano et al. [27]
used an iterative algorithm to generate a pattern based on
a pseudo-random array with 45 × 45 features. Instead of
symbols, he used a multi-color dot matrix and time multi-
plexing on/off assignment to illuminate the surface. So the
approach was not a single-shot and it was difficult to read
labels of each dot hence lesser feature points were deducted.
Albitar et al. [28] proposed a pattern consist of 27 × 29
features with three symbols applied for the small surface.
Many authors try to increase the feature size of the pattern by
augmentingM-array. Lu et al. [29] used anM-arraywith three
alphabets and a feature size of 48 × 52. Xiao-Jun et al. [30]
proposed 10 alphabets based M-array with a feature size of
79×59 but he used similarly shaped symbols, so lesser feature
points were detected. All these authors try to increase the
feature points but their patterns are not completely designed
up to the levels of the pixel.

Recently the Microsoft RGB-D cameras are also gaining
popularity that mapped depth through either structured light
or time of flight calculations [37]. The disadvantages come
with the resulting shape that often misses thin geometric
structures since due to lesser coarse of resolution with depth
map, quantization error, and noise [38]. Most of the RGB-D
camera-based SLS has a depth resolution of 640×480 pixels.
Whereas we proposed a flexible system to design your own
choice of pixel resolution and it can also be implemented
through RGB-D camera systems. On the contrary, the pro-
posed method is based on its own choice of designing pattern
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resolution and size calculation according to the requirements
of a covered surface area.

Thus, at present no method is available which may extract
more feature points, flexible and controllable enough to
design the pattern at own choice of resolution. So this defi-
ciency motivates us to propose this system to deal with the
occlusion problems as well as to increase the feature size
and designed pattern by utilizing the whole resolution of
the projector. Our method is more suitable due to being the
utilization of monochromatic light and robust symbols which
combine the power of both grid-coding and predefine labeling
techniques which were previously implemented with multi
colors patterns.

II. ENCODING PROCESS
In this section, the whole process of encoding the projection
pattern with the proposedmethod will discuss. The process of
encoding includes choosing symbols from the set of proposed
symbols or alphabets. The chosen symbols are spread in the
projection pattern by using robust pseudo-random sequences.
The sizes of robust pseudo-random sequences are generated
according to the size of the symbol and the dimensions of the
projector, all measured in pixels. The robust pseudo-random
sequences are generated through MATLAB and their robust-
ness is ensured through validation of window property. The
whole process is explained below.

A. DESIGN OF SYMBOLS
In this research, we have proposed a multi-resolution SLS.
We have designed and proposed five sets of 25 geometric
shaped symbols or alphabets. The basic requirements for the
design of alphabet or symbols are their uniqueness i.e. able to
be differentiable from other symbols, the properties of being
easily decodable and the robustness, their characteristic to
carry direction information along with the curvature of the
surface and the specific size in term of pixels. So we have
designed symbols while keeping in mind the above neces-
sities for the employment as shape primitive in the design of
projection pattern. Our proposed symbols are varying in sizes
from 8×8 to 16×16 pixels. Each set of symbols corresponds
to a different level of resolution on the measuring surface
at a certain value of depth (z). From these unique sets of
‘25’ symbols, one can choose few symbols (minimum 2 and
maximum up to 8) to design a projection pattern of their own
choice of resolution and the corresponding measuring area.
Our method of using more symbols in a projection pattern
will provide more flexibility and robustness in the design of
a projection pattern. The five sets of proposed symbols are
shown in figure 1.

To decode these symbols, we use and compute shape
description parameter ratios [39], [40]. So, the classifi-
cation of symbols is based on shape description param-
eters [40]–[42]. Since shape descriptor parameters based
object understanding is more stable against sensor noise and
it is more prone to illumination changes and color variation.
Most of the shape descriptors are computed through regional

FIGURE 1. 5 sets of 25 symbols.

moments [43], [44]. Essential Shape description parameters
utilized in the classification of symbols are defined in table 1.
The definition of each proposed symbol and the computed
values of the shape description parameters are given in table
10 in the appendix. Each symbol has unique geometric prop-
erty and thus has unique shape description parameter values
so they can easily decode with minimum or least chances of
errors. The threshold values of these parameters will use in
the classification of symbols in the decoding process. The
threshold value of each parameter conveys some important
information. The use of more shape description parameters
will allow us to decode more symbols in the captured image
pattern.

The implementation of deep-learning algorithms such as
CNN [45] requires three basic elements, 1) Large-scale 3D
datasets, 2) Obtainable structure and training, and 3) Graphics
processing units (GPU) for the acceleration of the system. All
of these three factors are essential elements for the employ-
ment of deep-learning methods. Furthermore, the challenges
of forming data sets and their training make them slow,
and complex processes for the computation. Our method of
decoding or classification of symbols or alphabets is based on
the shape description parameters, which is a simpler process
when implemented since it needs low computational power
when compared to the deep-learning. So the complexity of
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TABLE 1. Shape description parameters.

the algorithm and the hardware requirements will reduce
which will be a significant advantage, and thus the decoding
performs well.

