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ABSTRACT The implementation of efficient demand response (DR) programs for household electricity
consumption would benefit from data-driven methods capable of simulating the impact of different tariffs
schemes. This paper proposes a novel method based on conditional variational autoencoders (CVAE) to
generate, from an electricity tariff profile combined with weather and calendar variables, daily consumption
profiles of consumers segmented in different clusters. First, a large set of consumers is gathered into clusters
according to their consumption behavior and price-responsiveness. The clustering method is based on a
causality model that measures the effect of a specific tariff on the consumption level. Then, daily electrical
energy consumption profiles are generated for each cluster with CVAE. This non-parametric approach
is compared to a semi-parametric data generator based on generalized additive models. Experiments in
a publicly available data set show that, the proposed method presents comparable performance to the
semi-parametric one when it comes to generating the average value of the original data (13% difference
in root mean square error). The main contribution from this new method is the capacity to reproduce
rebound and side effects in the generated consumption profiles. Indeed, the application of a special electricity
tariff over a time window may also affect consumption outside this time window. Another contribution
is that the proposed clustering approach is capturing the reaction to a tariff change. When compared to
a clustering method with classical features (min, max and average consumption), the improvement in the
Calinski-Harabasz index was 128% for consumers associated with tariff changes.

INDEX TERMS Deep learning, clustering, simulation, demand response, smart grids, energy consumption.

NOMENCLATURE
i Household, with I an household set
Y Power consumption half-hourly profile
p Tariff, with p ∈ P = {Low,Normal,High}
τ Temperature
h Half hour
H Number of half hours in a day
w Type-of-day
κ Position-inside-the-year
t, s Days
T Number of days in the entire data set
T0 Number of days in the training set
k Number of household clusters (C1, . . .Ck )
x, X Vectors of exogenous variables
µ Standard deviation of the power consumption

The associate editor coordinating the review of this manuscript and
approving it for publication was Elizete Maria Lourenco.

σ Mean of the power consumption
Z Variable of CVAE latent space (decoder inputs)
d Dimension of CVAE latent space
6 Covariance matrix
E Noise vector
α Effect of w in the semi-parametric generator
ξ Effect of p in the semi-parametric generator
N Number of generated samples

I. INTRODUCTION
The deployment of smart meters, which provides access to
new sources of information like 5-15 minutes resolution elec-
trical energy consumption, makes it possible to envisage the
development of new customers services [1]. For example,
electricity demand response (DR) policies aim at modify-
ing customers’ energy consumption behavior (see [2] for an
overview) to enable higher integration levels of renewable
energy sources.
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Most of these DR schemes rely on changes in electricity
prices, which can take the form of seasonal tariffs, super-peak
time-of-use, real-time pricing, critical peak pricing, etc. [3].
Recent works (see among others [4] and [5]) proposed online
learning algorithms to optimize these price incentives, con-
sidering human preferences and satisfaction level. However,
the responsiveness to a tariff change may change from a con-
sumer to another. By clustering consumers according to their
tariff responsiveness, an electricity supplier can send different
signals depending on the cluster to which they belong, and
further improve DR management. For instance, for a given
temperature, day of the week, etc., the electricity supplier
defines an hourly electricity tariff profile to send to some
consumers clusters.

A energy consumption data simulator is very useful to
conduct an ex-ante assessment of the algorithms that set tariff
profiles (i.e., ensure that they induce the right behavior from
consumers) or to study the business models of different DR
models [6] or to implement data-driven DR strategies such
as contextual bandit [5]. This simulator should be able to
randomly generate energy consumption profiles for differ-
ent combinations of exogenous variables and tariff profiles,
with consumers clustered according to their tariff responsive-
ness. The present paper proposes a novel method, based on
conditional variational autoencoders (CVAE), which aims to
randomly generate daily energy consumption profiles condi-
tioned by a specific electricity tariff combined with weather
and calendar variables.

The remainder of this paper is organized as follows.
Section II conducts a literature review of the cluster-
ing and data generation methods applied in the energy
domain and identifies the main contributions from this work.
In section III, the data set used throughout the rest of the
paper is presented. The structure of our contribution is to first
provide a clustering method, in Section IV. Then, the CVAE
approach used to generate energy consumption profiles is
presented and discussed in Section V. In order to evaluate
the proposed method, Section VI introduces a benchmark
data generator based on semi-parametric models often used
for energy consumption forecasting. Section VII presents a
comparison of the two generators and simulations that illus-
trate the interest of our approach. Section VIII summarizes
the main conclusions and identifies potential for future work.

The reproducibility of this research was ensured by apply-
ing the methodology to the open data set ‘‘SmartMeter
Energy Consumption Data in London Households’’ from UK
Power Networks [7], where price incentives were sent to
users via their smart meters, and by making the CVAE code
available in a GitHub repository.1

II. LITERATURE DISCUSSION AND CONTRIBUTIONS
A. CLUSTERING METHODS
Different clustering approaches were already proposed in
the literature to segment consumers according to their
energy consumption behavior. Generally, they relied on the

1github.com/MargauxBregere/power_consumption_simulator

construction of individual features from the average/total
consumption and demographic factors. With the recent smart
meter deployment, individual consumption records at higher
temporal resolutions are now available and allow to consider
energy consumption time series in consumers segmentation.

Therefore, more complex features may be extracted and
used to cluster consumers with classical algorithms. Among
others, Chicco et al. compared the results obtained by using
various unsupervised clustering algorithms (i.e., modified
follow-the-leader, hierarchical clustering, k-means, fuzzy
k-means) to group together customers with similar con-
sumption behavior [8]; Le Ray and Pinson proposed an
adaptive and recursive clustering method that creates typical
load profiles updated with newly collected data [9];
Rodrigues et al. described an online hierarchical cluster-
ing algorithm, which was applied to cluster energy con-
sumption time series in a load forecasting task [10];
Fidalgo et al. described a clustering approach based on sim-
ulated annealing that tries to reconcile billing processes
that use 15 min meter data and monthly total consump-
tion and derive typical profiles for consumers classes [11];
Sun et al. proposed a copula-based mixture model cluster-
ing algorithm that captures complex dependency structures
present in energy consumption profiles and detects out-
liers [12].

These clustering methods do not include information
about the elasticity of consumers to tariff changes. How-
ever, recent research developed mathematical and statistical
models for modeling price responsiveness from domestic
consumers. Ganesan et al. applied a causality model to the
Low Carbon London data set in order to rank consumers
according to their responsiveness to tariff changes, and
outperformed correlation-based metrics [13]. Saez-Gallego
and Morales applied inverse optimization to improve the
accuracy of load forecasting when aggregating a pool of
price-responsive consumers and considering the effect of
calendar and weather variables [14]; Le Ray et.al. applied a
clinical testing approach (based on a test and a control group)
to assess whether or not loads of households participating
in the EcoGrid EU DR program are price-responsive [15];
Mohajeryami et al. proposed an economic model to explain
the consumption shift between peak and off-peak hours that
maximizes customer’s utility function [16].

These works are closely linked to the forecast of consumers
reactions to DR policies, but, to our knowledge, were never
combined with (or embedded in) clustering techniques for
consumer segmentation or used to simulate daily consump-
tion profiles according to their price-responsiveness.

B. DATA GENERATION METHODS
The generation of energy consumption profiles for house-
holds is not new and it was already covered by different
authors in the literature. Capasso et al. proposed a bottom-up
approach based on the aggregation of individual appliance
consumption in order to produce a household consumption
profile [17]. A Monte Carlo simulation model was proposed
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to combine behavioral data (home activities, availability at
home from each member, etc.) and engineering functions
(appliancemode of operation, technological penetration, etc.)
with associated probability distributions. Park et al. proposed
a platform, exploiting SystemC language for event-driven
simulation, which simulates the behavior of individual appli-
ances and smart plugs [18]. Both works did not considered
weather-dependent appliances (e.g., heating, ventilating and
air conditioning - HVAC) or the effect of price signals.

Physically-based models for appliances (including HVAC)
are also proposed in [19], combined with heterogeneous
Markov chain for activity patterns, to simulate households
energy consumption. A similar approach was followed
in [20], but using individual appliance consumption data.
A set of physical models for appliances are proposed
in [21], implemented in MATLAB Simulink, and can sim-
ulate optimal on/off decisions of household appliances.
Gottwalt et al. described a simulation engine for households
with two modules: (a) bottom-up approach that generates
consumption data for each appliance by combining statistical
data about appliance use and resident presence at home;
(b) optimization of appliances schedule in order to find the
optimal load shift according to time-based tariffs [22]. Iwa-
fune et al. proposed a Markov chain Monte Carlo method for
simulating electric vehicle driving behaviors, which enables
an evaluation of the DR potential when combined with
domestic photovoltaic panels [23].

