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ABSTRACT The present work aimed to evaluate the reproducibility of radiomics features derived from
manual delineation and semiautomatic segmentation after enhancement using the Contrast Limited Adaptive
Histogram Equalization (CLAHE) and Adaptive Histogram Equalization (AHE) techniques on a benign
tumor of two-dimensional (2D) mammography images. Thirty mammogram images with known benign
tumors were obtained from The Cancer Imaging Archive (TCIA) datasets and were randomly selected
as subjects. The samples were enhanced for semiautomatic segmentation sets using the Active Contour
Model in MATLAB 2019a before analysis by two independent observers. Meanwhile, the images without
any enhancement were segmented manually. The samples were divided into three categories: (1) CLAHE
images, (2) AHE images, and (3) manual segmented images. Radiomics features were extracted using
algorithms provided by MATLAB 2019a software and were assessed with a reliable intra-class correlation
coefficient (ICC) score. Radiomics features for the CLAHE group (ICC = 0.890 &£ 0.554, p < 0.05) had
the highest reproducibility compared to the features extracted from the AHE group (ICC = 0.850 +£ 0.933,
p < 0.05) and manual delineation (ICC = 0.673 &£ 0.807, p > 0.05). Features in all three categories were
more robust for the CLAHE compared to the AHE and manual groups. This study shows the existence in
variation for the radiomics features extracted from tumor region that are segmented using various image
enhancement techniques. Semiautomatic segmentation with image enhancement using CLAHE algorithm
gave the best result and was a better alternative than manual delineation as the first two techniques yielded
reproducible descriptors. This method should be applicable for predicting outcomes in patient with breast
cancer.

INDEX TERMS Breast cancer, radiomics, contrast limited adaptive histogram equalization (CLAHE),
adaptive histogram equalization (AHE), semiautomatic segmentation.

I. INTRODUCTION

Breast cancer has been acknowledged as the most prevalent
and common cause of death among Malaysian woman over
the age of 40 [1]. Several studies emphasize the need and
urgency for early detection in reducing breast cancer morbid-
ity and mortality [2]-[4]. Medical imaging techniques, such
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as mammography, play an important role in non-invasively
assessing breast tissues for detection, diagnostic, staging, and
management purposes [2]. In an attempt to improve the mor-
tality rate among the population, a mammography screening
program was proven to be the most cost-effective program
for providing useful details about the presence of abnormal
breast tissues [2].

Studies have shown the potential of radiomics feature
extraction in providing consistent and unbiased descriptions

VOLUME 8, 2020


https://orcid.org/0000-0002-5357-4193
https://orcid.org/0000-0002-3005-5331
https://orcid.org/0000-0003-0951-9450
https://orcid.org/0000-0001-8419-5383
https://orcid.org/0000-0001-7382-1107

S. F. M. Radzi et al.: Impact of Image Contrast Enhancement on Stability of Radiomics Feature Quantification

IEEE Access

of tumor structure parallel with the increment in medical
data [5]-[7]. Radiomics analysis applies advanced compu-
tational approaches to convert image data from the selected
region into high dimensional feature data, assuming that
these data provide information that will be useful for prog-
nosis and could be used as a potential predictive biomarker.
The most critical problem in radiomics is reproducibility.
Reproducibility describes similar performances of radiomics
measurements using different techniques or observers or even
from different diagnostic centers [8], [9]. In order to obtain
accurate results, extracted features should be optimized to
estimate patient survival analysis and boost treatment selec-
tion and monitoring for each patient [10], [11].

Tumor segmentation plays a vital role in quantitative
image extraction. Although physicians commonly use man-
ual segmentation, this method is a time-consuming process
that has more substantial inter-observer variability. However,
to ensure higher accuracy in semiautomatic segmentation,
pre-processing image enhancement is vital. A computer-
aided diagnosis (CAD) system for analyzing mammogram
images starts with image pre-processing for contrast enhance-
ment while still conserving image brightness. This tech-
nique does not cause any loss or degradation of the image
details. On the contrary, contrast resolution is still a primary
feature that helps radiologists during the diagnosis. This
feature is particularly important when diagnosing a dense
classified breast tissue in which malignancy can go
undetected [12], [13].