B. GENERATION OF RPRS
Pseudo-random sequences are widely used in many applica-
tions [46], [47]. The pseudo-random sequences with more
alphabets or symbols or alphanumeric basis make them suit-
able to usewith the large dimensions and provide flexibility to
the user to generate a sequence of their desirable dimensions.
We employed the Mersenne twister method to generate the
pseudo-random sequences [48], [49]. The Mersenne twister
has the advantages of being fast, high equal distribution,
and a very long period as compared to the shift register
method [50], [51]. These properties of Mersenne twister pro-
vide principal advantages to the designer to generate very
high-quality pseudo-random numbers. Thus larger dimension
perfect maps can be formed with a lesser number of alphanu-
meric bases. The theory of perfectmaps such asM-arrays [36]
is already employed in the SLS [28]–[30]. We also generated
a robust pseudo-random sequence (RPRS) by using the theory
of perfect maps. In perfect maps, no codewords will repeat
itself and each codeword and its location is unique in the
sequence. So the coarse correspondence can be established
easily. The RPRS with a specific size is the requirement for
the proposed system to spread the symbols in a controllable
manner to form the projection patterns. First, wewill generate
a raw pseudo-random sequence. The raw pseudo-random
sequences are converted to robust pseudo-random sequence

by validating their window property. In ourmethod, we utilize
the window property of 3 × 3 to check the robustness of the
sequence.

The use of amore alphanumeric basis in the pseudo-random
sequence provides more robustness since the chances of
errors are reduced. The increase in alphabets will increase
the robustness and the Hamming distances between the code-
words. The repetition of codewords will not occur if the
pseudo-random sequence is generated with more symbols
or alphabets or alphanumeric bases. So there is a direct
relationship between the robustness, the Hamming distances,
and the number of alphanumeric bases of the pseudo-random
sequence. The robustness of each pseudo-random sequence
will ensure through calculating the Hamming distances
between the codewords of each independent window of size
3 × 3. Hamming distances are the ability of the robustness.
Since the codewords in eachwindow are based on an alphanu-
meric basis. So, the difference at any location of twowindows
while comparing will increase the Hamming distance. Thus,
Hamming distances are the measurement of differences in
between the codewords of length 3 × 3 of two independent
windows. As the alphanumeric bases are increased in the
pseudo-random sequences, the range of alphabets used in the
codewords will also increase, so the Hamming distances or
robustness is improved. The codewords are considered to be
robust if the Hamming distances between them are greater
than or equal to ‘3’ for the window property of size ‘3× 3’.

1) SIZE CALCULATION OF RPRS
The first step in the generation of a robust pseudo-random
sequence is to find the required dimension of the sequence.
The size of the pseudo-random sequence is derived from the
size of the projector resolution, size of the symbol, and the
spacing between two consecutive symbols, which are all
defined in pixels. As we proposed a multi-resolution system
that depends upon symbol sizes varies from 8× 8 to 16× 16
pixels. The smaller symbol size will lead to a larger size of
pseudo-random sequences and vice versa as inferred from the
equation (1) and (2). The smaller symbol size and spacingwill
lead to more shape primitive in the same area and thus result
in higher measuring resolution. Since more feature points or
alphanumeric basis are required to fill the same resolution of
the projector. The X and Y dimensions of the desired size of
the pseudo-random sequence can be calculated as:

XRPRS =
XPP

Sz + PS
(1)

YRPRS =
YPP

Sz + PS
(2)

where; XPP,YPP,XRPRS,YRPRS,Sz, and PS, are the X &
Y dimensions of projector resolution, dimensions of RPRS,
Symbol Size, and pixel spacing respectfully.

The calculated X and Y dimensions are rounded up to the
next nearest integer and further increase up to the nearest mul-
tiple of three to get each dimension divisible by 3. This is done
to ensure the validation of the independent window property.
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TABLE 2. Dimension calculations for RPRS.

Table 2 summarizes the calculation of ‘X’ and ‘Y’ dimensions
of robust pseudo-random sequence (RPRS) for different sym-
bols size, the spacing between consecutive symbols, and the
number of alphabets or symbols or alphanumeric bases used.

2) GENERATION OF RPRS
To generate the pseudo-random sequence of required dimen-
sions with a specific number of alphanumeric bases we
used the Mersenne twister generator engine available in the
MATLAB programming language to implement our algo-
rithm. However, we need to ensure the robustness of each raw
pseudo-random sequence by validating the window property.
For the purpose, we compared each independent window of
size 3 × 3 with any other independent window in raw PRS.
If there might not find the same window than pseudo-random
sequence (PRS) is verified to be the robust pseudo-random
sequence (RPRS). During the process of comparison if there
may found a similar window than that raw pseudo-random
sequence will discard. The whole process is repeated until
a robust pseudo-random sequence (RPRS) will obtain. Once
the robust pseudo-random sequence (RPRS) is obtained it has
been stored in the memory for later use in the formation of a
projection pattern. The flowchart in figure 2 shows the whole
process of the generation of robust pseudo-random sequence
(RPRS).

3) COMPUTATIONAL REQUIREMENTS FOR RPRS
The total number of independent windows and the total
number of comparisons required for the desire robust
pseudo-random sequence of size (m X n) using window
property of (r X v) can be estimated as:

Nw =
Dimensions of PRS(mXn)

windowsize(rXv)
(3)

Total comparison required

=
NwX(Nw− 1)

2
(4)

where; Nw is the total number of independent windows in
PRS.