The aforementioned methodologies assume that informa-
tion about individual appliances (usage patterns, energy con-
sumption, etc.) and behavioral data is available, instead of just
using the total household consumption collected by the smart
meter. One exception is [24], which describes a methodol-
ogy based on an elasticity coefficient (approximated by a
Gaussian distribution) to estimate indices that characterize
the impact of real-time prices in the consumption pattern,
such as proportion of maximum load decrease, proportion
of peak-valley difference of load decrease, etc. The method
consisted in an empirical rule-based calculation of transferred
consumption between periods, which was only applied to
aggregated consumption of an electric power system and not
to households.

C. CONTRIBUTIONS
The major contributions from this paper are described in the
following paragraphs.

The CVAE-based generator of daily energy consumption
profiles, in contrast to the methods revised in Section II-B,
only relies in data collected by smart meters for the total
household consumption and exogenous variables such as
tariff profile, weather and calendar variables. Compared
to [18]–[20], it is fully data-driven and does not require phys-
ical models for individual appliances and consumer behavior
data.

Moreover, in comparison to [24], the proposed method is
non-parametric and estimates changes in consumption pro-
files by applying a deep learning model without empirical

assumptions about load shifting, showing a high capacity to
learn behavioral changes when consumers experience differ-
ent tariff schemes. In statistical literacy, the proposed method
corresponds to sampling random vectors from a given joint
density function, which was also explored in the renewable
energy forecasting literature to generate temporal trajectories
from conditional marginal probability distributions (see [25]
and [26] for wind energy trajectories forecast with Gaus-
sian copula and generalized adversarial networks correspond-
ingly). In this work, we are sampling random vectors (i.e.,
coherent energy consumption profiles) conditioned by tariff,
weather and calendar variables. It is important to note that
CVAE were recently applied in [27] to learn specific repre-
sentations for atypical conditions discovery (e.g., holidays) in
daily electrical consumption, but not explored for synthetic
data generation.

As a complementary contribution, a novel semi-parametric
data generator, based on generalized additive models, is pro-
posed as a benchmark model. Its numerical performance
highlights the main advantage offered by the CVAE-based
approach, which is the capacity to take into account and
reproduce the rebound (the fall or rise in consumption shifts
to another time of the day when a special tariff is applied over
a period) and side (the fall or rise induced by a special tariff
lasts longer – for High tariff – or less long – for Low tariff –
than the period in which the tariff is actually applied) effects
in the generated consumption profiles.

Finally, the proposed clustering methodology extends the
clustering algorithm from in [28] in order to include the
causal model between tariff and energy consumption. Thus,
in contrast to the methods revised in Section II-A, this clus-
tering algorithm gathers consumers according to their (total)
consumption behavior and tariff-responsiveness.

III. DATA SET DESCRIPTION AND PREPROCESSING
As a case-study for this work, we consider the open
data set published by UK Power Networks and contain-
ing energy consumption (in kWh per half-hour) of around
5 000 households throughout 2013 [7]. A sub-group of
approximately 1 100 customers was subjected to a dynamic
Time of Use (ToU) tariff. The tariff values, among High
(67.20 p/kWh), Low (3.99 p/kWh), or Normal (11.76 p/kWh),
and the (half-hourly) intervals of day where these prices are
applied, were announced day-ahead via the smart meter or
text message. All non-ToU customers were on a flat rate tariff
of 14.228 p/kWh and we refer to them as Standard (Std)
customers. The report of Schofield et al. (see [29]) provides
a full description of this experimentation and an exhaustive
analysis of results.

The data set contains tariffs and energy consumption
records, for each client, at half-hourly intervals. Only ToU
customers with more than 95% of data available (1 007
clients) are kept and the same number of Std clients are
sampled to build a control group. We denote by IToU the
set of ToU households and by IStd the set of Std ones.
The missing values in the time series were filled by linear
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TABLE 1. Summary of the data set division and use for the CVAE and semi-parametric models.

interpolation, using the previous and next interval records for
small gaps and the days preceding and following for longer
periods of missing data. Finally, for each household, we also
compute the average energy consumption, its minimum, and
its maximum as well as the half-hour of the daily peak and of
the daily trough, for the hot months (fromApril to September)
and for the cold months (the others).

Since weather has a strong impact on energy consump-
tion, we added half-hourly data points of air temperature in
London obtained from hourly public observations [30] by
linear interpolation. Thus, for each household i ∈ IToU ∪
IStd , for any day t of year 2013, we get three 48-vectors
denoted by Y 1

t (i), . . . ,Y
48
t (i), p1t , . . . , p

48
t , and τ 1t , . . . , τ

48
t ,

which are energy consumption profiles, tariff for ToU con-
sumers and temperature respectively. From now on, H =
48 represents the number of consumption readings per day.
Since a smoothed temperature – that models the thermal
inertia of buildings – is likely to improve forecasts (see
among others, [31] and [32]), a daily smoothed tempera-
ture τ̄t is introduced (see Appendix A for further details).
Energy consumption also depends on calendar variables such
as the type-of-day and position-inside-the-year. Thus, two
additional variables were created (see [33] for more details):
(i) binary variable wt that takes 0 on weekends and 1 on
week days; (ii) κt , a continuous calendar variable modeling
the position inside the year, which increases linearly from 0
(on January, 1.) to 1 (on December, 31.).

The final data set (presented in Table 2) contains, for each
of the 2 014 households (half Std, half ToU), T = 365 obser-
vations of the energy consumption, tariff, and temperatures
profiles, the smoothed temperature, the type-of-day, and the
position-inside-the-year.

This data set is split in two sub-sets: a training set which
contains about 75% of the original data – days are randomly
sampled from those of 2013 – and a testing set made of the
remaining data points. A perfect design of the experiments
would require four data sets but the size of the original data
led us to exclude this possibility. As the household clustering
is a prior knowledge for the creation of the data generators
(we create a generator per cluster), the entire data is used to
cluster the clients. The (non-parametric and semi-parametric)
data generators are optimized on the training set. The testing
set is used to calibrate CVAE-based data generators and to
choose the best combination of exogenous variables to give
in input. Moreover, the best CVAE among several execu-
tions of the training process (CVAEs may converges to local
minima) is selected thanks to this testing set. Finally, it also
permits to compare the two approaches, non-parametric and

semi-parametric, in the experiments of Section VII. To sim-
plify notation, we re-indent the observations of the original
data set: observations from 1 to T0 = 273 form the training
set, and the ones from T0+1 to T = 365 form the testing set.
The data set division and use is summarized in Table 1.

IV. CLUSTERING OF HOUSEHOLD CONSUMERS
A. CAUSALITY MODEL
To measure the impact of the tariff on the energy consump-
tion, a causality model similar to the one proposed by Gane-
san et al. (see [13]) is considered. The finite set of available
tariff is denoted by P = {Low, High, Normal} and its
cardinal by |P|. For each household and each tariff, a daily
profile of the mean and the standard deviation of its energy
consumption will be computed. For an household i, at an
half-hour h, the random variable Y h(i) refers to the individual
energy consumption of household i. It depends on the chosen
tariff p ∈ P but also on the exogenous variables gathered in
a vector xh = (τ ht , τ̄t ,wt , κt ).
Here, the aim is to estimate, for each tariff p and for each

half-hour h, the expectation and the standard deviation of the
random variable Y h(i) |P = p. Thanks to T observations
Y ht (i), x

h
t , and p

h
t , with t ∈ {1, . . . ,T }, of energy consump-

tion, tariffs, and exogenous variables, respectively, a model
that gives, for the tariff p and the exogenous variables xh,
a forecast of the expected consumption at h when tariff p is
picked, is trained. In the original model, the authors used ker-
nel regression and then an approach based on bootstrapping
to provide an estimation of the standard deviation (see [13]
for further details). In this work, for any exogenous variable
xht and tariff pht , the random energy consumption Y ht (i) is
assumed to beGaussian ofmeanµi(xht , p

h
t ) and standard devi-

ation σi(xht , p
h
t ) and that theses mean and standard deviation

depend on additive smooth predictors. They are estimated
with generalized additive models (GAM), see [34] – full
calculations are detailed in Appendix B. Therefore, for any
tariff p, the trained model provides these estimations, that are
denoted by µ̂i(xht , p) and σ̂i(p, x

h
t ). Then, an approximation

of the impact of a tariff change is computed with the two
following quantities:

E
[
Y h(i) |P = p

]
≈

1
T

T∑
t=1

µ̂i
(
xht , p

)
(1)

and √
Var

[
Y h(i) |P = p

]
≈

1
T

T∑
t=1

σ̂i
(
xht , p

)
. (2)
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TABLE 2. Summary of the variables provided and created for each household i of the data set.