Contrast enhancement using a conventional algorithm is
more complex and challenging when compared to the His-
togram Equalization (HE) [14], [15]. HE allows the band of
contrast in the high histogram region to stretch-out and shrink
the contrast of the low histogram region. However, this pro-
cess becomes less effective when the contrast characteristics
vary across images. Adaptive Histogram Equalization (AHE)
addresses this issue by generating mapping for each pixel
from the histogram in the surrounding pixels [15]. However,
performing AHE in a relatively small intensity range can
increase image noise in that region, leading to the appearance
of artifacts in those regions [16]. Contrast Limited AHE
(CLAHE) can overcome the drawbacks of AHE and HE since
results were achieved in the cases where noise become too
prominent by enhancing contrast.

Notably, the artifacts were produced when using the
Adaptive Neighborhood method as contrast enhancement
for digital mammograms that were susceptible to higher
noise [17]. For contrast improvement, it is recommended
to use the Adaptive Neighbourhood Contrast Enhancement
(ANCE), which results in improving breast tumor detec-
tion [18]. First, derivative and local statistics were used
by Kim et al. to enhance mammograms [19]. However,
the nature of mammogram images is not suitable for this
method. Thus, the CLAHE algorithm was introduced and
yields excellent contrast enhancement of digital mammo-
gram images [12], [18]. CLAHE has been applied exten-
sively to enhance computer vision and pattern recognition
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applications. It was proven in previous studies that CLAHE
could be successfully applied in medical fields, such as mam-
mography image enhancement. Mammogram pre-processing
might have a significant impact on the entire process of
radiomics analysis.

Generally, CLAHE helps prevent contrast enhancement
of AHE and prevents over-enhancement of noise [20].
Application of CLAHE to ultrasound images improves accu-
racy, sensitivity, and specificity on liver ultrasounds up
to 92.95%, 90.80%, and 97.44, respectively [21]. Contrast
enhancement for both CLAHE and RMSHE techniques were
found to offer better enhancement of masses and microcalcifi-
cations present on low contrast mammograms [22]. Notably,
use of CLAHE in pre-processing images offers better visu-
alization for image segmentation, feature extraction, and
classification [23].

Accurate segmentation may reduce variability, thus allows
radiomics features conveniently become a prognostic or pre-
dictive biomarker. It has been hypothesized that imaging
feature extracted using semi-automatically segmented tumors
implementing CLAHE have lower variability and robust
when compared to AHE technique. Numerous studies have
been conducted to investigate the reproducibility and relia-
bility of the radiomics features in order to reduce the error
while training a predictive model [24]-[26]. The stability
of radiomics features usually addresses the tumor delin-
eated from three-dimensional (3D) imaging modalities, such
as positron emission tomography (PET), X-ray computed
tomography (CT), and magnetic resonance imaging (MRI),
and no studies have addressed the stability of radiomics fea-
tures in 2D mammography. In this study, we implemented the
same techniques used to investigate the reproducibility and
reliability in 3D imaging modality to 2D mammogram.

The application of ICC as a statistical analytical method
for evaluating radiomics features as imaging biomarkers has
been proven to work very well when selecting reproducible
features in all 3D imaging modalities. This finding clari-
fied the possibility of evaluating radiomics features on a
2D mammogram. Moreover, 2D tumor segmentation can
be performed within a few minutes using the method of
semi-automatic segmentation and might be easily applicable
in clinical settings [6], [27]. Hence, in this study, we aimed
to evaluate the reproducibility of radiomics features derived
from the segmented tumor and to determine the robustness
of certain features to improve automated diagnosis for breast
cancer detection.

