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ABSTRACT In the presence of the increasing penetration of electric vehicles (EVs) and conflict of
independent optimization objectives among each electric vehicle aggregator (EVA), real-time optimal
scheduling (RTOS) of large-scale EVs based on dynamic non-cooperative game approach is proposed for
optimal decision makings in a dynamic pricing market. First, real-time optimal scheduling framework is
designed to describe the flow of energy and information. Then, equivalent model of large-scale EVs is
formulated to address ‘“‘curse of dimensionality”’ caused by a large number of decision variables. Then,
the potential game theory is used to study the existence and uniqueness of the Nash equilibrium (NE) solution.
Finally, a distributed approach based on alternating direction method of multipliers (ADMM) is designed to
achieve the equilibrium. Case studies demonstrate that the proposed approach achieves peak load shifting
and reduces cost of EVAs significantly. Furthermore, the proposed method obtains higher-quality solution
compared with other methods and is more applicable for real-time optimal scheduling of large-scale EVs
due to its high computation efficiency and privacy protection.

INDEX TERMS Large-scale electric vehicles, real-time optimal scheduling, dynamic non-cooperative game,

distributed optimization.

NOMENCLATURE Erin,m () lower cumulative energy trajectory boundary
A. SETS of EVC m at time-slot ¢
N setof EVAs {1,...,N} Emax.m(t)  upper cumulative energy trajectory boundary
T  setof timeslots {1,..., T} of EVCm at time-slot 1 _
K, setoftime slots {z,..., T} P, charg%ng power of EVC m 'at t1me-s.10t t
K, set of time slots {r+1,..., T) P m(2) c'hargmg power of EVC m in EVA i at
time-slot ¢
Prin,m(t) minimum allowed charging power of EVC
B. VARIABLES m at time-slot ¢
Egy(r)  cumulative energy trajectory of EV at time-slot Pmax.m(f)  maximum allowed charging power of EVC
t m at time-slot ¢
Pey(t)  charging power of EV at time-slot ¢ Prinm./(t)  minimum allowed charging power of
Pnin(t)  minimum allowed charging power of EV at [th EV in EVC m at time-slot ¢
time-slot ¢ Prax.m,1(t) maximum allowed charging power of /th EV
Prmax(t) maximum allowed charging power of EV at in EVC m at time-slot ¢
time-slot ¢ Ci(t) electricity purchasing cost of EVA i at
E,. (1) cumulative energy trajectory of EVC m at time ¢ time-slot ¢
p(t) dynamic electricity price at time-slot ¢
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Qim(t) electricity purchasing quantities of EVC m in
EVA i at time-slot ¢

Ui(t) user group satisfaction of EVA i at time-slot ¢

Fi; self-optimization objective function of EVA i at
time-slot ¢

QOwotal(t)  total electricity supply of DSO at time-slot ¢

Qsum(?)  sum of electricity purchasing quantities of all
EVAs at time-slot ¢

p(t) electricity price at time-slot ¢

x(1) decision vector of all EVAs

x;(1) decision vector of EVA i at time-slot ¢

x_i(t) decision vector of all EVAs other than EVA i
at time-slot ¢

*NE(p) Nash equilibrium solution of all EVAs at time-
slot t{xlNE(t), ieN}

xlNE(t) Nash equilibrium solution of EVA i at time-
slot ¢

xﬂi(t) Nash equilibrium solution of all EVAs other
than EVA i at time- slot ¢

Xi(t) decision vector space of the EVA i at time-slot ¢

P(x(t))  potential function

C. PARAMETERS

Emin(®) lower cumulative energy trajectory boundary
of EV at time-slot ¢

Emax (1) upper cumulative energy trajectory boundary
of EV at time-slot ¢

n efficiency of charging

At time interval

farrs tdep arrival and departure time of EV

Eexp expected charging demand of EV

PEV, max maximum allowed charging power of EV

Rt number of EVs in EVC m at time-slot ¢

Enminm1(t) lower cumulative energy trajectory boundary
of the /th EV in EVC m at time-slot ¢

Emax.m,1(t) upper cumulative energy trajectory boundary
of the /th EV in EVC m at time-slot ¢

M, number of EVC at time-slot ¢

wi(t) satisfaction morphological parameter of EVA
i at time-slot ¢

A satisfaction coefficient of EVA i at
time-slot ¢

Omax.i,m(t) maximum allowed electricity quantities of
EVC m in EVA i at time-slot ¢

QOload(t) conventional load profile at time-slot ¢

N number of EVAs under control of DSO

8(1) electricity price coefficient at time-slot ¢

Pmax maximum allowed electricity price

Omax maximum allowed power supply of the DSO

T number of total scheduling periods

P penalty coefficient

u Lagrangian multiplier
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D. INDICES

t  index of scheduling periods
z index of iterations

E. ABBREVIATIONS

EV electric vehicle

EVA electric vehicle aggregator

EVC electric vehicle cluster

RTOS real-time optimal scheduling

DSO distributed system operator

MPC model predictive control

NE Nash equilibrium

ADMM alternating direction method of multipliers

I. INTRODUCTION

Electric vehicle (EV) has attracted enormous attentions
around the world with its significant advantages in low
pollution emission and energy saving [1]-[3]. So far, many
countries have promoted the deployment of EV [4], e.g.,
United States, China, and Japan.