Table 3 summarizes the calculation of independent
windows, average Hamming distance, robust codeword,
and comparison required for each robust pseudo-random
sequence (RPRS). Figure 3 represents the Hamming distance
profiles and the percentile of their codewords for each robust

FIGURE 2. Process of generating RPRS.

TABLE 3. Robustness calculation of each RPRS.

pseudo-random sequence (RPRS) generated while using our
method.

C. FORMATION OF PROJECTION PATTERN
A considerable number of projection patterns can be formed
by using the proposed symbols and the robust pseudo-random
sequences generated. The robust pseudo-random sequences
consist of an alphanumeric basis which is represented with
the symbols or alphabets in the projection pattern. The size
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FIGURE 3. Hamming distance distribution for each RPRS.

of each projection pattern will be calculated by rearranging
the equation no (1) and (2) as:

XPP = XRPRS. (Sz + PS) (5)

YPP = YRPRS. (Sz + PS) (6)

The size of the projection pattern obtained by using different
symbol sizes and the corresponding robust pseudo-random
sequence are slightly greater. The sizes of the projection
patterns obtained are shown in table 4.

TABLE 4. Computation for the dimension of the projection pattern.

The extra pixels greater than 800 × 1280 will cut from
any two sides. Figure 4, shows the texture and portion of six
projection patterns obtained while applying with six different
RPRS as mentioned in table 4. Each RPRS is generated
for different symbol sizes and spacing. So each projection
pattern will cover the same area but with a different num-
ber of shape primitives and therefore different density. For
example, the projection patterns designed with large symbol

FIGURE 4. Projection patterns for different symbol sizes applying with
different RPRS and spacing corresponding to different resolutions.

size (16 × 16) have lesser primitives; while on the other
hand, the projection patterns designed with small symbol size
(8 × 8) have more primitives. It is important to highlight
that the similarly shaped symbols may not use in the same
projection pattern. Another very useful property is direction
information since every symbol will follow the texture of
the surface, so the direction is utilized in the searching of
neighborhood symbols for decoding the projection pattern.
So the projection pattern must consist of at least one symbol
which must carry direction so that the other directionless
neighborhood symbols may acquire their direction or orien-
tation from that symbol. If more symbols in the projection
pattern may carry direction than it will make the decoding
process more efficient and simpler.

D. PROJECTOR AND CAMERA CALIBRATION
Calibration is a critical and necessary step for the projector-
camera-based SLS. In the calibration process of SLS, the
camera-projector devices have to be calibrated to optimize
the parameters for the minimization of re-projection errors.
The projector can also be seen as the backlight camera
path. So, it also requires calibration of intrinsic and extrinsic
parameters just like the camera. Our system is first calibrated
using the traditional calibration method to get the primary
calibration parameters. A reference planewith some precisely
printed markers is used for the optimization of primary cal-
ibration parameters since the traditional calibration methods
rely mostly on the standard reference or the corresponding
image model. Thus, before applying the projection patterns
over to the measuring surface, the projector and the camera
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have to be calibrated with any of the techniques available
in [52]–[55].

III. DECODING PROCESS
In this section, the whole process of decoding will be
explained after applying the encoded pattern on the measur-
ing surface. The captured image pattern will first undergo
through image contrast enhancement and noise removal,
so that image thresholding will carry out to get a binary
image. The binary image is used to generate a 3D point
cloud of measuring surface. The symbols or the alpha-
bets which are originally spread through a pseudo-random
sequence in the binary image are then labeled as specific
region number. All the detected regions in the binary image
are then classified using the threshold values in table 10 in
the appendix. After the classification of each symbol, the
location of each symbol is determined by calculating the
centroid positions. The direction information and the grid
distance of each symbol will also compute. After determining
the centroid positions, the direction information, and the
grid distances for each symbol, the process of neighborhood
searching and decoding of 3 × 3 codewords of the robust
pseudo-random sequence (RPRS) will carry out to establish
the correspondence between projected and captured image
patterns. Finally, the principle of triangulation is used to
reconstruct the 3D of the measuring surface. The whole
process of decoding is summarized in the flow chart shown
in figure 5.

A. PREPROCESSING
The first step of decoding is image preprocessing i.e. to
prepare the captured image for decoding. In this step, the
captured pattern of an image which is obtained from the mea-
suring surface first undergoes the image contrast enhance-
ment and noise removal through filtering, and so the image
segmentation is performed to obtain a binary image. The seg-
mentation has a significant impact on the decoding process.
As if the segmentation process is weaker than the neigh-
borhood symbols will merge and if it is stronger than so
many binary regions may be deleted which can be decoded as
symbols. So balance is required in the segmentation process.
The best results can be obtained through optimum global
thresholding using Otsu’s method which is used to perform
clustering-based image thresholding [56].

B. LABELING
The binary regions obtained through segmentation are labeled
with specific region numbers through the employment of the
algorithm specified by Haralick and Shapiro [57].

C. SHAPE DESCRIPTOR PARAMETERS
After labeling each binary region in the captured image,
the shape description parameters as described in table 2 are
calculated for each binary region to classify these regions into
the specific symbol or alphabet.