FIGURE 1. Scheme of the proposed clustering method.

For simplicity of notation, these approximations associated
with an household i ∈ IToU ∪ IStd , are denoted by µhi (p) and
σ hi (p), respectively. Vectors µ

1
i (p), . . . , µ

H
i (p) will be used to

cluster the consumers whereas vectors σ 1
i (p), . . . , σ

H
i (p) will

not be used until later, in Section VI for the creation of the
benchmark data generator. Actually, they will not be directly
useful, but a similar approach will be applied to compute the
standard deviation per tariff of the energy consumption of a
consumer cluster, namely by replacing household i by a group
of households.

B. CLUSTERING METHOD
The proposed method used to cluster the households accord-
ing to their consumption profile is very similar to the one
used in [28]. In this section, I will refer indifferently to IToU
or to IStd . For any household, i ∈ I, the causality model
described in the previous section provides, for each tariff
p ∈ P , a daily energy consumption profile, namely H mean
energy consumption µ1

i (p), . . . , µ
H
i (p). As the focus is more

on the shape of the profiles, rather than on the amount of
consumed electricity, the profiles of an household i are first
rescaled with its average consumption associated with a base
tariff, namely Normal tariff.

Then, these profiles are concatenated in a matrix M ∈

M|I|×H |P | that gathers all the households. The dimension
of M is reduced with a non-negative matrix factorization
(NMF): with r a small integer, M is approximated by WH,
where W and H are |I| × r and r × H |P|-non-negative
matrices, respectively. As soon as this approximation is good
enough, line i of the matrix W is sufficient to reconstruct
household i profiles (with the knowledge of matrixH - which
is not used for the clustering). Thus, for each household i,
from the H |P|-vector (µ1

i (p), . . . , µ
H
i (p))p∈P , r features are

extracted: line i of W. With this low dimension represen-
tation of households in Rr , k-medoids clustering algorithm
provides the k clusters C1, . . . ,Ck , using KMedoid function
implemented in the Python-library sklearn_extra.
The diagram in Figure 1 sums up the steps of the proce-
dure described here in a summarized way and detailed in
Appendix C.

C. EVALUATION OF THE HOUSEHOLDS CLUSTERING
Three different clustering approaches of the households of
IToU and of IStd , with k = 4 clusters, are compared. The first
one is a random clustering: an integer between 0 and k − 1 is
randomly assigned to each household. The second one relies
on classical features used to define an household profile: the
minimum,maximum, and average consumption in winter and
in summer, the peek-hour, and the off-hour (average instant of
maximum and minimum consumption). From these rescaled
features, k-medoid algorithm is used to cluster the house-
holds. The third approach is the one proposed in this paper
and described in the previous section. For a clusterC`, and for
any day t and half-hour h, we will, from now on, consider the
average energy consumption Y ht (C`) = 1/|C`|

∑
i∈C` Y

h
t (i),

where Y ht (i) is the energy consumption record associated with
household i.
Figure 2 depicts, for the three clustering approaches

applied on ToU households, the weekly profile of the average
energy consumption of each cluster Y ht (C`) (to the left) and
the normalized energy consumption (to the right), namely the
weekly profile of Y ht (C`)/

( 1
TH

∑T
s=1

∑H
j=1 Y

j
s (C`)

)
. Classical

features allow to discriminate households depending on the
amount of electricity they consume but does not really catch
daily or weekly behavior. Conversely, profile types clearly
come off with the proposed method.

The Calinski-Harabasz index, (see [35]) is a variance ratio
criterion, that evaluate the relevance of the clustering. By
denoting Y (i) the vector that contains some of the consump-
tion records associated with household i, and by Y (C`) the
one with the average consumption records of cluster C` and
by Y (I) the average consumption records of all households,
the score SCH is defined as the ratio of inter-clusters variances
and intra-cluster variances:

SCH =

(
|I| − k

)
Var(C1, . . . ,Ck )(

k − 1
)∑k

`=1 Var(C`)
(3)

with

Var(C1, . . . ,Ck ) =
K∑
`=1

∥∥Y (C`)− Y (I)∥∥2 (4)
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FIGURE 2. Daily profile of ToU cluster energy consumption (left, in kWh) and standardized energy consumption (right) for a random clustering (top), for a
clustering based on ‘‘classical features’’ (middle), and the clustering method proposed in Section IV (bottom).

TABLE 3. Calinski-Harabasz score for a random clustering (‘‘Rd’’), for a clustering based on classical features (‘‘Features’’), and the clustering method
proposed in Section IV (‘‘NMF’’) computed for different consumption record series.

and

Var(C`) =
1
|C`|

∑
i∈C`

∥∥Y (i)− Y (C`)∥∥2. (5)

where Var(C`) is the intra-cluster variance of C` and
Var(C1, . . . ,Ck ) is the inter-clusters variance.
To compute this score, three different vectors Y are

considered. First, all the records of the data set are tak-
ing into account, namely the records of the entire year
2013; therefore, in Equations (4) and (5), the vec-
tor Y (i) is equal to

(
Y 1
1 (i),Y

2
1 (i), . . . ,Y

H
T (i)

)
. Then we

look at the normalized energy consumption records, so
Y (i) =

(
Y 1
1 (i),Y

2
1 (i), . . . ,Y

H
T (i)

)
/
( 1
TH

∑T
t=1

∑H
h=1 Y

h
t (i)

)
.

Finally the normalized records associated with the sending
of incentive signals are selected: only the normalized records
associated with tariff Low or High are kept and the others
are removed. The results are presented in Table 3, where
we observe a higher score on non-standardized records for
the ‘‘classical features’’ clustering, which is totally coherent
with the curves of Figure 2. The proposed clustering method
seems efficient for catching households behavior. Indeed it
gets the higher score for standardized records. Moreover, the
score is even higher when we select only records associated
with special tariff and this increase is more important for ToU

consumers that for Std ones. This presumes that the clustering
is not only catching a global behavior but also the reaction to
a tariff change.

It is important to mention that since we want to simulate
energy consumption of quite large sub-groups of households
(between one and five hundreds households), we did not
investigated the optimal number of clusters k (i.e., it was fixed
to 4).

In the following sections we present the two data-driven
methods that simulate energy consumption profiles associ-
ated with the clusters of IToU obtained with the method
described above. For both approaches, we will train a data
generator per cluster. So from now on and for simplicity of
notation, a record Y ht will refer to Y ht (C`), where C` designs
any clusters of set IToU .

V. ENERGY CONSUMPTION PROFILE GENERATION WITH
CONDITIONAL VARIATIONAL AUTOENCODER
The training set made of the T0 observations (Y1,X1),
(Y2,X2), . . . , (YT0 ,XT0 ) is considered. For a day t , Yt =
(Y 1
t , . . . ,Y

H
t ) is the H -dimension vector which corresponds

to the daily profile of the half-hour energy consumption of
a household cluster. The vector Xt gathers calendar, weather,
and tariff information of day t , which will be detailed further.
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FIGURE 3. Diagram of a conditional variational autoencoder.

A. CONDITIONAL VARIATIONAL AUTOENCODER
1) DESCRIPTION
The proposed method to generate energy consumption pro-
files uses the conditional version of variational autoencoders
(VAE), which are generative models introduced by Kingma
and Welling in 2013 (see [36] for further details). It is
important to mention that in this work we use generative
modeling, instead of discriminative modeling (e.g., support
vector machines, k-nearest neighbor), since we are inter-
ested in modeling the joint probability p (Y ,X) and not the
conditional probability p (Y |X). A generative model aims
at learning the true distribution of the training data set and
sample new data points.

