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ABSTRACT The remaining useful life (RUL) prediction is critical for the safe and reliable operation of
lithium-ion battery (LIB) systems, which characterizes the aging status of the battery and provides early
warning for battery replacement. Most existing RUL prediction methods rely on empirical aging models,
and the role of the battery mechanism is not considered in the subsequent algorithm settings. The accuracy
and stability of data-driven algorithms are severely limited by battery aging data. A new electrochemical-
model-based particle filter (PF) framework for LIB RUL prediction is proposed in this paper. Parameters
of a simplified electrochemical model (SEM) are used as state variables of the PF algorithm and these
parameters can be identified by applying specially designed current excitations to the battery. The SEM-
based capacity simulation process is taken as the observation equation in the PF algorithm framework.
Therefore, the mechanism of the battery is fully considered when making the RUL prediction. The proposed
method is validated through cyclic aging experiment of a cylindrical LFP/graphite LIB of 45Ah. The
accuracy of the method is compared with a data-driven-based PF framework for RUL prediction and shows
better accuracy and stability, which provides a choice for achieving high-quality RUL prediction.

INDEX TERMS Lithium ion battery, new particle filter framework, simplified electrochemical model,
remaining useful life prediction.

I. INTRODUCTION
LIBs are widely used in many energy storage applications
because of their high energy density, high power density,
and high charge/discharge rate [1]. However, LIBs suffer
from the problem of aging, i.e., capacity fades with cycles
and time. Moreover, LIBs in service may fail to supply the
needed energy that leads to the whole system’s breakdown.
A battery’s RUL is usually defined as the number of cycles the
battery can be recharged before its capacity has faded beyond
acceptable limits (typically 20%) [2]. The RUL represents
the battery degradation state and alerts when the battery
should be substituted. Accurate prediction of RUL is of great
significance for the management of state of health (SOH) of
LIBs.

The capacity of LIB is usually used as direct health
indicator for RUL prediction. Nuhic et al. [3] simulated the
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capacity degradation behavior and predicted RUL based on
support vector regression (SVR) which is another name
for support vector machine (SVM) when it is used as a
regression analysis tool. Qin et al. [4] further optimized the
kernel parameters of SVR by using particle swarm opti-
mization (PSO) and improved SVR-based RUL prediction.
Li et al. [5] introduced a novel prediction method based
on the Gaussian Process Mixture (GPM) to simulate the
multimodality of capacity degeneration trajectories in the
LIB RUL estimation. Long et al. [6] improved the autore-
gressive (AR) model for capacity fading by using PSO to
search the optimal AR model order. Ma et al. [7] proposed
a hybrid neural network with the false nearest neighbor
method to resolve the unreliable sliding window sizes
in data-driven RUL prediction algorithm. Zhang et al. [8]
showed that the long short-term memory (LSTM) recurrent
neural network (RNN) can be employed to simulate the
long-term dependencies of the degraded LIBs capacities and
can be used as a RUL predictor after training.
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There are LIB RUL predictions use indirect health
characteristics (HCs) derived from battery’s terminal volt-
age, load current and capacity to reflect LIB degradation.
Li et al. [9] used the sample entropy of cell voltage in
urban dynamometer driving schedule (UDDS) conditions
as the HC relating to LIBs SOH. Guo et al. [10] adopted
an adaptive transformation of charging curves at different
stages of life to quantify the extent of capacity fade and
derived a time-based parameter to enable an accurate SOH
estimation by fitting an equivalent circuit model (ECM).
Li et al. [11] used the incremental capacity analysis (ICA)
to reveal the aging mechanism of NMC batteries and found
out a linear regression relationship between the positions
of peaks in IC curves (incremental capacity vs. terminal
voltage curve) with cycles and capacity. Differential thermal
voltammetry (DTV) analysis was carried out to estimate SOH
as diagnostic techniques, which combined ICA to reflect ther-
modynamic information about the electrode materials. Maher
and Yazami [12] observed that the DTV profiles of aged
cells show variation in peak positions and amplitudes which
are similar to those displayed by IC profiles. Li et al. [13]
fitted an ECM to the measured electrochemical impedance
spectrum (EIS). The 10 parameters of the ECMwere selected
as SOH indicators for the battery degradation.