FIGURE 5. Decoding process.

D. CLASSIFICATION OF SYMBOLS
After the labeling and the computation of the shape descrip-
tor parameters of each binary region in the captured image
pattern, the classification of symbols or alphabets is car-
ried based on the shape description parameters or ratios,
by comparing with their earlier computed threshold values in
table 10. The utilization of more shape descriptor parameters
will reduce the chances of errors in the process of classifica-
tion. Robust classification is obtained by utilization of more
number of shape description parameters than alphabets or
symbols.

E. COMPUTATION OF LOCATION, DIRECTION &
GRID DISTANCE
In this research, we employed a new technique to search
in the neighborhood of a symbol. The technique is based
on the computation of grid distance, centroid position, and
orientation. The neighborhood searching is carried out after
the classification of each symbol and the identification of the
centroid positions. The neighborhood searching is carried out
to determine the location of each window of RPRS to estab-
lish the correspondence between the projected pattern and
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captured image. So, before establishing the correspondence
these parameters will be determined.

1) CENTROID
After the classification of each symbol, the location is deter-
mined through the computation of the centroid or center of
gravity. So, the location of each symbol is determined and the
corresponding label number has been assigned. This location
information i.e. centroid position is utilized in the search-
ing of the neighborhood symbols. The centroid position or
center of gravity will be determined through the following
formulation:

Centroid (x̄, ȳ) =
1
N

(∑N

1
xi,
∑N

1
yi

)
(7)

or

Centroid (x̄, ȳ) = (
m10

m00
,
m01

m00
) (8)

where; N, i, m00, m10, and m01 are the total number of pixels,
ith position of a pixel in a symbol, zero-order moments along
the center, x-axis, and y-axis respectively.

2) DIRECTION OR ORIENTATION
The direction information is necessary to find the neighbor-
hood symbols or alphabet in the projection pattern. When
a symbol or alphabet falls on the measuring surface it will
follow the curvature. So each neighborhood symbol is deter-
mined inline or in the direction of the previous symbol. If the
alphabets or symbol carry the direction as their inheritance
property then it will make the process of computation simpler.
The direction of each symbol can be computed from the
following equation:

Orientation (θ) =
1
2
arctan(

2µ11

µ20 − µ02
) (9)

where; µ11,. µ20, µ02 are the second-order moments along
the center, x-axis, and y-axis respectively.

So it is necessary to compute the direction for all those
alphabets or symbols which do not possess it initially as
inherited property. The simplest way is to acquire from the
neighborhood. So, it is attained from the symbol which is
present at the close range. The distance between two neigh-
borhood symbols ‘dmin’ can be computed using Euclidean
distance formula between the centroid positions of two neigh-
borhood symbols. This distance must be within close range or
proximity, ‘RC’. The formulation is shown below:

dmin =

√
(xo − xn)2 + (yo − yn)2

dmin < RC (10)

where; (xo, yo) is the centroid of a symbol that does not
possess direction initially. (xn, yn) is the centroid of the
neighborhoodwith inherit direction property. Note: The value
of the close range, ‘RC’ is selected in such a way that the
acquired direction is from the closest alphabet and it is usually
2.5 times of grid distance.

3) GRID DISTANCE
The computation of grid distance follows the computation of
direction for each symbol. The grid distance can be defined
as the smallest distance between the centroid positions of the
two consecutive neighborhood symbols. The grid distance is
varied with the surface orientation. The grid distance can be
computed through either direct computation from the equiv-
alent diameter of a symbol or acquiring from the nearest
square symbol as they utilize themaximum area in the symbol
space, so they have a maximum equivalent diameter. To find
the nearest square object of an alphabet the procedure of
searching in the close range is utilized. Hence grid distance
can be defined as equivalent diameter cumulative with pixel
space between two consecutive symbols. Therefore it can
mathematically express as:

grid =
EDS
√
FAR

+ Spix (11)

or grid = EDns + Spix (12)

where; the grid is the grid distance between two neighborhood
symbols. EDS is the equivalent diameter of a symbol. EDns is
the equivalent diameter of the nearest Square symbol. Spix is
pixel space. FAR is the filled area ratio.

The estimated grid distances for different sizes alphabets
and pixel spacing are shown in table 5.

TABLE 5. Grid distances calculation.

F. SEARCHING IN THE NEIGHBORHOOD
The searching in the neighborhood means to find the next
neighborhood and consecutive of symbol and their next
alphabet in both vertical and horizontal direction, to find
out the codewords having windows size of 3 × 3. This will
utilize in the establishment of correspondence between the
projected pattern and the captured image. The necessary
parameters required for searching in the neighborhood are the
centroid positions, direction, and grid distances which were
computed earlier. The next neighborhood and consecutive
alphabet are determined by the estimation of the location
(centroid position) of that symbol. The estimated centroid
positions of neighborhood symbols are calculated by using
the current centroid positions, direction, and grid distances.
Simple trigonometric rules can be applied to calculate the
expected centroid positions of right and downside neighbor-
hood symbols. The geometrical concept for the calculation is
explained in figure 6. The whole process is mathematically
described as:

xrnb = xalp + grid ∗ cos θ (13)
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FIGURE 6. Searching in the neighborhood.

yrnb = yalp − grid ∗ sin θ (14)

xdnb = xalp + grid ∗ sin θ (15)

ydnb = yalp + grid ∗ cos θ (16)

where; (xalp, yalp), (xrnb, yrnb) and (xdnb, ydnb) is the centroid
position of the current alphabet, right and downside neigh-
borhood respectively. grid is estimated grid distance between
two neighborhood alphabets. ‘θ’ is the direction of the current
alphabet whose neighborhood is to be determined.