Il. MATERIALS AND METHODS

A. STUDY SUBJECTS

Thirty 2D mammogram images with confirmed benign
tumors were collected from a pool of mammogram images
from The Cancer Imaging Archive (TCIA) at http://www.
cancerimagingarchive.net [28]. The features extracted for
this research were from the Curated Breast Imaging Subset
of DDSM Digital Database for Screening Mammography
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(CBIS-DDSM) [29]. Only mediolateral oblique (MLO)
imaging sets were included in this study. Experienced radiol-
ogists manually annotated regions of interest (ROIs) for every
suspicious mass in each imaging dataset.

B. IMAGE PREPROCESSING

All images were pre-processed with different image enhance-
ment. CLAHE has two important hyperparameters: (1) clip
limit (CL) and (2) number of tiles (NT). The CL hyperpa-
rameters were determined while the NT was automatically
adjusted according to the input image. CL is a numeric value
that controls noise amplification. Once the histogram of each
sub-area was calculated, they were redistributed in such a
way that the histogram height did not exceed a desired “‘clip
limit”. The CL was set at 0.9 within the range from 0 to 1 and
found to be the most suitable level of contrast compared to
CL set below 0.9. AHE was also implemented and compared
with the CLAHE results to see which method allows easy
distinction of the image components through an appropriate
upsurge in its contrast. Figure 1 shows the flowchart of repro-
ducibility analysis in which the images were pre-enhanced
with CLAHE and AHE.

C. SEMIAUTOMATIC TUMOR SEGMENTATION

The Active Contour Model (ACM) technique, a semiauto-
matic segmentation, was used for image data-enhancement
using AHE and CLAHE. The ACM technique is an itera-
tive region-growing image segmentation algorithm that uses
energy forces to separate the pixels of interest for the analysis
purpose. The active contour can be described as an active
model for the segmentation pre-process, while contours are
boundaries that separate the ROIs from the background in
an image. Contour also was described as the cumulative
pixels that undergo various interpolation processes in terms
of linear, splines, or polynomials that define the curve in the
image [30]. Several different models of active contours can
be used as a segmentation technique in image processing.
Herein, the snake model was used as an ACM.

Initially, the image enhancement, CLAHE and AHE
algorithm were implemented to enhance the image data.
The suspected lesion was marked manually before activating
the ACM function using the region-growing algorithm as
illustrate in Figure 2. ROIs were segmented into both ante-
rior and posterior regions and converted into binary images.
The tumor area in enhanced images were delineated twice
by two independent observers for evaluating intra-observer
reproducibility. The number of iterations for semi-automatic
segmentation were standardized and set to 100 iterations.

D. QUANTITATIVE IMAGING FEATURE EXTRACTION

Thirty-seven radiomics features were extracted from the data
enclosed in the area of the segmented tumor and catego-
rized into three types of features: (1) intensity histogram,
(2) textural-based features, and (3) shape-based features.
Six first-order statistical features specify the distribution
values of the specific area without considering the spatial
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relationship. Twenty-two textural features specify the spatial
arrangement of area evaluated by using Gray-Level
Co-Occurrence Matrix (GLCM). Nine shape-based features
indicate the geometrical of the tumor area. Overall, the
extracted imaging features compromised six features describ-
ing intensity of the tumor, nine shape features, and 22 textural
features. Mathematical equations for all radiomics features
can be found in the Supplementary file, and several funda-
mental formulas, such as energy, contrast, entropy, correla-
tion, and homogeneity are presented in equation below:
N-1
Energy =Y (Py)* M)
i,j=0

where P;; = element of the normalized symmetrical GLCM
and N = number of gray levels in the image as a specified
number of levels in quantization. Energy feature measures the
texture uniformity in the pixels and indicates image homo-
geneity. The greater the energy delivery, higher intensity
value pairs can be seen in the images. Each of the intensity
pairs borders each other at high frequencies.