Under the increasing EV penetration, the uncoordinated
scheduling of large-scale EVs challenges the reliable and
economic operation of power system [5], e.g., transformer
overloading and voltage violation. However, coordinated
scheduling of large-scale EVs can assist in automatic gener-
ation control or integrated energy system dispatch [6], [7].
Thus, real-time optimal scheduling (RTOS) of large-scale
EVs has attracted significant attentions in recent years for
its remarkable performance of peak load shifting and cost
saving. Typically, real-time coordination of EV charging was
studied to minimize power losses and improve voltage profile
in [8]. RTOS for parking lots considering the renewable
resources was presented in [9]. RTOS for electric vehicle
aggregator (EVA) in a market environment was studies
in [10]. A convex quadratic programming framework for
RTOS is proposed to reduce the computing time in [11].

However, the aforementioned studies consider explicit
single EV model in optimization, which leads to enormous
computation and large data communication when large scale
EVs access to the power system. It is more complex to
perform RTOS than day-ahead optimal scheduling with large
scale EVs access, because the behavior characteristics of EVs
are highly random and speed of computation must be fast
enough to meet the real-time requirement [12].

To apply RTOS of large-scale EVs, there are the following
three issues should be considered:

1) High bandwidth data communication requirement and
the ““curse of dimensionality” caused by traditional single EV
modeling with the increasing EV penetration.

2) Systematic uncertainty: including factors such as EV
owner behavior, EV information differences, and forecast
accuracy of future EV arrival and so on [13].
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3) Sequential decision-making: since the decision-making
of RTOS in a certain period of time needs to consider the
system changes in multiple stages in the future. EV charging
incorporates temporally coupled SOC constraints. Thus,
the impacts of current decision to the future have to be
considered.

To tackle the above-mentioned challenges, equivalent
model of large-scale EVs is introduced to address ‘“‘curse
of dimensionality” problem [14], [15]. In [14], individual
EV charging constraints were aggregated upwards in a
tree structure. In [15], the cumulative charging energy and
power boundaries of all EV were aggregated. Besides, model
predictive control (MPC) is the most widely used method
to address uncertainty and sequential decision-making
problem. For example, in [16] and [17], using the his-
torical data, MPC was adopted to clear the real-time
transactive market by assuming the future responses are
known [18].

At present, the existing research focused on RTOS is
usually from the grid-side perspective and adopts centralized
algorithm to achieve the optimal operation [19], [20].
However, in the scenario of electricity market, EVA becomes
the independent agent to individually make decision [21]
and lay emphasis on protecting its commercial privacy
data [22]. Therefore, it is necessary to consider the dynamic
non-cooperative scheduling among EVAs.

So far, game theory has been gradually applied to EV opti-
mal scheduling [23]-[25]. Reference [23] used Stackelberg
game to maximize the benefits of EVA and EV owners.
However, uncertainties of EV behaviors were not considered.
Reference [24] proposed a cooperative and non-cooperative
optimal scheduling model based on robust Stackelberg game
considering the uncertain charging demand. Reference [25]
proposed an optimal scheduling for EVs based on dynamic
non-cooperative game. However, all the above-mentioned
works study day-ahead scheduling and are difficult to be
apples in RTOS. Besides, the above research is based on a
single EV as an optimized unit, which is not suitable for
large-scale EVs.

In view of the shortcomings of the existing research, this
paper studies RTOS of large-scale EVs based on dynamic
non-cooperative game. The main contributions of this paper
are summarized as follows:

« A dynamic non-cooperative game approach is intro-
duced to RTOS of large-scale EVs. The existence of the
unique Nash equilibrium (NE) solution is proved by the
exact potential game theory.

o The centralized optimal problem is decomposed and
solved by distributed algorithm based on ADMM, thus
the optimal real-time solution can be rapidly made by
each EVA.

e A RTOS of large-scale EVs based on MPC and the
equivalent model of large-scale EVs are developed
to avoid “curse of dimensionality” and reduced the
computing complexity. The computing time is short and
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grows slowly as number of EV and EVA increases, thus
it is applicable to RTOS of extremely large-scale EVs.
The remaining of this paper is organized as follows.
Section II designs the framework of RTOS. Section III
introduces the optimization problem formulation. Section IV
introduces an improved solution method. Case studies
are carried out in Section V. Finally, Section VI briefly
summarizes the paper.