Since the grid distance between the neighborhood sym-
bols varies with the surface orientation and the curvature.
So the estimated centroid positions may not be the exact
centroid positions. The actual grid distance will determine
after reading the label value at the position of estimated
centroid positions. The label value will identify that symbol
and then actual centroid will retrieve from the memory. After
knowing the actual centroid position of neighborhood symbol
than actual grid distance between two neighborhood symbols
will be calculated. The Euclidean distance formula is used to
calculate the actual grid distance.

The initial centroid position was known so the actual grid
distance for the right and downside neighborhood is deter-
mined as follows:

gridrnb =
2
√(

xrnb − xalp
)2
+
(
yrnb − yalp

)2 (17)

griddnb =
2
√(

xdnb − xalp
)2
+
(
ydnb − yalp

)2 (18)

where; (xrnb,yrnb), (xdnb,ydnb) are the actual centroid position
of the alphabet when searching towards the right and down-
side of the neighborhood respectively.

If the label value found in the right or downside neighbor-
hood appears to be zero due to any reason, then searching
is made around the estimated centroid position along the

diagonal at 45 degrees angle along the upper and lower sides
for a distance started from a pixel up to half grid distance.
When an alphabet is detected within this range along the
diagonal than the process of searching is completed. The cal-
culation for searching along the diagonal from the estimated
neighborhood is expressed as:

xud = xnb + di cos
(π
4

)
(19)

yud = ynb − di sin
(π
4

)
(20)

xld = xnb − di cos
(π
4

)
(21)

yld = ynb + di sin
(π
4

)
(22)

where; (xnb, ynb) is an estimated centroid position for neigh-
borhood symbol. (xud, yud) and (xld, yld) are upper and lower
side searching positions calculated along diagonal at 45
degrees from the estimated centroid position. di is the iterative
distance measured in pixels varies from 1, 2, . . . . . to grid

2 (half
grid distance).

G. ESTABLISHMENT OF CORRESPONDENCE
Once the neighborhood of an alphabet or symbol has been
identified the procedure for searching in the neighborhood is
repeated for every next symbol to find it’s right and downside
neighborhood to obtain a codeword of a window having
size 3 × 3. This window is used to establish the corre-
spondence between the pattern originally projected and the
pattern obtained from the captured image. When a matching
window of a codeword with size 3× 3 alphabets or symbols
is found in the captured image pattern it is used to establish
correspondence with the pattern originally projected, by find-
ing a similar window. Since the location of each symbol is
known in the captured image and projected patterns. So this
location information of each symbol with its deviation from
the original pattern is utilized in the measurement of 3D.

H. RECONSTRUCTION OF 3D
The purpose of decoding is to establish the correspondence
between projected and captured image patterns from the mea-
suring surface. The need of establishing correspondence is to
find a grid of matching points in the projection pattern and
texture of points obtained from the measuring surface so that
principle of triangulation may be applied to reconstruct or
obtain the 3D shape. In this sub-section, we will define the
whole procedure adopted for the reconstruction of 3D, from
the corresponding points obtained by matching the related
points in between the projected and the captured image pat-
terns on measuring surface through window-based operation
as described in the previous section.

1) LINEAR CAMERA MODEL [58], [59]
The ideal linear camera model is shown in figure 7. Here,
any point ‘P’ in the world coordinate space is observed on
the imaging plane from the optical center ‘C’ of a cam-
era through the intersection at a point, ‘xp’ whereas; ‘m’
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FIGURE 7. Ideal linear camera optical model and corresponding digital
image.

is the corresponding computer screen image. As evident in
figure 7, the following coordinate system can be observed and
described here:

a: WORLD COORDINATE SYSTEMS
The spatial coordinates of any point P in the world coordinate
system can be written as: (Xw,Yw,Zw, 1)T

b: CAMERA COORDINATE SYSTEM
The camera is used to describe the position of any object
in the space and its surrounding environment. The Camera
coordinate system can be expressed as: (XC,YC,ZC,C).

Where; the point ‘C’ being the optical center of the camera
coordinate system, Zc is the optical axis, XOY is the camera
imaging plane which is parallel to the XcYc plane.

c: PIXEL COORDINATES
The camera image plane is transformed into a digital image,
‘m’ on the computer. In figure 7; uo’v is the computer screen
coordinates axes formed from the camera imaging plane. The
origin is o’ which is at the upper left corner of the screen. The
points in the digital images are represented with pixels.