N-1
Contrast = Z Piii — j)? )
i,j=0
in which contrast feature represents the spatial frequency of
the image. The larger the value of the contrast, the higher the
disparity of intensity values in neighboring pixels. Entropy
measures the disorder or complexity of an image in neigh-
borhood intensity values:
N—1
Entropy = Y In(P;)P;; 3)
ij=0
The correlation can explain the linear dependency of
gray-levels of neighboring pixels and can be shown as the
equation below:

N-—1 . .
((I—M)(I—M)> @

Correlation = E Pjj 5
o
i,j=0

where ;1 = the mean GLCM and o2 = variance of the intensi-
ties of all reference pixels in the relationships that contributed
to the GLCM. The value of correlation is between 0 and 1,
in which 0 indicate uncorrelated while 1 indicates perfectly
correlated. These values show the linear dependency of gray
level values to their respective pixels. In addition, the vari-
ation in image intensity can be defined by the homogeneity
feature and is shown in the equation:

N-1

Homogeneity = Z
ij=0

Py 5)
1+ (G +j)?

E. STATISTICAL ANALYSIS

The reproducibility of each extracted feature was assessed
using ICC. ICC is known as a statistical measure with reliabil-
ity values ranging between 0 and 1. Values closer to 1 have
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FIGURE 1. Flowchart of reproducibility analysis of radiomics features in the 2D mammograms. (a) Three datasets were selected in our
study with different image enhancement. (b) Three datasets were segmented using semi-automatic segmentation and manual
delineation. (c) Intensity, shape and textural transformed features were extracted from every dataset. (d) The reproducibility of the

radiomics features was measured by two indicators.

the most robust reliability. Subsequently, the inter-observer
reliability was estimated using a two-way mixed effect model
of analysis of variance (ANOVA) and is given as equation (6):
_ (MSg — MS) ©

MSg + (k — DMSE + %(MSc — MS)

where MSr = mean square for rows (observations, fixed
factor), MSE = mean square error, MSc = mean square for
columns (observers, random factor), and k and n represent the

ICCA, 1)
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number of observers and subjects, respectively. The variance
estimates among intra-observer segmentation ICC (C,1) for
the reproducibility were obtained from one-way ANOVA
using formula (7):
MSg — MS
1CC(C, 1) = RZOW (7)
MSg + (k — HMSwy

where MSyw = mean square for residual sources of variance.
The Z-score normalization was implemented for comparing
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FIGURE 2. Three dataset a) without any image enhancement b) with AHE image enhancement c) with CLAHE image enhancement and

segmented tumor part for each dataset.

the feature range between manual and two semiautomatic
segmentation for standardization and is defined in the
equation:

®)

in which i and o are the mean value and standard deviation
of radiomic features, respectively. The differences in ICC
for segmentation methods were statistically estimated using
the Wilcoxon—-Rank test with a p-value set at 0.05. All data
were expressed as the mean 4+ SD. All data were statisti-
cally analyzed using Statistical Package for Social Sciences
(SPSS, also known as IBM SPSS statistics) version 25 (SPSS
Chicago, IL, USA)

Ill. RESULTS
The total of 37 quantitative image features was evaluated
to assess the robustness of segmented tumors by using
three different image enhancement methods. Figure 3 shows
comparison of ICC between manual delineation and two
semiautomatic segmentation in term of several parame-
ters: (1) intensity histogram based-features (Figure 3A),
(2) shape-based features (Figure 3B), and (3) textural features
(Figure 3C).

Table 1 summarizes the number of features in four
reproducibility groups across three segmentation techniques.
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TABLE 1. Number of features in four reproducibility groups across three
segmentation techniques.