Adaptive filter algorithms are often used for LIB RUL
prediction. Zheng and Fang [14] used the unscented Kalman
filter (UKF) to recursively estimate the battery degrada-
tion model parameters for predicting RUL. Miao et al. [15]
completed the RUL prediction based on the unscented
particle filter (UPF) by adjusting the parameters of double
exponential capacity degradation model. Saha et al. [16]
proposed a method to predict LIBs RUL based on the slope
of the charge voltage curve. In J. Hoo’s study, uncertainties
were minimized by a Bayesian framework and a PF algorithm
was applied to predict the RUL in the form of a probability
distribution function (PDF).

The existing LIB RUL predictions estimate the tendency
of degradation as a time series. On one hand, the empirical
models or networks are fitted or trained through historical
data, neglecting that the objects studied are batteries.
On the other hand, the relationships between SOH indicators
and capacity are also data-driven, which rely on working
conditions of battery (load profile, ambient temperature,
etc.). To add more battery’s mechanism information to RUL
prediction methods is a potential resolution to push forward
this technology.

Our previous work, reference [2], introduces a PF-based
RUL prediction framework for lead-acid batteries by incor-
porating the physics of working and aging of the batter-
ies through a full-order electrochemical model. However,
applying this roadmap to the RUL prediction for lithium-ion
batteries needs to be verified and faces challenges. Firstly,
the electrochemical model for lithium-ion batteries used in
the framework should be a compromise between accuracy
and complexity to meet the requirements of accrual applica-
tions. Secondly, a robust parameterization method is needed

to avoid local optimal problem of genetic algorithm used in
reference [2].

A novel physics-based RUL prediction method for LIBs
is shown in this paper. A simplified electrochemical model
for lithium-ion battery is integrated into the PF-based RUL
prediction framework for better robustness and accuracy. The
advantage of this method is that when the PF is updated
iteratively, the aging and working mechanisms of the LIBs
are considered as well. The rest of this paper follows as:
in Section II, a simplified electrochemical model of LIBs
is introduced based on the previous work by Lyu et al. [17];
in Section VI, parameters of this model are identified by
means of excitation-and-response method and the simulation
accuracy of this model is verified as well; in Section VI,
an electrochemical-model-based PF framework is introduced,
the effectiveness of which is validated through actual aging
experiment.

II. SIMPLIFIED ELECTROCHEMICAL MODEL FOR
LITHIUM-ION BATTERY
The simplified electrochemical model (SEM) of LIBs is a
reduced order version of the well-known P2D model [17].
The simplification has four main aspects. First, the effect
of uneven reaction distribution is ignored and multiple
active particles in the positive and negative electrodes
are taken as single particle. Second, the distribution of
the ion concentration in the active particles in the radius
r direction is approximated by using a three-parameter
parabola. Third, the distribution of the ion concentration in
the electrolyte in the thickness l direction is solved by using
another three-parameter parabolic approximation. Finally,
the distribution of the ion concentration in the separator in
the l direction is solved by a linear approximation. Fig. 1.
shows the structure of the SEM. The factors that affect the
battery terminal voltage are the open circuit voltage, Eocv,
ohmic overpotential, ηohm, reaction overpotential, ηact, and
concentration overpotential, ηcon.

FIGURE 1. Schematic diagram of the SEM.

The first factor is the open circuit voltage of the battery.
The open circuit voltage of the battery, Eocv, is determined
by the ion intercalation concentration of both the positive and
negative active materials, the calculation of which is shown
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in Eq. (1).

Eocv(t) = Up(ysurf(t))− Un(xsurf(t)) (1)

where, Up and Un represent positive and negative electrode
open circuit voltage, respectively. Variables ysurf and xsurf are
solid-phase surface stoichiometric number for positive and
negative electrodes, respectively.

The solid-phase surface stoichiometric numbers of the
positive and negative electrodes are calculated from the
solid-phase average stoichiometric number, as shown
in Eq. (2). {

ysurf(t) = yavg(t)+1y(t)
xsurf(t) = xavg(t)−1x(t)

(2)

where, yavg and xavg are the solid-phase average stoichio-
metric number of the positive and negative electrodes,
respectively. And1y is the difference between ysurf and yavg.
Variable 1x is the difference between xsurf and xavg.