Autoencoders were mostly used for dimensionality reduc-
tion or feature learning (see, among others [37] and [38]).
They consist of two neural networks: an ‘‘encoder’’ E and a
‘‘decoder’’ D. An autoencoder learns a low dimension repre-
sentation of a set ofH -dimension data points by training both
networks at the same time. Indeed, the encoder transforms the
H -dimension vectors into d-dimension vectors (with d � H )
and the decoder tries to rebuild initial vectors from the
encoder outputs. Considering Z = E(Y ) as the d-dimension
output of the encoder for theH -dimensional input Y andD(Z )
as theH -dimension output of the decoder for the d-dimension
input Z , the autoencoder is trained to minimize the following
‘‘reconstruction loss’’

LAE =
1
T0

T0∑
t=1

∥∥Yt − Ŷt∥∥2
=

1
T0

T0∑
t=1

∥∥Yt − D
(
E(Yt )

)∥∥2 , (6)

where ‖ · ‖ is the Euclidean norm. Therefore, a data point Y
can be represented in a d-dimension latent space by E(Y ).

In the autoencoder framework, there is no constraint on this
latent space and the only guarantee is that the representation

Z = E(Y ) can be decoded in the original signal D(Z ) ≈ Y .
Moreover, we have no idea what the decoded variable D(Z )
would look like for a value of Z /∈ {E(Y1), . . . ,E(YT0 )}. Thus,
there is no guarantee on the shape of the latent space. Without
regularization term, for any d > 1, by increasing the number
of neurons in both the encoder and the decoder networks,
we can create an autoencoderwith enough degrees of freedom
to fully overfit the data, which points out the need for a
regularization term. In VAEs, the introduction of a penalty on
the latent space implicitly makes the strong assumption that
the distribution of data points E(Y ) is close to a given prior
distribution. This prior is often set to the standard normal dis-
tribution, which we also do in our experiments. From now on,
the encoder encodes the distribution of Z |Y , which is wanted
close to N (0, Id ). We consider that Z |Y ∼ N (µ(Y ), 6(Y )),
where µ(Y ) and 6(Y ) are the encoder outputs. The outputs
Ŷt of the decoder are now D(Zt ), where the random variable
Zt is sampled from a d-multivariate Gaussian of mean µ(Yt )
and covariance matrix 6(Yt ), which are the encoder outputs.
With DKL(P ||Q) as the Kullback-Leibler divergence from Q
to P, the VAE is trained by minimizing the following loss

LVAE(η) =
1
T0

T0∑
t=1

∥∥Yt − Ŷt∥∥2
+ η

1
T0

T0∑
t=1

DKL

(
N
(
µ(Yt ), 6(Yt )

) ∣∣∣∣N (0, Id )
)
. (7)

The first term corresponds to the reconstruction error and the
second one is a regularization penalty on the latent space.
The coefficient η balances these two terms. Calculations
from [36] are recalled in Appendix D. They show how, under
some assumptions on the existence of a representation of the
data in a d-dimensional latent space, minimizing this loss
corresponds to conjointly maximizing the likelihood of the
observations with the density induced by the data generation
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process and minimizing an approximation error in the latent
space.

Finally, conditional variational autoencoders (CVAE) [39]
are an extension of VAE where a vector of exogenous vari-
ables X is given as input to both the decoder and the encoder.
Adding this conditional information may improve the recon-
struction. Figure 3 depicts a scheme of the CVAE architec-
ture used in the experiments. The encoder takes as input a
daily energy consumption profile Y (so namely a H -vector
gathering the half-hourly records of energy consumption) and
an exogenous vectors X (with calendar, weather, and tariffs
information) and outputs the d-dimension vectors µ and ln6
(it is usual to consider a log-transformation, see [27]). The
vector ln6 is also of dimension d . Indeed, only the diagonal
of the covariance matrix 6 is encoded since both approaches
(diagonal and full-matrix) were tested and there was no major
difference on the reconstruction loss (obviously the regular-
ization term is higher for a full covariance matrix). Since
considering a full-matrix (which is symmetric) increases the
dimension of encoders outputs (from 2d to d(d + 1)/2) and
the CVAE converges slower, we decided to keep a diago-
nal matrix to encode the covariance matrix 6. The random
variable Z is then sampled and given to the decoder as well
as the vector of exogenous variables X . Finally, the decoder
outputs Ŷ .

Once the CVAE is trained, the decoder is isolated and
used to generate data. For any day s, it is enough to sample
a random variables Zs ∼ N (0, Id ) in the latent space and
give it as input to the decoder, combined with a vector of
exogenous variables Xs (that could be taken from the original
data set or eventually created). Then, the decoder generates
a H -vector Ŷs that corresponds to a new randomly generated
daily consumption profile, for the day s and the contextual
variables Xs.

2) IMPLEMENTATION DETAILS
The CVAE were implemented by using the software
libraries Tensorflow and Keras in Python program-
ming language. The architecture of a CVAE is defined by the
latent dimension d as well as the number of layers and units
in encoder and decoder neural networks. We use dense layers
which are deeply connected neural network layers. Once the
architecture of the CVAEs is set, hyperparameters are chosen:
the neural activation functions, the initialization method for
neural weights and the parameter η, defined in Equation (7),
that balances the two terms of the loss. The choice of the
architecture and hyper-parameters calibration is detailed in
Section V-B.

In order to optimize a CVAE, so namely to compute
weights and bias for each neural of both the encoder and
the decoder, the loss is minimized by using the Adam opti-
mizer (see [40]), an extension of stochastic gradient descent
method, which is commonly used in deep learning and
already implemented in Keras. Note that the learning rate of
this optimizer is also an hyper-parameter to set before training
CVAEs.

Finally, the energy consumption records are rescaled to get
values between 0 and 1 by computing the maximum Ymax and
minimum Ymin of the energy consumption observed on the
train period. The generated value are re-scaled to get coherent
profile, mostly between Ymin and Ymax.

We recall that the data described in section III was divided
into two data sets: the training set contains 75% for the obser-
vations (sampled randomly from the complete data set) and
is used to train the CVAE (see Table 1); the testing set, made
with the remaining daily observations, is used to calibrate
hyper-parameters (see Section V-B). Finally, as CVAE may
converge into local minima, many CVAE are trained and the
testing set is also used to select the best one (see SectionV-D).

B. HYPER-PARAMETERS CALIBRATION
The process described below will be applied for each of
the cluster defined in Section IV, for which a half-hourly
energy consumption profile for each day of 2013 is
available.

1) METHODOLOGY
To perform CVAEs hyperparameter calibration we opt for a
grid search approach that is simply an exhaustive searching
through a manually specified subset of the hyperparameter
space. This optimization is guided by the performance metric
detailed below, which is simply an evaluation on a held-out
validation set. For each set of parameters, namely for each
point of the grid, we train a CVAE and test it according
to the procedure described below. Once the CVAEs have
converged, (we stop the convergence process when the loss
is not decreasing any more), we compute the mean squared
error (which corresponds to the reconstruction loss) on the
testing set made of the observations YT0+1, . . . ,YT :

MSE =
1

T − T0

T∑
t=T0+1

∥∥Yt − Ŷt∥∥2 where Ŷt = D(Zt ),

with

Zt ∼ N
(
µ(Yt ), 6(Yt )

)
. (8)

The architecture and hyperparameters of the CVAE hat
reaches to lowest MSE are kept.

2) RESULTS
We tested different values from 1 to 20 for the latent dimen-
sion d and reached a final value of 4, which is coherent with
the results in [27] for the daily energy consumption in France.
Moreover, we also performed a principal component analy-
sis (PCA) on the consumption data and found that 4 compo-
nents were enough to explain more 80% of the variance in the
data. We tested CVAEs with one or two hidden layers of 10,
15, 20 or 25 units per layer and concluded that an architecture
with a hidden layer of at least 15 neurons performed much
better than smaller architectures. We continued to increase
the number of layers or the number of neurons per layer,
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but without improvement in the MSE. Moreover, the number
of iterations necessary before convergence increased. So we
decided to keep a single hidden layer of 15 units for both the
encoder and the decoder.

Concerning the activation function of the neurons; recti-
fied linear unit (ReLU), linear, and sigmoid functions were
tested and there was no doubt that the best performance was
obtained with a ReLU activation function.

For the initialization of the network weights, we com-
pared various Keras initializers (Glorot uniform, HE nor-
mal, Lecun normal, Zeros, Ones) and a manual initializa-
tion with PCA (as described in [41]). We noticed that the
weigths initialization does not have a strong impact on
the results and therefore the Glorot uniform initializer was
selected [42].