Reproducibility groups Manual CLAHE AHE
Poor (ICC<0.4) 10 0 1
Fair (0.4 <ICC <0.6) 3 0 0
Good (0.6 <ICC<0.75) 1 0 3
Excellent (0.75 <ICC< 1) 23 37 33

ICC, intra-class coefficient

In general, the ICC of CLAHE image data segmentation
(ICC =10.890 £ 0.554, p < 0.05) was higher when compared
to features extracted from AHE image data segmentation
(ICC = 0.850 £ 0933, p < 0.05) and manual delin-
eation segmentation (ICC = 0.673 £ 0.807, p > 0.05).
In total, 36 = radiomic features showed higher ICC for image
data-enhancement using CLAHE and 35 showed higher ICC
values for image data-enhanced using AHE segmentation sets
compared to the manual method. Twenty-two features with
higher ICC values were found from CLAHE datasets when
compared between with AHE.

Hence, image datasets with CLAHE contrast enhancement
were found to be reproducible. Nine of 9 (100%) shape
features (ICC = 0.931 + 0.597, p < 0.05), 22 of 22 (100%)
of textural features (ICC = 0.746 £ 0.564, p < 0.05), and all

VOLUME 8, 2020



S. F. M. Radzi et al.: Impact of Image Contrast Enhancement on Stability of Radiomics Feature Quantification IEEEACCGSS

A = 1.2
=
[+8]
=
&= 1.0
@
=}
O
5 _ o
=
59 W CLAHE
= 06
= B AHE
O
9 0.4 MANUAL
[+
o
o
= 0.2
0.0
Mean Variance Skewness  Kurtosis Energy Entropy
B 1.2
5
.% S 1
o 208
= e
S 5 o6
[ m CLAHE
E % 04
8 302 mAHE
: L8]
£ 0 MANUAL
2> > > 3 < o <
?52’ e’(\% Q’(\% {i\&:\ ,;\\o «© (QQ,'QZ' \\b{“ @é’&
© o & & & & > &
L3 3 [ &
- d\v“‘ 0{\?:“ <<’(_, 0\ 000 0\?\‘-\ Q
Ny &
NN
C 1.2
-
=
= 1.0
=
£ 08
=}
) 0.6
=
E S 0.4
o m CLAHE
@ 2 02
5 o0 m AHE
N R R 2 Y A A oA LA O 2 e A (@ &7 T e e
Z N, (@0"(;(@5 & (\@\@Q SO $ S S F & MANUAL
= e O @ @& & & LMD A U g o N SRR S @ 4@
[} L& E S AT WY R IR ARG RN S SEFENFER g
© o (ORI N ) P & & e LI SN SR
e X P L EFF TS &0 L E &8
£ ® \s.»@ PO & R R & S c}\}@\ E o & &
- = O RO Q‘} ng\/g &/@/.\{\\ ‘;-" &L@/&_Q@ &€ & &@Q’ Qde’
R PN O F S ST e
e (}‘\/ ‘Q\\/ &) /Cé\/ O\S" \S“
©” N e G

FIGURE 3. Feature comparison of intra-class correlation coefficient (ICC) between manual delineation and two semiautomatic segmentation with two
techniques of image enhancements. (A) Intensity histogram-based features; (B) shape-based features; (C) textural features.

six (100%) intensity features (ICC = 0.993 £+ 0.502, p < (100%) in which the ICC values for all textures were ICC =
0.05) showed the highest ICC values (0.75 < ICC < 1.0) com- 0.75 £ 0.5085 (p < 0.05) and intensity features were ICC =
pared to other image datasets. In addition, the dataset with 0.992 + 0.502 (p < 0.05). However, only one out of nine
AHE contrast enhancement also showed high reproducibility shape features (11.1%) features have poor reproducibility.
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TABLE 2. Intra-class Correlation Coefficient (ICC) value of radiomic features from different segmentation technique.