According to the approximation of the three-parameter
parabola of the lithium ion concentration distribution in
the active particles, variables 1y and 1x can be obtained
by Eq.(3).

1y(t) = 1y′(t)+
2
7
τp

Qp
· I (t)

1x(t) = 1x ′(t)+
2
7
τn

Qn
· I (t) (3)

where,1y′ and1x ′ are the intermediate variables, and τp and
τn are the solid-phase diffusion time constants of the positive
and negative electrodes, respectively.

The calculation formulas of1y′ and1x ′ are as follows by
discretizing formula (3).

1y′(tk+1) = 1y′(tk )+
1

τ
p
s
(
12
7
τp

Qp
I (tk )

−1y′(tk ))(tk+1 − tk )

1x ′(tk+1) = 1x ′(tk )+
1
τ ns

(
12
7
τn

Qn
I (tk )

−1x ′(tk ))(tk+1 − tk )

(4)

The ohmic effect of each part of the battery can be expressed
by a lumped ohmic resistance, Rohm. The calculation of the
ohmic overpotential, ηohm, is as follows.

ηohm(t) = RohmI (t) (5)

On the premise of uniform reaction distribution, the reaction
overpotential, ηact, can be calculated by the Bulter-Volmer
equation.

ηact(t) =
2RT
F

(ln(
√
m2
n(t)+ 1+ mn(t))

+ ln(
√
m2
p(t)+ 1+ mp(t)))

mp(t) =
1

6Qpc0.50

1
(1− ysurf(t))0.5(ysurf(t))0.5

PactI (t)

mn(t) =
1

6Qnc0.50

1
(1− xsurf(t))0.5(xsurf(t))0.5

PactI (t)

(6)

where, R is the ideal gas constant. T is the ambient
temperature. mn and mp are the intermediate calculation
variables. F is the Faraday constant. Pact is the reaction
polarization constant.

By using the three-parameter parabolic approximation of
the lithium-ion concentration in the liquid phase, a for-
mula for calculating the concentration overpotential, ηcon,
is obtained.

ηcon(t) =
2RT
F

(1− t+) ln(
c0 +1c(t)
c0 −1c(t)

) (7)

where, c0 is the initial electrolyte concentration. 1c is
electrolyte concentration deviation from c0 at the boundaries
of both current collectors.

The discrete iteration formula for 1c is shown in Eq.(8).

1c(tk+1) = 1c(tk )+
1
τe
(PconI (tk )−1(tk ))(tk+1 − tk ) (8)

where, τe is the liquid-phase diffusion time constant. Pcon is
the proportional coefficient of liquid-phase diffusion.

Based on the Eocv and the aforementioned overpotentials,
the battery terminal voltage, Uapp, is determined by Eq.(9).

Uapp(t) = Eocv(t)− ηcon(t)− ηact(t)− ηohm(t) (9)

The parameters used in the SEM are summarized in table 1.

III. PARAMETER IDENTIFICATION AND MODEL
VALIDATION
The LIBs used in this paper are cylindrical graphite/LiFePO4
batteries with a rated capacity of 45 Ah. In order to avoid
the influence of temperature on the model parameters,
the parameter identification experiments were completed in
a 25 ◦C incubator.

The battery terminal voltage is jointly determined by
various mechanism processes. The basic working process,
reaction polarization, concentration polarization, ohmic
polarization, and the diffusion process of the positive and
negative electrodes all have effects on the battery terminal
voltage. The key to non-destructive parameter identification
is to decouple the effects of various mechanism processes
on the terminal voltage. The excitation and response method
is to achieve the decoupling of each mechanism process
through special charging and discharging operating condi-
tions. According to the SEM description, the parameters
identification process can be divided into the following five
parts.

The first is the parameter identification of the basic
working process. The basic working process is a process in
which lithium ions insert and extract between the positive and
negative electrodes as the battery is charged and discharged.
For the identification of basic working process parameters,
a small-rate discharge is used. The parameters describing this
part mainly include yofs, y0, Qp, Qn. When the battery is
discharged at a small rate of 1/50C, the effects of the other
mechanisms on the battery terminal voltage can be ignored.
It can be approximated that the terminal voltage is the
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TABLE 1. Parameter list of the SEM.

open circuit voltage. Assuming that the surface and average
concentrations of lithium-ions in the solid-phase particles are
equal at small rate discharge condition, the terminal voltage
can be derived from Eq. (1):

Uapp ≈ Eocv = Up
(
yavg

)
− Un

(
xavg

)
= Up

(
yavg

)
− Un

((
1− yofs − yavg

)
·
Qp

Qn

)
(10)

yavg = y0 +
I · t
Qp

(11)

The relevant parameters of the basic working process can
be obtained by performing a nonlinear least square fitting
according to Eq. (9).