2) COORDINATE TRANSFORMATION
The point ‘P’ in the world coordinates system lies in space
have a coordinate position of (Xw,Yw,Zw, 1)T, is converted
to two-dimensional digital image ‘m’, with the pixel coordi-
nates of (u, v, 1)T, through coordinate transformations. First,
the world coordinate system is transformed to the camera
coordinate system by the following relationship;

XC
YC
ZC
1

 = [R T
0 1

]
XW
YW
ZW
1

 = M


XW
YW
ZW
1

 (23)

where; R is 3 × 3 rotational matrix, T is 3 × 1 translational
matrix, M is outside camera parameter matrix. R & T are
outside camera calibration parameters.

The perspective camera view is then normalized into the
digital image by using simple geometry and the pinhole
camera model. So, the following equation can be obtained:

[
un
vn

]
=


XC

ZC
YC

ZC

 (24)

where (un, vn) are X - Y coordinates formed by image-
capturing plane of the camera, (XC,YC,ZC) are the camera
coordinates system.

The camera lens distortion can be accommodated by
including radial distortion and tangential distortion, which
can be expressed as:

md =

[
ud
vd

]
=

[
1+ k1r2 + k2r4

] [ un
vn

]
+ dx (25)

where; (ud, vd) are the coordinates of the image plane in the
camera after accommodating the effects of lens distortion.

The first term represents radial distortion; here in the first
term k1, k2 are the radial distortion parameters. The second
term represents tangential distortion; here in second term dx
is the tangential distortion and it is defined as:

dx =
[
2p1unvn + p2

(
r2 + 2u2n

)
p1
(
r2 + 2v2n

)
+ 2p2unvn

]
(26)

where; the parameters, p1, p2 are tangential distortion. While
‘r’ can be defined as:

r2 = u2n + v2n (27)

Finally, the transformation from digital image coordinates
stored in the computer to the coordinates of an image cap-
turing plane in the camera after accommodating the effects
of lens distortion is given by: u

v
1

 =
α γβ u0
0 β v0
0 0 1

 ud
vd
1

 = K

 ud
vd
1

 (28)

where; (u0, v0) are the exact Position coordinates of center
point ‘o’ in computer image, α, β represent scale factor for
u-Axis and v-Axis in the digital image. K is the parameter
matrix inside the camera unit.

3) 3D MODEL
The establishment of correspondence may lead to the grid
of matching points in between the captured image from the
measuring surface and the projected pattern. So we know
the grid points of the captured image pixel coordinates, can
be represented with (u1, v1, 1)T, and similarly, the projected
image pixel coordinates can be represented with (u2, v2, 1)T.
So with the corresponding relationship between these two
coordinates, we can reconstruct the pixel coordinates of the
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world coordinate system (XW, YW, ZW, 1). Equation (24) can
be rewritten in the form of matrix multiplication as follows:

ZC1

 un1
vn1
1

 =
 1 0 0 0
0 1 0 0
0 0 1 0



XC1
YC1
ZC1
1

 (29)

Usually, we do not need to consider the tangential lens dis-
tortion since now a day the camera lens distortion effects are
overcome and accommodate during camera manufacturing;
therefore, the equation (25) and (26) will be simplified as
follows:  ud1

vd1
1

 = [1+ k1 r2 + k2 r4
] un1

vn1
1

 (30)

Finally, the equations (23), (28), (29) and (30) defines the
relationship between the coordinate points of the world coor-
dinate in space and the pixel coordinates of captured image:

ZC1

 un1
vn1
1

 = [1+ k1 r2 + k2 r4
]
K

 1 0 0 0
0 1 0 0
0 0 1 0



×

[
R T
0 1

]
XW
YW
ZW
1

 (31)

Eventually, it can be written as follows:

ZC1

 u1
v1
1

 = M


XW
YW
ZW
1

=
m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34



XW
YW
ZW
1


(32)

Similarly, we can find the relationship between the world
coordinate system and the coordinates system of the projected
pattern with a point to point transformation as follows:

ZC2

 u2
v2
1

 = N


XW
YW
ZW
1

 =
 n11 n12 n13 n14
n21 n22 n23 n24
n31 n32 n33 n34



XW
YW
ZW
1


(33)

where; ZC1 and ZC2 are the coordinates of point ‘P’ in the
camera coordinates system and an optical axis of the projector
coordinate system respectively. ‘mij’ is the ith row and the jth
column of the matrix ‘M’, while ‘nij’ is the ith row and the
jth column of matrix ‘N’ respectively.

From the above two equations (32) and (33) with the elim-
ination of ‘ZC1’ and ‘ZC2’ we can obtain world coordinate
i.e. [XW, YW, ZW.]T. The system of equations with three
elements of world coordinates is as shown in matrix form:
(u1m31 −m11) (u1m32 −m12) (u1m33 −m13)

(v1m31 −m21) (v1m32 −m22) (v1m33 −m23)

(u1n31 − n11) (u1n32 − n12) (u1n33 − n13)
(v1n31 − n21) (v1n32 − n22) (v1n33 − n23)



×

XW
YW
ZW

 =

m14 − u1m34
m24 − v1m34
n14 − u1n34
n24 − v1n34

 (34)

In algebraic form it can be represented as (35), as shown at the
bottom of the page. Thus, the above system of equations (34)
or (35) is constrained of a linear system, which is composed
of four equations with three unknowns. A theoretical unique
solution can be obtained directly. However, practically the
extracted data applications may contain noise. Therefore,
using the least square method to solve for the world coor-
dinates of point P is equivalent to the sum of squares of the
minimum distance for two rays emitted by the camera. So,
the equation number (34) can be rewritten as follows:

AP = b (36)

where;

A =


(u1m31 −m11) (u1m32 −m12) (u1m33 −m13)

(v1m31 −m21) (v1m32 −m22) (v1m33 −m23)

(u1n31 − n11) (u1n32 − n12) (u1n33 − n13)
(v1n31 − n21) (v1n32 − n22) (v1n33 − n23)


P =

XW
YW
ZW



b =


m14 − u1m34
m24 − v1m34
n14 − u1n34
n24 − v1n34


Then the Point ‘P’ in the world coordinate system can be
determined as:

P = (ATA)
−1

ATb (37)

IV. RESULTS AND EXPERIMENT
The experiment is carried out to validate our method and to
evaluate the performance of our system. Our experimental
system consists of a digital camera (DH-HV2051UC) with
1600×1200 pixels and a projector (DELLM110) with 800×
1280 pixels. The projector is placed at a distance of 196 cm


(u1m31 −m11)XW + (u1m32 −m12)YW + (u1m33 −m13)ZW
(v1m31 −m21)XW + (v1m32 −m22)YW + (v1m33 −m23)ZW
(u1n31 − n11)XW + (u1n32 − n12)YW + (u1n33 − n13)ZW
(v1n31 − n21)XW + (v1n32 − n22)YW + (v1n33 − n23)ZW

 =

m14 − u1m34
m24 − v1m34
n14 − u1n34
n24 − v1n34

 (35)

127264 VOLUME 8, 2020



A. Elahi et al.: Single-Shot, Pixel Encoded 3D Measurement Technique

FIGURE 8. Texture of patterns used in the experiment.

TABLE 6. Shape description parameter and their threshold values.

whereas the camera is placed at a distance of 200 cm from
the measuring surface, while the camera and projector are
18 cm apart. We perform our experiment on three surfaces:
1) A simple plane surface which is approximately 800 mm
wide and 600 mm long, 2) The cylindrical surface which has
150 mm radius and 406 mm of height 3) The sculpture we
used has the size of 223 mm of height, 190 mm of width and
227 mm of depth. The standard deviation of the cylindrical
surface is equal to its radius which is 150 mm. The estimated
standard deviation of the textured surface, i.e. sculpture is
approximately between 200 to 225 mm.

For experimentation and proving our methodology,
we form two projection patterns that are implemented by
using three symbols of size 16 × 16 pixels. So our mea-
sured resolution will be about 18 mm (refer to table 8). The
two patterns are formed using diagonally arranged squares
(symbol 5), filled square (symbol 7), horizontal bar (sym-
bol 22), and right isosceles triangle (symbol 25). The only
difference between the two projection patterns is that in
the second pattern we replaced the symbol of the diagonally
arranged square with an isosceles right triangle. To spread
these symbols we use an RPRS of three alphanumeric bases
with a size of 45 × 72 primitives and window property
of 3 × 3. The spaces between two consecutive symbols
are of 2 pixels. The textures of these two patterns are
shown in figure 8.

TABLE 7. Detected and decoded primitive.

FIGURE 9. Classification or decoding of symbols.

To decode these patterns on the measuring surface we
apply the method discuss in the previous section. The
four symbols used in these patterns are classified using
shape description parameters. The relevant shape description
parameters used to classify four symbols in these patterns
and their corresponding threshold values used for the clas-
sification are shown in table 6 which is a subset of table 10
at the appendix. Since each pattern consists of three sym-
bols, therefore three shape description parameters may be
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TABLE 8. Comparison of resolution and covered area with other methods.

TABLE 9. Time calculation for different processes of decoding.

enough to classify symbols. The shape description parameters
like rectangularity, eccentricity, aspect ratio, convex to area
ratio, parameter to area ratio, area function, and direction
or orientation can be enough and used to classify the sym-
bols in both the patterns used in experimentation. If more
shape description parameters will use to classify symbols
than chances of errors due to the wrong classification will
remove.

In the first step, rectangularity measure is used to dif-
ferentiate diagonally arranged squares or isosceles right
triangle from the two other alphabets or symbols which
are filled squares and horizontal stripe. The square and
the horizontal stripe have a higher value of rectangular-
ity ratio almost equal to ‘1’ when compared to diagonally
arranged squares or isosceles right triangle which is only 0.53

FIGURE 10. Reconstruction of 3D.

(see table 6). After differentiating symbols using rectangular-
ity further classification is made by using eccentricity, and the
area function. Squares are separated from stripes using eccen-
tricity. The value of eccentricity is utilized for classification
among square or stripe. The eccentricity ratio for horizontal
stripe symbol is the highest, i.e. equal to ‘1’, and for the
solid square symbol it is the lowest i.e. equal to ‘0’. Further
classification is based on area function since the solid square
symbol has the largest area while the horizontal stripe symbol
has the lowest value of area function so they can be easily
differentiated.

Our method of classification of symbols or alphabets
in the projection pattern is validated through applying our
algorithm on the original pattern and it has observed that
100% of symbols are decoded, and then we apply our
method by projecting pattern on the plane surface, curved or
cylindrical surface, and surfaces with more texture such as
sculpture.