Features CLAP}ECiigi;?lzr;tation AHETSCe}i?;?ztion Manual Segmentation
GLCM_Autocorrelation 0.997 0.986 0.166
GLCM:Contrast 0.985 0.983 0.052
GLCM Correlation 0.993 0.991 0.882
GLCM_Correlation 0.993 0.991 0.882
GLCM _Cluster Prominence 0.991 0.992 0.002
GLCM _Cluster Shade 0.991 1.000 0.011
GLCM_Dissimilarity 0.983 0.983 0.315
GLCM Eneray 0.991 0.992 0.981
GLCM_Entropy 0.991 0.992 0.980
GLCM_Homogeneity 0.985 0.983 0.794
GLCM_Homogeneity 0.985 0.983 0.831
GLCM_Maximum probability 0.991 0.992 0.981
GLCM_Sum of squares 0.991 0.992 0.140
GLCM_Sum average 0.866 0.992 0.419
GLCM_Sum variance 0.991 0.994 0.145
GLCM Sum entropy 0.991 0.992 0.980
GLCM Difference variance 0.985 0.983 0.052
GLCM_Difference entropy 0.986 0.983 0.962
GLCM _ Information measure of correlation] 0.993 0.985 0.853
GLCM Information measure of correlation2 0.993 0.995 0.978
GLCM Inverse difference normalized 0.985 0.983 0.869
GLCM _ Inverse difference moment normalized 0.985 0.983 0.715
Mean 0.991 0.989 0.981
Variance 0.991 0.989 0.981
Skewness 0.995 0.998 0.988
Kurtosis 0.997 0.998 0.992
Eneray 0.991 0.989 0.981
Entropy 0.990 0.990 0.980
Area 0.986 0.988 0.976
Major Axis Length 0.988 0.979 0.979
Minor Axis Length 0.988 0.992 0.969
Eccentricity 0.837 0.275 0.427
Orientation 0.859 0.620 0.552
Convex Area 0.928 0.744 0.232
Equivdiameter 1.00 0.992 0.172
Solidity 0.806 0.728 0.920
Perimeter 0.991 0.978 0.078
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TABLE 3. Inter-observer reproducibility of radiomic features (1CC).

Features g{ﬁ\\g}f f{I{JII\\E}ZE R%I;}il R?I}Iflliz MANUAL
GLCM Autocorrelation 0.996 0.988 0.996 0.999 0.189
GLCM7Contrast 0.961 1.000 1.000 1.000 0.031
GLCM_Correlation 0.993 1.000 1.000 1.000 0.576
GLCM:COrrelation 0.993 1.000 1.000 1.000 0.576
GLCM Cluster Prominence 0.991 0.996 0.999 1.000 0.001
GLCM Cluster Shade 0.991 0.996 1.000 1.000 0.005
GLCM:Dissimilarity 0.980 0.967 1.000 1.000 0.124
GLCM Energy 0.991 1.000 1.000 1.000 0.971
GLCM _Entropy 0.991 0.996 1.000 1.000 0.970
GLCM Homogeneity 0.980 1.000 1.000 1.000 0.573
GLCM_Homogeneity 0.980 1.000 1.000 1.000 0.508
GLCM Maximum probability 0.991 1.000 1.000 1.000 0.971
GLCM Sum of squares 0.991 1.000 0.992 0.998 0.021
GLCM Sum average 0.993 1.000 1.000 1.000 0.267
GLCM Sum variance 0.990 1.000 1.000 1.000 0.064
GLCM:Sum entropy 0.991 0.996 1.000 1.000 0.970
GLCM Difference variance 0.980 0.967 1.000 1.000 0.016
GLCM Difference entropy 0.982 0.981 1.000 0.642 0.921
GLCM _ Information measure of correlationl 0.993 1.000 1.000 1.000 0.456
GLCM_ Information measure of correlation2 0.992 0.994 0.999 0.991 0.961
GLCM_Inverse difference normalized 0.98 1.000 1.000 1.000 0.994
GLCM _ Inverse difference moment normalized 0.98 1.000 1.000 1.000 0.994
Mean 0.990 0.996 0.990 0.992 0.988
Variance 0.990 0.996 0.996 0.997 0.989
Skewness 0.995 0.943 0.999 0.980 0.933
Kurtosis 0.997 0.871 0.999 0.970 0.995
Energy 0.990 0.996 0.995 0.996 0.989
Entropy 0.990 0.995 1.000 0.990 0.989
Area 0.985 0.992 0.989 0.999 0.986
Major Axis Length 0.985 0.991 0.981 0.997 0.989
Minor Axis Length 0.988 0.980 0.992 0.998 0.984
Eccentricity 0.835 0.679 0.810 0.963 0.589
Orientation 0.871 0.982 0.629 0.553 0.832
Convex Area 0.931 0.995 0.740 0.990 0.862
Equivdiameter 0.989 0.988 0.993 0.999 0.500
Solidity 0.996 0.790 0.877 0.774 0.127
Perimeter 0.995 0.990 0.979 0.937 0.659
In contrast to manual delineation, all three types of 12 of 22 (54.5%) features were classified as excellent, one of