The parameters corresponding to the remaining four parts
can be divided into a fast response process and a slow
process according to the response time constant. Among
them, the time constant of ohmic polarization and reaction
polarization is short (about 10−2 seconds), which belongs
to the fast response process, and the time constant of solid
phase diffusion and liquid phase diffusion is long (about 102

seconds), which belongs to the slow response process.
Next, the parameters of the fast response process are iden-

tified. The operating condition for parameter identification of
this part is instantaneous pulse current. As shown in Fig. 2,
the fast change of voltage is caused by reactive polarization
and ohmic polarization when the current is abrupt. The ohmic
internal resistance constant, Rohm of ohmic polarization
can be measured by an ohmic resistance tester. Therefore,
the electromotive force generated by reactive polarization can
be calculated by using formula (12).

ηact = ηfast − ηohm (12)

Combined with the calculation formula of ηact in formula (6)
and using the nonlinear least squares fitting method, the reac-
tive polarization constant Pact can be obtained.

FIGURE 2. Terminal voltage vs. time during current interruption.

Next, the parameter identification of the slow response
process is performed. The slow response process is caused by
solid-phase diffusion and liquid-phase diffusion. According
to electrochemical knowledge, the time constant of the solid-
phase diffusion process is longer than the time constant of the
liquid-phase diffusion process. The decoupling of these two
parts can be achieved through constant current discharge with
different time length.

After a long time (more than 103 seconds) constant
current discharge, the diffusion process inside the battery has
stabilized. At this moment, the terminal voltage calculation
formula of the battery is formula (13).

Uapp(t) = Estable
ocv (t)− ηstablecon (t)− ηact(t)− ηohm(t) (13)

where, Estable
ocv is the steady-state open circuit voltage,

and ηstablecon is the steady-state concentration polarization
overpotential. The calculation formula of Estable

ocv is as follows.
Estable
ocv (t) = Up(y0(t)+1ystable)− Un(x0(t)−1xstable)

1ystable = 2
τ sp

Qp
· I ,1xstable=2

τ sn

Qn
· I

(14)
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Substituting formula (14) into formula (13), where the
reactive polarization overpotential, ηact, and the ohmic
polarization overpotential, ηohm, can be obtained directly.
1ystable, 1xstable, and, ηstablecon are obtained by nonlinear least
squares fitting. Based on1ystable and1xstable, the solid-phase
diffusion time constants, τp and τn, of the positive and
negative electrodes can be directly obtained, and the liquid
phase diffusion coefficient Pcon can be obtained by inversely
solving formula (7) and formula (8).

Finally, only the liquid-phase diffusion time constant
remains to be identified. The short-term (102 seconds)
constant current discharge can be used to complete the
identification of liquid-phase diffusion time constant. Based
on the parameters identified above, the concentration polar-
ization overpotential ηcon can be obtained directly using
formula (15).

ηcon(t) = Eocv(t)− Uapp(t)− ηact(t)− ηohm(t) (15)

From ηcon, the difference in liquid phase lithium ion
concentration, 1c, between the boundary of the positive
and negative electrode current collectors can be obtained,
as shown in formula (16).

1c(t) = c0
exp(ηconF/(2RT (t)(1− t+)))− 1
exp(ηconF/(2RT (t)(1− t+)))+ 1

(16)

Finally, from 1c and the obtained Pcon, the liquid-phase
diffusion time constant τe can be directly obtained, as shown
in formula (17).

τe(tk+1) =
Pcon.I (t)k −1c(tk )
1c(tk+1)−1c(tk )

.(tk+1)− (tk ) (17)

The identification results of LFP’s battery parameters are
shown in Table 2.

TABLE 2. Parameter identification results.

The current excitation and voltage response in the param-
eter identification process are shown in Figure 3.