For the regularization parameter η that balances the two
terms (reconstruction and regularization) in the loss function,
various strategies to tune its value already exist. For example,
[43] showed that a constant η > 1 may outperform clas-
sical VAE (defined with η = 1). Moreover, [44] and [45]
considered a moving parameter that gradually increases from
0 to 1 across iterations, linearly and according to a sig-
moid, respectively. We tried the three approaches and opted
for a constant regularization parameter equal to 10. Finally,
we tested various learning rates for Adam optimizer but did
not notice major variations in the performance, so we set it
to 10−3.

C. CONDITIONAL VARIABLES PREPROCESSING
We tried various combinations of the exogenous variables
described in Table 2 and selected the onewith the lowestMSE
on the testing set. For a day t , the conditional vectorXt gathers
the variables described below.

Without loss of generality, prices are categorical variables
(Low, Normal or High), so, for an day t and an half-hour h, the
prices pht are encoded into two binary variables 1pht =Low, and
1pht =High (if these two variables are null in the same time, the
tariff is Normal). The position-inside-the-year κt ∈ [0, 1] and
the binary variablewt for the type-of-day are also considered.
Taking into account the half-hourly temperature τ 1t , . . . , τ

H
t

significantly improves the MSE on the testing set, but the
dimension of the conditional variables vector is then quite
high. We tried to reduce the dimension of the temperature
profile and obtained better results. A PCA was performed
on the vectors made of all temperatures at day t (half-hourly
records and smoothed temperature). Three components were
enough to explain 98% of the variance. Therefore, we only
keep the three components provided by the PCA and re-scale
them between 0 and 1 to provide the variables τ̃ 1t , τ̃

2
t , τ̃

3
t .

Then, they are considered as conditional variables (the daily
temperature profiles (τ 1t , . . . , τ

H
t ) are not taking into account

anymore).
Therefore, for a day t , the vector of conditional variables

Xt is made of the binary variables wt , 1p1t =Low, . . . , 1pHt =Low,
and 1p1t =High, . . . , 1pHt =High and of the continuous variables
τ̃ 1t , τ̃

2
t , τ̃

3
t , and κt that lie in [0, 1].

D. SIMULATOR CREATION
Finally, we emphasize that CVAEs may converge into local
minima. To avoid it, each CVAE is trained 50 times and
the one with the lowest MSE on testing set is selected. For
each of the cluster presented in Section IV, we thus get a
CVAE that takes as inputs the daily energy consumption
profile Yt = (Y 1

t . . . ,Y
H
t ) of the considered cluster (which

is rescaled during the training process) and the conditional
vector Xt described above. Then, the decoder is isolated and
enables the generation of new data. Indeed, for a new vector
Xt ′ at a day t ′, which can either be created or extracted from
the data test, we sample a vector Zt ′ ∼ N (0, Id ) and give
these two vectors as inputs of the decoder, which outputs a
daily energy consumption profile. The quality of the gener-
ated data is evaluated in two situations. First, samples for
the conditional vectors XT0+1, . . . ,XT associated with the
training set are generated. Thus, we will measure the ability
of the data generators to forecast energy consumption (we
will see that we can deduce a foretasted density from the
generated samples). Secondly, we will create new vectors Xt
for which we modify the variables 1pht =Low, and 1pht =High in
order to measure the impact of tariff changes. These results
are presented in Section VII and compare them with data
generated according to a semi-parametric data generator pre-
sented below.

VI. SEMI-PARAMETRIC GENERATOR: ADDITIVE MODEL
The following semi-parametric method based on generalized
additive models (GAM), see [34], is proposed to generate
new daily consumption profile data. GAMs form a powerful
and efficient semi-parametric approach to model electricity
consumption (see, among others, [46]) as a sum of indepen-
dent exogenous variable effects. Here, we assume that there
exists a class of functionsF , such that, for a given half-hour h
and an instance t , with xht a vector of exogenous variables and
pht the tariff, the energy consumption expectation satisfies

E[Y ht ] = f h(xht , p
h
t ), f h ∈ F . (9)

After estimating the functions f h (we detail further the
set F and how GAMs may approximate these functions),
we could compute the residuals and try to fit a model on
them. They are centered, but a time dependence is observed,
so adding a independent white noise to each forecast will
not provide realistic profiles. It is important to note that the
same problem can be found in renewable energy uncertainty
forecasting and the need to generate scenarios (or trajectories)
with inter-temporal dependency structure for multi-period
stochastic optimization (see [25] for more details).

In this paper, we propose an approach based on a conjoint
estimation of bothmean and variation of the energy consump-
tion. Then, we tried to used Gaussian copula to create trajec-
tories, applying the methods proposed by Pinson et al. [25].
We faced an important problem: as soon as the function
f h is not very well-estimated, the residuals variance comes,
in majority, from the estimation error. More precisely, a bad
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estimation of the expected consumption leads to an increase
of the estimated standard deviation.

As the focus is on generating realistic a profile (and not
necessary on having the best forecast in expectation), the
standard deviation used to simulate data must reflect the
variability observed in energy consumption data. Thanks to
the causality model of Section IV-A, that is now fitted on
cluster consumptions (and not on individual ones), we can
estimate the standard deviation of the noise as a function of
the tariff and the half-hour h. We recall that we denote by
σ h(p) the approximation of the standard

√
Var[Y h(i) |P = p]

deviation associated with the half-hour h and the tariff p
– see Equation (2). It is used to normalize the residuals,
which should then be centered and of variance 1 (but not
independent). Finally, we consider the standardized residual
vectors and compute an estimation of their correlation matrix
6. We can now generate new data points this way:Y

1
t
...

YHt

 =
 f 1

(
x1t , p

1
)

...

f H
(
xHt , p

H
)
+ (σ 1(p1), . . . , σH (pH )

)TEt ,
where

Et ∼ N (0, 6). (10)

Functions (f h)16h6H are estimated with GAMs and the
exogenous vector xht gathers the temperature of the instance
at the considerate half-hour τ ht , the smoothed temperature
τ̄t , the position in the year κt , the binary variable wt ,
which is equal to 1 if the day considered is a week day
and 0 otherwise. For each half-hour h, we set the same
underlying GAM:

f h(xht , p
h
t ) = shτ (τ

h
t )+ s

h
τ̄ (τ̄t )+ s

h
κ (κt )

+αhwt + ξhLow1pht =low + ξ
h
high1pht =High. (11)

Therefore, F is the set of functions that can be written this
way. The shτ , s

h
τ̄ , and s

h
κ functions are catching the effect of the

temperatures and of the yearly seasonality. They are approx-
imated by cubic splines, i.e. C2-smooth functions made up
of sections of cubic polynomials joined together at points of
a grid (the knots). Fixing the number of knots k and their
position is sufficient to determine a linear basis of dimension
k in which these functions can be projected. The mgcv
R-package allows to estimate the coordinates of the splines in
their basis and the coefficients αh, ξhLow, and ξ

h
High that catch

day of theweek and tariff effects. Appendix E provides details
on the estimation of the correlation matrix6, which makes it
possible to model the correlations between the consumption
profiles of two half-hours of the same day, whereas keeping a
variance of the residuals that varies according to the half-hour
and the price.

VII. EVALUATION OF THE DATA GENERATORS
A. EVALUATION METRICS
By generating lots of energy consumption profiles from the
simulators, an estimation of their densities can be obtained.

Therefore, we use some proper scoring scores from proba-
bilistic forecast evaluation to assess the quality of our genera-
tors. The three scores detailed below allow to evaluate the data
generated on the testing period and compare both generators.
For a day t of the testing set, from the vector of exogenous
variables Xt , both generators output H -random vectors that
are assumed to be drawn from an underlying distribution
F̂t . These distributions approximate the true and unknown
H -dimensional distributions Ft from which the observation
(Y 1
t , . . . ,Y

H
t ) is actually drawn. We generate N = 200 sam-

ples Ŷ (1)
t , . . . , Ŷ (N )

t for each generator. From theseH -random
vectors, we can approximate the three scores described below,
that measure the adequacy between the observation vectors Yt
and the distributions F̂t .