Table 7 shows the number of symbols or primitives
decoded or classified for both the pattern used in experi-
mentation when applying to different measuring surfaces.
It is evident from table 7 that our decoding algorithm
worked well when compared to other methods such as
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Petriu et al. [24], Albiter et al. [28], Chen et al. [34], [35] and
Wijenayake et al. [26]. Reference [24] was able to decode
only 59% of primitive while [28] able to decode 95% of
primitives on the cylindrical surface on the other hand we
have decoded 97% of primitives. Due to the utilization of a
monochromatic pattern having only two intensities of colors,
white and black; our decoding algorithm will extract more
feature points when compared to [26] and [34]. Since more
shape description parameters are used to detect the sym-
bols, therefore, no false detection or wrong classification of
symbols has been observed. Our result shows that 100% of
symbols have been decoded when applied to the original pro-
jection pattern which shows the method is the most reliable
one.

Figure 9 shows detected and decoded or classified primi-
tives or symbols for two patterns used in our experimentation
purpose. It shows decoded primitives for 1) original (pro-
jected patterns), 2) patterns from a plane surface, 3) curved
cylindrical surface, and 4) the textured surface i.e. sculpture.
To differentiate symbols from one and another centroid posi-
tions of each symbol are represented with different colors. So,
the centroid positions of diagonally arranged small squares
(in pattern 1) or isosceles right triangle (in pattern 2) are
represented with a blue star (∗). Similarly, the centroid posi-
tions of solid filled squares are marked with a red star (∗)
whereas the centroid positions of horizontal stripes are shown
with a green star (∗). The centroid positions of the symbols
which are unable to decode or classify are represented by pink
plus (+) sign.

The direction or orientation of the measuring surface is
calculated from two symbols in each pattern i.e. from diago-
nally oriented square symbol (in pattern 1) or isosceles right
triangle (in pattern 2) and the horizontal stripe symbol (in
both patterns). The direction information of solid filled square
will be calculated either from two of these symbols in the
neighborhood as described in the previous section. The grid
distance is calculated as described earlier in the previous
section.

Our system can perform well from 40 to 250 cm of depth
range. Table 8 shows the resolution obtained and area covered
on a plane surface, in between the depth of 40 to 250 cm
by using our system, and also compared with the systems
proposed by other researchers such as Albiter et al. [28],
Chen et al. [34], [35] and Wijenayake et al. [26]. These res-
olutions are achieved by using our experimental setup and
projector. The resolution or accuracy achieved with our
method is significantly higher than the previous method.
We can achieve a resolution of 1.9 mm at the depth dis-
tance of 40 cm while the previous methods such as [28]
has an accuracy of 6 mm, [35] has 5.2 mm and [26]
has 3.7 mm.

The time durations were measured on the average core
i5 computer for different processes. The time calculations are
based on average times for each process, while each event is

optimized and processed many times, so the optimum results
are being shown here. All-time calculations are measured in
milliseconds. Table 9 shows the time durations for different
processes involved during decoding. Each process has a spe-
cific time duration. The preprocessing time increases with the
complexity of the surface while it decreases with the decrease
of detected primitives. The number of decoded primitives
are higher in the original pattern and simple surface, when
compared to the complex or textured surface such as sculp-
ture or cylinder. A similar phenomenon is observed in the
processes such as; labeling, computation of shape description
parameters, classification of symbols, and the establishment
of correspondence. The matching rate increases with the
complexity and texture of the surface. The rate of matching is
less on the simple surface and high on the texture and complex
surface.

After applying the techniques as described earlier the 3D
of simple and complex surfaces, such as cylindrical objects
and sculpture are measured at the accuracy level of 18 mm
and are shown in figure 10.

V. CONCLUSION
In this paper, a single shot novel method is introduced to
generate a pixel-level design of projection pattern for struc-
ture light system (SLS) based on spatial encoding tech-
nique. Unlike the previous methods, our encoding technique
is more flexible and designed and controllable up to the
pixel level. We have proposed 25 geometrical shaped sym-
bols, well-controlled in size. We have computed ‘10’ shape
description parameters for each symbol or alphabet, which
will enable us to use and decode up to ‘8 to 9’ symbols in a
single projection pattern. So more symbols can be used and
decoded in the future. Instead of M-arrays, we use robust
pseudo-random sequences to spread symbols in a projec-
tion pattern. We present a comparatively easy and flexible
technique to generate robust pseudo-random sequences of
any required size and also ensuring their robustness through
the window property. The use of more symbols in a projec-
tion pattern will enhance the robustness of RPRS. With our
method, more flexible projection patterns that are control-
lable up to the pixel level of the projector are implemented
and the projection patterns can be designed according to the
required size of surface area. With our technique, a large
surface area can be covered in a single shot arrangement. Due
to control at the pixel level, the resolution of the measured 3D
surface is also improved. The comparison with the previous
methods shows that the accuracy level or resolution of our
system is significantly better. We have implemented a new
method for decoding based on grid distance between consec-
utive symbols.

APPENDIX
See Table 10.
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TABLE 10. Proposed symbols and their shape description parameters.
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TABLE 10. (Continued.) Proposed symbols and their shape description parameters.
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