In order to verify the accuracy of model parameter
identification, the constant current discharge experiment was
performed. The comparison of voltage simulation curve and
measured curve at 1C and 2C rate constant discharge is shown
in Figure 4. The average error and of voltage and the capacity
simulation error are shown in table 3.

According to the simulation error of voltage and capacity,
SEM can well describe the behavior of the battery. Especially
the capacity simulation error at 1C rate is only 0.42%.

FIGURE 3. Current excitation and voltage response of parameter
identification.

FIGURE 4. Comparison of measured voltage and simulated voltage.

TABLE 3. The simulation error of SEM.

Therefore, it is feasible to predict the RUL based on the SEM
simulation.

IV. RUL PREDICTION BY INTEGRATING SIMPLIFIED
ELECTRO-CHEMICAL MODEL TO THE PF FRAMEWORK
A. CYCLIC AGING EXPERIMENT
In order to investigate the relevance between the parameters
in the SEM and battery aging process, a cyclic aging
experiment was performed. In this paper, the 45Ah cylindrical
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LiFePO4 batteries were used to perform cyclic aging and
parameter identification experiments. The battery test system
is produced by Newware Co., Ltd, China.

FIGURE 5. Current and voltage profiles in aging experiment.

The cyclic aging conditions consist of constant current
charge and constant current discharge at 1C rate. Among
them, the cut-off voltage of constant current charge is 3.65V,
and the cut-off voltage of constant current discharge is 2.5V.
There is a 10 seconds interval between constant current
charge and discharge. Constant voltage charge was removed
because it is time consuming. Parameter identification
experiment was performed after every 20 aging cycles.
Fig.5 shows one section of current and the terminal voltage
accordingly in the repeated aging process. In order to avoid
the influence of ambient temperature on the capacity, the
cyclic aging experiment was performed in the incubator
which maintains a constant temperature of 25 ◦C. The flow
chart of the cyclic aging experiment is shown in Fig. 6. Before
the cyclic aging experiment is performed, the parameters
identification was performed first. Parameters identification
experiment was performed after every 20 aging cycles. There
is a 30minutes interval between parameters identification test
and cyclic aging test When the battery capacity decays to
80% of the initial capacity, which is 36Ah, the cycle aging
experiment ends.

B. EXTRACTION OF HEALTH CHARACTERISTICS
There are 10 parameters with independent physical signifi-
cance in the SEM. Parameters with strong correlation with
capacity can be selected as health characteristics for RUL
prediction. The correlation between model parameters and
capacity is not completely linear from the results of the
cyclic aging experiment. Spearman’s correlation coefficient
in statistics is not limited by the sample size, variable
distribution and whether the data has continuity. Therefore,
spearman’s correlation coefficient (ρ) is used to screen
health characteristics in this paper. The results of correlation
analysis are shown in table 4.

The parameters yofs, Qp, Qn, Pact, Rohm, and τsn are
considered as HCs by criterion of ‘‘|ρ| > 0.95’’. Positive
and negative ratio shift ( yofs) increases exponentially with
the number of cycles, which is caused by the shrinkage and
shift of the positive and negative open circuit curves during

FIGURE 6. Cyclic aging experiment flow char.

TABLE 4. Correlation between SEM parameters and capacity.

the battery aging process. Positive and negative capacity, Qp
and Qn, degrade with the number of cycles that is caused
by the loss of active material and the available lithium ion.
The ohmic resistance, Rohm, increase exponentially reflecting
that the solid electrolyte interface (SEI) film on the surface
of the active particles is constantly growing during the aging
process. The reaction polarization coefficient, Pact, increase
exponentially reflecting that the electrochemical reaction on
the surface of the active material becomes more difficult with
the aging of the battery.

According to the data of the cycle aging test and the
parameter identification experiment, the relationship between
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TABLE 5. Fittings of the HCs with the number of cycles.

each health characteristic and the number of cycles was fitted,
and the fitting formula is shown in table 5.

C. RUL PREDICTION BASED ON PARTICLE FILTER
Particle Filter (PF) is an approximate Bayesian filtering
algorithm based on Monte Carlo method, which is not
restricted by the linear Gaussian problem. The core idea
of PF is to use some discrete random sampling points to
approximate the probability density function of the system
random variables. The sample mean is used to replace the
integral operation by sequence importance sampling, and
then the minimum variance estimate of the state variable is
obtained.