First of all, for a distribution F , and a vector of
observation y, the root mean squared error is considered:
RMSE (F, y) =

∥∥E[Y ] − y
∥∥, where Y is a random vectors

distributed according to F . The first score is thus the RMSE
between the expectation of the distribution F̂t (which we
approximate with empirical mean of the generated samples)
and the observation Yt :

RMSE (F̂t ,Yt ) ≈
∥∥∥ 1
N

N∑
i=1

Ŷ (i)
t − Yt

∥∥∥ . (12)

Here, the expectation of the distribution F̂t is actually seen as
a forecast of the energy consumption Yt . But to evaluate the
quality of F̂t , a criterion including the variance and shape of
the densities is necessary.

The two other scores are proper scoring rules used to eval-
uate weather ensembles or temporal trajectories generated by
a statistical method (e.g., copula model). The energy score,
introduced by Gneiting and Raftery [47], generalizes the
univariate continuous ranked probability score (CRPS) and
is defined as

EN (F, y) = E
[∥∥Y − y∥∥]− 1

2
E
[∥∥Y − Y ′∥∥] , (13)

where Y and Y ′ are two independent random vectors that
are distributed according to F . This score is approxi-
mated by splitting the generated samples in two groups
Ŷ (1)
t , . . . , Ŷ (N/2)

t and Ŷ (N/2+1)
t , . . . , Ŷ (N )

t :

EN (F̂t ,Yt ) ≈
2
N

N/2∑
i=1

∥∥∥Ŷ (i)
t − Yt

∥∥∥
−

1
N

N/2∑
n=1

∥∥∥Ŷ (i)
t − Ŷ

(N/2+i)
t

∥∥∥. (14)

Moreover, for the first three days of the testing set (that are
actually the first three days of 2013), 20 samples generated
by the simulators for one of the 4 clusters, their empirical
means (computed on all the samples) and the corresponding
observations Yt are plotted in Figure 5. Plots of each cluster
can be found in Figure 7 of Appendix F.

Scheuerer and Hamill have shown that the ability of energy
score to detect correctly correlations between the components
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FIGURE 4. Boxplots. From left to right Root Mean Squared Error (RMSE), Energy Score and variogram for p = 0.5 evaluated for each day of the test period.

FIGURE 5. Electrical energy consumption profiles generated for a cluster of 158 households, over the first three days of the testing period, by using the
CVAE (left) and GAM (right) simulators; 20 energy consumption profiles (light grey lines) and mean profile calculated on 200 samples (bold grey line)
were obtained by giving to the two generators the exogenous variables observed over this period. Black line: observed profile.

FIGURE 6. Electrical energy consumption profiles generated for a cluster of 158 households subjected to a dynamic Time of Use tariff for the first day of
the data set test, by using the CVAE (left) and GAM (right) simulators; Dark grey lines: 20 energy consumption profiles, obtained by giving, to the two
simulators, a Normal tariff for every half-hour, as well as weather and calendar variables observed over this period. Black lines: same plots but with a
High tariff in the evening and Normal tariff otherwise. Light grey lines: same plots but with a Low tariff in the early morning and Normal tariff otherwise.

of the multivariate distribution was limited (see [48] for fur-
ther details). To remedy, they introduced the variogram score
of order p:

VGp(F, y) =
H∑

h,h′=1

(∣∣yh − yh′ ∣∣p
−E

[∣∣Y h − Y h′ ∣∣p])2

, (15)

where Y is a random vectors distributed according to F . On
simulated data, they compared the performance of different
scores (including the energy score) with the variogram scores
for various p. This score is approximated with:

VGp(F̂t ,Yt ) ≈
H∑

h,h′=1

(∣∣Y ht − Y h′t ∣∣p
−

1
N

N∑
i=1

∣∣∣∣(Ŷ (i)
t

)h
−

(
Ŷ (i)
t

)h′ ∣∣∣∣p)2

. (16)

We emphasize that for all the scores above, the smaller the
value, the better the forecast.

B. NUMERICAL RESULTS
For each cluster and each day t of the testing set, we compute,
for both generators (CVAE-based and GAM-based) the three
scores (thanks to the 200 generated samples). Results are
represented by boxplots in Figure 4.

It is quite difficult to discriminate significantly both gen-
erators from these scores, but some conclusions may still
be drawn. First, RMSE bloxplots and plots suggest that
GAM-based generators work better than those that use CAVE
when it comes to generating the average value of the original
data (which is approximated by the empirical mean of the
samples). However, the energy score is slightly lower for the
non-parametric approach (namely for CVAE-based simula-
tor) than for the semi-parametric one (GAM-based simula-
tor). Thus, the method that consists in adding a noise term
to a forecast in expectation may have some limits whereas
CVAEs seem to catch correctly the distributions of daily
energy consumption.

Experiments of [48] highlight that, when the estimation of
the average value of the original data is incorrect (namely
when the expectation of F differs from the expectation of y
in Equation (15)), variogram scores increase. Moreover, a too
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FIGURE 7. Electrical energy consumption profiles generated the CVAE-based generator (left) and GAM-based generator (right) for every cluster over the
first three days of the testing period. Light grey lines: 20 energy consumption profiles and empirical mean profile calculated on 200 samples (in bold)
were obtained by giving, to the two generators, the exogenous variables observed over this period. Black line: observed profiles.

low or a too high variance – when the variance of F differs
from the one of y – also increases variogram. Given the var-
iogram scores and the plots, we conclude that CVAE-based
generators face an estimation of expected energy consump-
tion worst than the semi-parametric generator but pro-
vide also samples with a too low variance. Conversely,
GAM-based generators provide sample with too much vari-
ance, which also leads to a quite high variagram score.

Moreover, in the CVAE approach, consumption values
from an half-hour to another are very correlated, when in the
semi-parametric one, consumption profiles are more erratic.
Observations suggest that the real variances and correlations
lie somewhere in between. The semi-parametric method is
very sensitive to the standard deviation σ h(p) estimations.

Thus, over-estimating these variances, provide, for sure, very
different samples, which may be also very erratic. Con-
cerning CVAE-based generator, the variance of the samples
could manually be increased by generating the decoder inputs
according to N (0, σ 2Id ) with σ > 1.

Finally, we emphasize that in the semi-parametric
approach, the variance depends only on the tariff and on the
half-hour, whereas in the CVAE, all exogenous variables are
taking into account. Moreover, the next section presents some
strong advantages of the CVAE generator.

C. IMPACT OF THE TARIFF
In these last experiments, for a day t of the testing set,
three different conditional vectors XNormal

t , XLow
t and XHigh

t
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FIGURE 8. Electrical energy mean profiles (computed over 200 samples) generated the CVAE-based generator (left) and GAM-based generator (right) for
every cluster over the first three days of the testing period. These profiles were obtained by giving, to the two simulators, a Normal tariff for every
half-hour and the weather and calendar variables observed over this period. Black lines: same plots but with a High tariff in the evening and Normal tariff
otherwise. Light grey lines: same plots but with a Low tariff in the early morning and Normal tariff otherwise.

are considered. The tariff is Normal for all the day long for
XNormal
t . For the vector XLow

t , Low tariff applies from 4:30 to
9:30 a.m., and Normal one otherwise, finally, tariff is Normal
expect from 7:30 to 10 p.m. where it is High for XHigh

t . For
all other components, namely for the calendar and weather
variables, XNormal

t , XLow
t , and XHigh

t are equal to Xt . For the
first day of the testing period, 20 samples generated by the
generators for one of the four clusters are plotted in Figure 6.
Empirical means (computed with all the samples) are plotted
for the first three days of the testing period and for each
cluster in Figure 8 of Appendix F.
For both data generators, an increase of the consumption

when tariff Low is applied and a decrease when the tariff is

High are observed. For the GAM-based generator, the effect
of the tariff is very interpretable, it is actually measured by
coefficients ξh

Low
and ξhHigh of equation (11). Thismodelmakes

actually this assumption that the tariff effect only depends on
the half-hour. Moreover, matrix 6 models the correlations
between the energy consumption at two half hours of the
same day; this implicitly assumes that these correlations do
not change according to the applied tariff profile. Conversely,
CVAE-based generator does not have this assumption and the
effect of a tariff may differ from a day to another.