features had the worst reproducibility compared to other 22 (4.54%) as fair, and eight of 22 (36.4%) as poor. Intensity
datasets. For textural features (0.450 + 0.980, p > 0.05), features (ICC = 0.983 £ 0.502, p > 0.05); however, they
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have the highest reproducibility (100%) features compared
to textural and shape features. For shape features (ICC =
0.589 &+ 0.940, p < 0.05), only four of nine (44.4%) have
excellent reproducibility, two of nine (22.2%) have fair repro-
ducibility, and three of nine (33.3%) have poor reproducibil-
ity. Tables 2 and 3 tabulate the reproducibility analysis of
intra-class CC and inter-observer from one subject.
Reproducibility for intensity histogram features were
significantly higher when observed in images enhanced
by CLAHE segmentation sets (ICC = 0.993 £ 0.502,
p < 0.05) and image enhanced by AHE segmentation sets
(ICC = 0.992 £+ 0.502, p < 0.05) compared to the manual
technique (ICC = 0.983 £ 0.502, p > 0.05). A similar trend
was also observed for reproducibility in GLCM in which

CLAHE and AHE had higher reproducibility. Hence, the
reproducibility of radiomic features for image enhanced by
CLAHE, AHE, and manual segmentation was 100%, 89%
and 62%, respectively. Based on the observations, images
enhanced by CLAHE had excellent reproducibility for all the
features compared to other segmentations set.

The robustness of the technique was assessed by analyzing
the ICC features extracted from inter- and intra-observers.
In Figure 4A, we observed ICC of features extracted for
the inter-observer segmentation group from image enhanced
by CLAHE is the highest (mean ICC = 0.977 £ 0.579).
In Figure 4B, higher ICC values were obtained in an image
enhanced by CLAHE intra-observer segmentations (mean
ICC = 0.979 £ 0.620). Figure 5 presents the normalized
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FIGURE 4. Line graph comparing (A) inter- and (B) intra-observer reproducibility of radiomic features. Run1 and run2 are different segmentation sets

defined by different observers.
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FIGURE 5. Comparison of normalized feature range between manual delineation and two semiautomatic segmentations with two techniques of image

enhancements.

range of all features for 12 segmentations set (four manual,
four images enhanced by CLAHE, and four images enhanced
by AHE). It can be observed that the range of feature for
image enhanced by CLAHE segmentations set was smaller
than other segmentation sets.

IV. DISCUSSION

In this study, we assessed the robustness reproducibility
of radiomics features of breast cancer through 2D mam-
mograms. The results showed that most of these features
achieved high reproducibility scores when contrast enhance-
ment and semi-automatic segmentation were applied to the
image dataset. To date, no studies have comprehensively
evaluated the robustness of reproducibility of radiomics fea-
tures using a 2D mammogram imaging modality. Medical
imaging is frequently used and plays an important role in
cancer staging, treatment planning, and treatment response
monitoring in clinical oncology. With recent developments
in CAD, it is notable that radiomics is essential for data
mining, and predictive analysis is essential for evaluating
the characteristics of tumor phenotype to widen the scope of
imaging in clinical settings and potential for treatment plan-
ning and monitoring. The radiomic-extracted features from
post-treatment compared to the pre-treatment CT images
can be an early indicator for progression to local recurrence
within six months after stereotactic ablative radiotherapy in
early-stage lung cancer [34].