FIGURE 7. Schematic diagram of the PF algorithm.

The schematic diagram of the PF algorithm is shown
in Fig.7. First, the initial particle set is generated according to
the prior probability distribution of the system state quantity,
and then it is weighted and recursively based on Bayesian
theory to obtain the posterior probability distribution of the
state quantity. Finally, the estimated value of the state quantity
can be obtained combining with the Monte Carlo method.
When the number of particles is infinite, the estimated value
of particle filtering can infinitely approximate the optimal
estimate, which is equivalent to the posterior probability
density function [18]. Next, the RUL prediction framework
based on PF algorithm is introduced. For comparison,
the data-driven PF-based LIBs RUL prediction framework is

first introduced. In reference [19], the relationship between
the battery capacity model and the number of cycles is a
double exponential function, such as formula (18), which is
the observation equation in the PF.

Qk = ak exp(bk · k)+ ck exp(dk · k)+ vk (18)

where Qk is the capacity of battery, k is the cycle number,
vk is zero-mean Gaussian noise, parameters ak , bk , ck , and
dk are state variables that constitute state vector xk =
{ak , bk , ck , dk}T.

The update process of state variables can be expressed by
the following Eq.(19), which is the state equation in PF.

ak+1 = ak + wa,k
bk+1 = bk + wb,k
ck+1 = ck + wc,k
dk+1 = dk + wd,k

(19)

where, wa,k , wb,k , wc,k , and wd,k are all zero-mean Gaussian
noises.

As we can see, the state equation and the observation
equation don’t take battery’s mechanism into consideration.
Moreover, the initial value of the no physical meaning state
variables can be randomly selected or obtained by data fitting.

In order to improve the RUL prediction accuracy and
reliability, a new PF framework based on SEM simulation has
been established. The state variables are health characteristics
and form a vector, xk = {yofs,k ,Qp,k ,Qn,k ,Rohm,k ,Pact,k}T.

According to table 5, the state equation can be concluded
as Eq. (20).

yofs,k+1
Qp,k+1
Qn,k+1
Rohm,k+1
Pact,k+1

=

eb1 0 0 0 0
0 eb2 0 0 0
0 0 1 0 0
0 0 0 eb4 0
0 0 0 0 eb5




yofs,k
Qp,k
Qn,k
Rohm,k
Pact,k



+


c1(1− eb1 )
c2(1− eb2 )

a3
c4(1− eb4 )
c5(1− eb5 )

+

wofs,k
wp,k
wn,k
wohm,k
wact,k

 (20)

Coefficients a3, b1, b2, b4, b5, c1, c2, c4, and c5 have been
obtained by Least Square fitting method in table 5. Vector
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wk =
[
wεp,k ,wasp,k ,wasn,k ,wi0p,k ,wi0n,k

]T is the Gaussian
process noise vector and k is the cycle number.
The observation equation in RUL prediction relates state

variables with battery’s capacity and is presented in Eq.(21)

Qk = f (yofs,k ,Qp,k ,Qn,k ,Rohm,k ,Pact,k )+ vk (21)

where f denotes the process of simulating battery’s capacity
using the SEM and function vk is the Gaussian observation
noise.

The capacity simulation can be carried out as such: a
full charged battery is discharged at current rate of 1C
until the voltage reaches 2.5V, and the discharging time
can be obtained. Then the product of discharge current and
discharge time is the estimation of capacity. Other parameters
used in the simulation are considered as the average of
previous identification results. A new PF framework for
RUL prediction is established by combining SEM simulation.
The state variables have explicit physical meaning and the
observation equation simulates the battery capacity, which
fully considered the mechanism behind state variables.

D. ANALYSIS OF RUL PREDICTION RESULTS
During the RUL prediction process, the battery life end point
is set to the number of cycle when the capacity declines
to 80% of the rated capacity. The capacity data is divided
into training data and testing data. Both SEM-based and
data-driven-based PF algorithm are used when the beginning
of prediction (BOP) is the 80th cycle and the 160th cycle
respectively.