Moreover, two effects that cannot be modelled by the
semi-parametric approach are observed. First, the fall of the
energy consumption occurs a little bit before the effective
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establishment of a special tariff High and continues a lit-
tle after it is stopped. Thus, the effect of the High tariff
exceeds the time window in which the special tariff is actually
applied. This is called a side effect. Secondly, in comparison
to a day of Normal tariff, when tariff Low is applied in the
morning, there is a drop of the consumption in the afternoon
and evening. Similarly, we observe a little increase of the
consumption in the afternoon when the tariff is High during
the evening. Therefore, the fall or rise in consumption shifts
to another time of the day when a special tariff is applied over
a time window. This is called a rebound effect. These side and
rebound effects are well known behaviors of consumers and
it is very valuable that the generator detects them. The main
drawback of this non-parametric generator is the generation
of non-intuitive consumption profiles when the input is a
tariff profile never observed in the training set, like an entire
day of High tariff for example. This shows that the method
has a limited generalization capacity. Enlarging the data
set, especially the variety of price signals, would eliminate
this limitation. On the other hand, for a full day of tariff
High, the semi-parametric model generates samples with an
energy consumption below the typical one for each half-hour,
which is unrealistic since electricity uses cannot be delayed
indefinitely.

Figure 8 of Appendix F shows that
tariff-responsiveness vary from a cluster to another, i.e.,
rebound or side effects are not always observed and the
amount of electricity over or under consumed also depends
on the considered cluster. These results fully illustrate the
motivation behind the use of the causality model to cluster
consumers.

VIII. CONCLUSIONS
This paper proposed a data-driven and non-parametric
methodology, based on CVAE, for generating synthetic
energy consumption profiles for households enrolled in a DR
program with different tariff schemes. The results for the
largest data set publicly available (released by UK Power
Networks) show that the proposed non-parametric generator
captures correctly the effect of the exogenous variables and
performs almost as well as the benchmark semi-parametric
generator to generate the mean value of the original data.
Besides and above all, the whole point of the CVAE approach
comes from its ability to capture the effect of a daily tariff
profile on the daily consumption profiles. Indeed, unlike the
semi-parametric generator that only captures the effect of a
special tariff for the half-hours affected by this tariff change,
the generator built from a decoder of a CVAE provides
daily consumption samples for a daily tariff policy, including
rebound and side effects. Moreover, for the same conditional
variables as inputs, the generated samples differ from one
group of consumers to another. Thus, the proposed clustering
approach divides correctly the households according to their
responsiveness to a tariff profile.

Finally, to deal with the lack of variability in the sent tariff
profile of the original data set, we could imagine an online

data generator: when a new tariff profile is sent, the observed
consumption is integrated in the training set and the data
generator is updated. The use of transfer learning methods
could also improve the realism of the generated data. This
machine learning field focuses on storing knowledge gained
while solving one problem and applying it to a different but
related problem.

Therefore, by combining data sets of consumer respon-
siveness to various DR programs (i.e. by combining diverse
knowledge of electricity demand in the face of tariff changes),
a data set with a higher variability in the sent tariff pro-
files may be obtained. These data generators could be very
useful to test potential future DR policies, before deploying
such solutions in consumer households. Another topic of
interest is the extension of the proposed model to consider
privacy of the smart meter measurements and where recent
research in privacy-preserving machine learning is a promis-
ing approach [49].

APPENDIX
A. EXPONENTIAL SMOOTHING
This section describes the construction of the exogenous
variable τ̄t , which is a smoothed air temperature (that mod-
els the thermal inertia of buildings, with the a-exponential
smoothing. To do so, London temperatures are considered as
a 1-dimensional half-hourly time series τ 11 , . . . , τ

H
t , τ

1
2 , . . .

and not anymore as H -dimensional profiles. For any day
t ∈ {1, . . . ,T }, and any half-hour h ∈ {1, . . . ,H} the
smoothed temperature is defined by

τ̄ ht =


τ 11 if t = 1 and h = 1
(1− a)τ ht + aτ̄

h−1
t if h 6= 1

(1− a)τ 1t + aτ̄
H
t−1 else,

(17)

where the smoothing parameter a is in [0, 1]. After testing
several values, we set a = 0.998. Then, for a given day
t ∈ {1, . . . ,T }, τ̄t is simply the daily average smoothed
temperature:

τ̄t =
1
H

H∑
h=1

τ̄ ht . (18)

B. CAUSALITY MODEL
In the following, we detail models that were used to compute,
for each household i and for each tariff p ∈ P , the daily
profile of the mean and the standard deviation of household
i energy consumption. We recall that these profiles are then
used to cluster households. Therefore, we have to estimate,
for each half-hour h, the expectation and the standard devia-
tion of the random variable Y h(i) |P = p. To do so, we train
a model that gives, for the tariff p and the exogenous vari-
ables xh, a forecast of the expected consumption at h when
tariff p is selected and a forecast of the standard deviation
of this consumption. For any exogenous variable xht and
tariff pht , the random energy consumption Y ht (i), of house-
hold i at the half hour h of the day t , is assumed Gaus-
sian of mean µi(xht , p

h
t ) and standard deviation σi(xht , p

h
t ).
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Moreover, we assume that these mean and standard
deviation:

µi,h(xht , p
h
t ) = E

[
Y ht (i)

]
(19)

and

σ i,h(xht , p
h
t ) =

√
Var

[
Y ht (i)

]
, (20)

depend on additive smooth predictors. Generalized additive
models (GAM– see [34]) maymodel electricity consumption
(see [46]) as a sum of independent exogenous variable effects.
Here, they are used to estimate conjointly, for any half-hour
h of a day t and any tariff p ∈ P , both µi,h(xht , p) and
σ i,h(xht , p). These approximations are denoted by µ̂i, h(xht , p)
and σ̂ i,h(p, xht ), respectively. For each half-hour h, we set the
same underlying models:

µi,h(xht , p
h
t ) = si,hτ (τ ht )+ ξ

i,h
L 1pht =Low

+ ξ
i,h
N 1pht =Normal + ξ

h
H1pht =High (21)

σ i,h(xht , p
h
t ) = γ

i,h
L 1pht =Low
+ γ

i,h
N 1pht =Normal + γ

h
H1pht =High . (22)

where si,hτ , the function catching the effect of the temperature,
is approximated by a cubic spline. Fixing the number of knots
k and their positions is enough to determine a linear basis
of dimension k in which this function can be projected. The
mgcv R-package permits to estimate the coordinates of the
spline in its basis and all the coefficients ξ i,hL , ξ i,hN , ξ i,hH , γ i,hL ,
γ
i,h
N , and γ i,hH defined in Equation (22), which catch tariff

effect. We highlight that models fitted on variances are linear.
Both models (on mean and standard deviation) are estimated
simultaneously, by setting the model family parameter of the
gam function to the Gaussian location-scale model family.

Once the function and coefficients have been estimated (we
write ŝ i,h for the estimation of si,h and so on), for any tariff p,
the estimations µ̂i,h(xht , p) and σ̂

i,h(p, xht ) are computed:

µ̂i,h(xht , p) = ŝ i,hτ (τ ht )+ ξ̂
i,h
L 1p=Low

+ ξ̂
i,h
N 1p=Normal + ξ̂

h
H1p=High (23)

and σ̂ i,h(p, xht ) = γ̂
i,h
L 1p=Low
+ γ̂

i,h
N 1p=Normal + γ̂

h
H1p=High. (24)

Finally, the approximations of tariff impact are provided by:

E
[
Y i,h |P = p

]
≈

1
T

T∑
t=1

µ̂i,h
(
p, xht

)
(25)

and
√
Var

[
Y h |P = p

]
≈

1
T

T∑
t=1

σ̂ i,h
(
p, xht

)
. (26)

C. CLUSTERING METHOD
Here, the three steps of the clustering method proposed in
Section IV are detailed.

1) SCALING AND GATHERING PROFILES
For an household i ∈ I, for all p ∈ P , the daily expected con-
sumption profileµ1

i (p), . . . , µ
H
i (p) is considered. We assume

that there is a base tariff p0 ∈ P that corresponds to a
signal of no incentive, namely Normal tariff. We consider the
quantity µ̄i = 1

H

∑H
h=1 µ

h
i (p0) that is an approximation of

the average daily expected consumption of household i under
no DR program.