VOLUME 8, 2020

Pre-processing imaging, such as image enhancement,
is extremely important to accurately diagnose tumor area
by providing better contrast for evaluating the details in the
image under investigation. Tumor segmentation is de facto
in any radiomics study. With the aid of image enhance-
ment, tumor segmentation can be accurately performed.
In this study, CLAHE and AHE enhancement were used to
segment breast tumor. Since manual delineation consumes
much time and is prone to higher inter-observer variability,
semiautomatic segmentation with image enhancement can
provide more stable segmentation in a shorter time [6].
Reproducibility of tumor segmentation using semiautomatic
segmentation is higher than manual delineation with image
enhancement using AHE technique with respect to providing
a good result [10]. However, despite its advantages, this
technique also enhanced the background noise present in the
image. Therefore, the CLAHE technique is implemented to
overcome this drawback and reduce over-amplification of
noise that is present in the AHE technique. The contrast in the
image can be adjusted accordingly; hence, a clear enhanced
image can be obtained without noise by using the CLAHE
technique [15].

In this study, 37 radiomics imaging features were included
and classified into three main features (6 tumor intensity
histogram-based features, 22 textural features and 9 shape-
based features). Reproducibility and robustness of these fea-
tures were analyzed using manual delineation (without image
enhancement), semiautomatic segmentation implemented
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with CLAHE and AHE technique. The result show that the
CLAHE technique segmentations had significantly higher
ICC values than AHE technique segmentation and manual
delineations. AHE techniques segmentations had slightly
lower values when compared to CLAHE techniques but sig-
nificantly higher and better robustness compared to man-
ual delineations. The semiautomatic segmentation algorithm
was performed by algorithm initialization, and the tumor
region was digitized thus allowing for accurate segmentation
without observer intervention [6].

Three particular quantitative imaging features were robust
and had higher reproducibility than semiautomatic tumor
segmentation with image enhancement CLAHE and AHE
techniques (p < 0.05) compared to manual delineations. The
CLAHE technique segmentation set had higher reproducibil-
ity for most GLCM-based features and shape-based features
compared to AHE techniques. However, there was no signif-
icant difference observed in tumor intensity histogram-based
features between CLAHE techniques and AHE techniques.
These findings indicate that radiomics features derived from
a semiautomatic algorithm with CLAHE image enhancement
techniques produce higher reproducibility for a benign tumor.

The inter- and intra-observer reproducibility were assessed
to evaluate the implementation from three different segmen-
tation techniques. The ICC values for both inter- and intra-
observer in CLAHE was higher indicates more reproducible
features from the techniques. AHE techniques and manual
delineation segmentations were inconsistent and fluctuating
for both inter- and intra-observers. Both observed features
were significantly lower than those seen in the CLAHE
techniques.

Moreover, it is important to determine whether the features
extracted from semiautomatic segmentations with image
enhancement captured the same tumor image properties as
seen with manual delineation. Therefore, we compared the
normalized range for all features between these three images
dataset (Fig. 5). We normalized every feature value with
respect to all 12 (four CLAHE technique segmentations,
+4 AHE technique segmentations, and +4 manual seg-
mentations) segmentations using Z-score normalization.
We observed that most features extracted from CLAHE and
AHE technique segmentations were spread over significantly
smaller ranges across observer range compared to those of the
manual delineations.

Our findings concluded that CLAHE provides higher
reproducibility of radiomic features extracted from semiau-
tomatic segmentation. The only limitation of the study is not
applying image descriptors with prediction models due to
the small patient cohort even though clinical data are highly
available and accessible.

V. CONCLUSION

In conclusion, this study should be applicable for predicting
outcomes in patient with breast cancer. This work can be
improved by collecting data from a multicenter with large
prospective patient cohorts.
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