The settings of the two PF algorithms are as follows: The
number of particles was set 500 and the residual resampling
was used. The process noise was wk = [1× 10−4, 1× 10−4,
1× 10−4, 1× 10−4]T, while the observation noise was vk =
1 × 10−3. What’s more in data-driven-based PF algorithm.
Unlike data-driven PF algorithm, the process noise was wk =
[1 × 10−5, 1 × 104, 1 × 103, 1 × 10−6, 1 × 104]T, while
the observation noise was vk = 1 × 10−1 in SEM-based PF
algorithm.

1) PREDICTION WITH BOP = 80
Firstly, data-driven-based PF framework was used to predict
the LIBs RUL. The capacity data of the first 80 cycles is
used to train the PF algorithm. The RUL prediction result
and its corresponding PDF are shown in Fig.8 (a), (b). The
capacity and model parameters of the previous 80 cycles
are training data for SEM-based PF algorithm. Similarly,
the RUL prediction result of SEM-based PF algorithm and
its corresponding PDF are shown in Fig.8 (c), (d).
According to the data of the cycle aging experiment,

the cycle life of the battery is 250 cycles. The capacity of
the previous 80 cycles is training data, and the cycle life
of the battery predicted by the data-driven PF algorithm is
220 cycles. The predicted value differs from the actual value
by 30 cycles.
The cycle life of the battery predicted by the SEM-based

PF algorithm is 238 cycles. The predicted value differs from

FIGURE 8. RUL prediction result of data-driven-based PF framework and
SEM-based PF framework (BOP = 80).

the actual value by 12 cycles. From the prediction results,
the SEM-based particle filter algorithm considering the
battery aging mechanism has better performance. Compared
with data-driven RUL prediction algorithm, the prediction
of LIBs RUL is closer to reality after considering the aging
mechanism.

2) PREDICTION WITH BOP = 160
The capacity data of the first 160 cycles was used to train
the data-driven-based PF algorithm. The RUL prediction
results and its corresponding PDF are shown in Fig.9 (a), (b).
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FIGURE 9. RUL prediction result of data-driven-based PF framework and
SEM-based PF framework (BOP = 160).

The capacity andmodel parameters of the previous 160 cycles
are training data for SEM-based PF algorithm. Similarly,
the RUL prediction result of SEM-based PF algorithm and
its corresponding PDF are shown in Fig.9 (c), (d).

The cycle life of the battery predicted by the data-driven
PF algorithm is 270 cycles. The predicted value differs from
the actual value by 20 cycles. Compared with Fig. 8 (a),
the prediction performance of data-driven PF algorithm does
not significantly improve with the increase of training data.
Since the latter segment of the training data is relatively flat,
the number of cycles predicted by the PF algorithm changes

TABLE 6. Description of the SEM governing equation.

from 220 to 270, which exceeds the actual value. It can be
seen that the data-driven PF algorithm is affected by the
characteristics of the training data.

The cycle life of the battery predicted by the SEM-based
PF algorithm is 245 cycles. The predicted value differs
from the actual value by 5 cycles. Compared with Fig. 8 (c),
as the training data increases, the performance of the
RUL prediction improves as well. Under the premise of
considering the battery mechanism, the increase in training
data means that more aging information can be used, so the
predicted performance will become better. Compared with
the data-driven PF algorithm, SEM-based PF has better
prediction performance and better stability.

V. CONCLUSION
This paper realizes a new electrochemical-model-based PF
framework for LIB RUL prediction in which the mechanisms
of battery are fully considered. The merits of this paper are:

The parameters of a simplified electrochemical model
are selected as battery health characteristics, which can be

VOLUME 8, 2020 126669



Q. Liu et al.: RUL Prediction by Using Electrochemical Model in the Particle Filter Framework for Lithium-Ion Batteries

identified by applying characteristic excitation currents to
the battery. The change trend of these health characteristics
with the aging of the battery can be obtained by fitting an
exponential function or a linear function.

The state variables of the new PF algorithm are selected
from battery’s health characteristics rather than meaningless
fitting coefficients. The new state equation comes from the
trends of health characteristics. The observation equation
is essentially the simulation of battery’s capacity which
makes the RUL prediction more robust by introducing the
mechanism of battery.

The methodology fills the research gap between battery
mechanism and data-driven PF RUL prediction and provides
an option for high quality RUL prediction applications.

APPENDIX
See Table 6.
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