Then, all the profiles of household i are rescaled by this
quantity and, for each tariff p ∈ P , the daily consumption
profiles under tariff p of all the households i ∈ I are
gathered in a matrix M(p) ∈ M|I|×H . Finally, the matrix
M ∈ M|I|×H |P | is created by binding by column matrices
M(p), so

Mi,h(p) =
µhi (p)

µ̄i

and

M =
(
M
(
1
) ∣∣∣ . . . ∣∣∣ M(P)) . (27)

a: LOW RANK APPROXIMATION
Since we are interested in energy consumption, all the coef-
ficients of M are non-negative – we will write M > 0
and say that this matrix is non-negative. To reduce dimen-
sion of non-negative matrices, the factorization method pro-
posed by [50] and [51] that uses non-negativity constraints
is considered. The integer r � min(|I|,H |P|) that will
ensure a reduction of the dimension is fixed (we chose r =
5 in our case study). The non-negative matrix factoriza-
tion (NMF) approximates matrix of profiles M with WH
by minimizing the euclidean distance between both matrices
under the constraint that W and H are non-negative matrices
of size |I| × r and r × H |P|, respectively. Function NMF of
the Python-library sklearn.decomposition allows
to approximate W and H with a coordinate descent solver.
For simplicity of notation, W is confounded with its approx-
imation. Thus, for any household i ∈ I, we get r features,
namely the ith line of matrixW, that we denote byWi · in the
following.

2) k-MEDOID CLUSTERING
Now, the vectors Wi · allow to cluster households in k
clusters.

In k-means clustering, the center of a given cluster is
simply the average between the points of this cluster. Since
it can be influenced by extreme value, k-means algorithm is
sensitive to outliers. Conversely, k-medoid algorithm chooses
data points to represent clusters, which makes it more robust
and favors a clustering where clusters have sizes of the same
order. This algorithmwas introduce by [52]with theL1-norm.
Here, we use it with the Euclidean distance and the best
clusteringC?1 , . . . ,C

?
k is the one that minimizes the following
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criteria:{
C?1 , . . . ,C

?
k

}
∈ argmin
{C1,...,Ck }

k∑
`=1

∑
i∈C`

∥∥Wi · −WC` ·
∥∥2

with

C` ∈ argmin
i∈C`

∑
j∈C`

∥∥Wi · −Wj ·
∥∥2, (28)

where ‖ · ‖ is the Euclidean norm. The clusters are computed
by using KMedoid function implemented in the Python-
library sklearn_extra.

D. VARIATIONAL AUTOENCODER
The calculations below are an adaptation of the ones pro-
posed by [36] to our case-study. The generation of the data
is assumed to follow a two-steps process: firstly, a vari-
able Z was sampled from a standard Gaussian and then, Y
was sampled from the distribution pθ? ( · |Z ). The decoder,
parametrized by θ , can model this process: with Z ∼

N
(
0, Id

)
as input, it generates the variable Y , conditionally to

Z , by sampling it from pθ ( · |Z ), which is an approximation
of the true distribution pθ? ( · |Z ). In our generation process,
we will denote by qY (Z ) the approximation made by the
encoder of the density of Z |Y . The variational autoencoder
is trained in a way that qY is the Gaussian of mean µ(Y )
and covariance matrix 6(Y ), where µ(Y ) and 6(Y ) are the
outputs of the encoder for the input Y . For Y ∈ RH , by using
Bayes’ theorem and the variables Z sampled from the encoder
distribution qY , the log-marginal likelihood pθ (Y ) satisfies

ln pθ (Y ) = EZ∼qY
[
ln pθ (Y )

]
= EZ∼qY

[
ln
pθ (Y |Z ) pθ (Z )

pθ (Z |Y )

]
= EZ∼qY

[
ln

qY (Z )
pθ (Z |Y )

+ ln
pθ (Z )
qY (Z )

+ ln pθ (Y |Z )
]

= DKL
(
qY (Z ) || pθ (Z |Y )

)
− DKL

(
qY (Z ) || pθ (Z )

)
+EZ∼qY

[
ln pθ (Y |Z )

]
. (29)

The first term corresponds to the error made by approximat-
ing the distribution pθ ( · |Y ) with qY . Thus to conjointlymaxi-
mizing the log-likelihood and minimizing this approximation
error, the loss

DKL
(
qY (Z ) || p(Z )

)
− EZ∼qY

[
ln pθ (Y |Z )

]
, (30)

has to be minimized. The two parts of the equation above are
known as the regularization term and the reconstruction term,
respectively. We recall that qY is the Gaussian distribution
of mean µ(Y ) and of covariance matrix 6(Y ) and that we
assume Z ∼ N

(
0, Id

)
, so the regularization term is the

Kullback–Leibler divergence betweenN
(
µ(Y ), 6(Y )

)
and a

standard d-multidimensional normal distribution. Moreover,
we highlight that if the decoder samples Y |Z from a distribu-
tion of the exponential family,

pθ (Y |Z ) = a(Y )b(Z ) exp
(
η(Z )T (Y )

)
, (31)

with θ gathering the functions a, b, η, and T . Then, the second
term is explicit. But, for a given Z , the decoder outputs a
unique vector D(Z ) = Ŷ , so inferring the previous distri-
bution is a tough task. Nevertheless, assuming that Y |Z is
a multivariate Gaussian of mean D(Z ) and with a known
covariance matrix σ 2Id , a very simple expression of the
regularization term is obtained:

− ln pθ (Y |Z ) =
1

2σ 2

∥∥Y − D(Z )
∥∥2
2 − ln

(
2πH/2σ

)
. (32)

Therefore, the loss defined in Equation (30) can be re-written:

1
2σ 2

∥∥Y − Ŷ∥∥22 + DKL
(
N
(
µ(Y ), 6(Y )

)
||N (0, Id )

)
. (33)

Under all the assumptions above, and given the independent
observations Y1, . . .YT0 , to obtain the generative process that
best models the real one, we will thus consider the loss

LVAE(η) =
1
T0

T0∑
t=1

(∥∥Yt − Ŷt∥∥2
+ ηDKL

(
N
(
µ(Yi), 6(Yi)

) ∣∣∣∣N (0, Id )
))
. (34)

We recall that the vectors Ŷt are the outputs of the
decoder D(Zt ), where the random variable is sampled
from a d-multivariate Gaussian of mean µ(Yt ) and covari-
ance matrix 6(Yt ). This loss is conjointly maximizing the
log-likelihood of the observation with the data generation
process distribution:

ln pθ (Y1, . . .Yt ) =
T0∑
t=1

ln pθ (Yt ) (35)

and minimizing the approximation error

T0∑
t=1

DKL
(
qYt (Z ) || pθ (Z |Yt )

)
. (36)

It is important to underline that the previous calculations
are still valid when all the distributions are conditioned by
exogenous variables.

E. CORRELATION MATRIX OF SEMI-PARAMETRIC
GENERATOR
Here the estimation of the matrix6, which is used to generate
profiles with correlations between temporal intervals of the
same day, is detailed. If the model defined by Equation (10)
was true, residuals Y ht − f h(xht , p

h
t ) should be Gaussian of

mean 0 and standard deviation σ h(pht ). Thus the vector of
standardized residuals et = (eht )16h6H is considered, where

eht =
Y ht − f

h(xht , p
h
t )

σ h(pht )
. (37)

Assuming the model above, the covariance matrix 6 of vec-
tors e1, . . . , eT0 should have 1 on the diagonals and all other
coefficients between −1 and 1. To deal with our imperfect
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modeling and avoid again the problem of high standard devi-
ation coming from the estimation error,6 is approximated by
the empirical correlation matrix of vectors e1, . . . , eT0 . From
the T0 observations e1, . . . , eT0 , which are assumed indepen-
dent, of the H -dimensional random vector e = (e1, . . . , eH ),
the coefficients of theH×H -correlationmatrix6 are defined
by

6i,j =
cov(ei, ej)√
Var(ei) Var(ej)

,

where

cov(ei, ej) = E(eiej)− E(ei)E(ej) . (38)

We point out that in the case of random variables e1, . . . , eH

of standard deviation 1 (we assume it in the semi-parametric
simulator described in Section VI), covariance and correla-
tionmatrices are equal. In there,6i,j is estimated by replacing
covariances and variances of random variables ei and ej by the
their empirical estimations:

cov(ei, ej) ≈
1

T0 − 1

T0∑
t=1

(
eit − ē

i)(ejt − ē j) (39)

and

Var(ei) ≈
1

T0 − 1

T0∑
t=1

(
eit − ē

i)2 , (40)

with

ē i =
1
T0

T0∑
t=1

eit .

F. EXPERIMENTS - GRAPHICAL RESULTS
See Figures 7 and 8.
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