Il. FRAMEWORK OF REAL-TIME OPTIMAL SCHEDULING
The framework of RTOS is designed in this paper. As shown
in Fig. 1. The framework consists of two entities, i.e.,
distributed system operator (DSO) and EVA. DSO supplies
electricity to all EVAs and conventional load within its
jurisdiction, and coordinates the charging plan of all EVAs.
EVA develops a charging plan to minimize its own costs
(maximize its own revenues), which needs to consider the
status of EVs that have arrived at present and will arrive in the
future. There are various forms of EVA, e.g., stand-alone EV
charging stations, parking lots of large shopping mall with
charging piles, or a collection of all distributed household
charging piles in a certain area.
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FIGURE 1. Framework of real-time optimal scheduling.

With the help of high-speed communication means such
as 5G network and optical fiber communication, DSO
broadcasts dynamic electricity price to EVAs in real-time
in order to guide EVAs to transfer the charging load from
high consumption period to low consumption period. At the
same time, DSO receives the charging plan of all EVAs, and
considers the predicted information of the conventional load
in the area to adjust the dynamic electricity price in real-
time [26], [27]. After receiving the dynamic electricity price,
EVAs will update their charging plans considering their own
optimization target and EV information and then, upload the
updated plan back to DSO. The cycle will continue until the
power is balanced.
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lll. PROBLEM FORMULATION
A. EV MODELING

The mathematical model of EV model can be described as:

t

Epy(t) = E(tar) +1 Y Pev(k)At

k=tarr
=E@{ — 1)+ nPev(t)At
Emin(tdep) = Emax(tdep) = Eexp
Emin(?) < Egv(?) < Emax(?) (D

Emax(t) - E(t - 1)
nAt )
—Et-1)

nAt )
Prin(?) < Pev(?) < Prmax(?)
where the charging power of each EV is maintained constant

during each time-slot. Therefore, the flexibility of EV can be
represented by its cumulative energy boundaries.

Prax(t) = min (PEV,max»

Ein(?
Pumin(f) = max (0, min(?)

E “ €] e—C) e3
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FIGURE 2. Cumulative energy boundaries modeling of EV.

As shown in Fig.2, an EV with expected charging demand
Eexp arrives at fy; and departs at fgep. The curve a-b-d is
the upper cumulative energy boundary Epnax(¢), indicating
that EV is instantaneously charged at the maximum charging
power after arriving at the EVA until its cumulative energy
trajectory Egv(?) reaches the Eexp. While the curve a-c-d
is the lower cumulative energy boundary Ep;,(¢), indicating
that charging is delayed after arriving at the EVA as long as
possible without charging demand loss. The slope of the lines
a-b and c-d equals to the maximum practical charging power
T)P EV,max-

Himit = farr + M (2
NPEV,max

For a single EV, a single EV energy boundary model
exhibits a ‘“‘parallelogram” configuration. In general,
the longer the EV is connected to the EVA, the stronger its
adjustable capability is, the wider the model shape is, and the
narrower the opposite.In general, the residence time of EV
at EVA determines its schedulability. #jjmi; iS the boundary
charging time to distinguish whether the charing scheduling
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of EV is available. When the EV owner sets the #4¢p less than
Himit, the EV does not have the schedulability.

B. EQUIVALENT MODEL OF ELECTRIC VEHICLE CLUSTER
In order to overcome “curse of dimensionality”” caused by
large-scale EVs, EVs with the same departure time which
is set by the EV owner are classified into the same electric
vehicle cluster (EVC). Based on the EV modeling of EVs
in the same EVC, the equivalent models of EVCs can be
described as:

t
En() =1 Puk)Ar = En(t — 1)+ nPu()Al
Nm,t
Emin,m(t) = =1 Emin,m,l(t)
Nm,t
Eman() = )" Emaxan1 (1)
Emin,m(t) < Em(t) =< Emax,m(t) (3)
Nt
Pu() =) " Pui(®)
- N, t
Pmin,m(t) = Z Pmin,m,l(t) =< Pm(t)

=1
N,
Pmax,m(t) = ]=1l Pmax,m,l(t) = Pm(t)

Remark 1: Equivalent model of EVC is equivalent to the
large-scale EVs, which indicates that there always exists
at least one reallocation strategy satisfying Eq.(1) if the
charging power of EVC meets Eq.(3). (Detailed proof can be
found in [28]).

Note that Emin,m(?), Emax,m(®), Pmin,m(t) and Pmax,m(?) of
EVC m (for m € K;) can be calculated by EVA according
to the real-time information of arrived EVs, while Enin n(k),
Emax,m(k), Pmin,m(k), and Ppax m(k) of EVC m (for m €
K; and k € K}) need to be forecasted based on historical
information and some real-time information. Introducing the
equivalent model of EVC can reduce and fix the number
of decision variables in the RTOS, which means that the
scale of EVs does not affect the number of decision variables
and the “curse of dimensionality” can be avoided after EV
large-scale access.

C. OBJECTIVE FUNCTION OF EVA

In the current time-slot ¢, EVA i aims to minimize the value
of its own objective function, which includes the payment to
the PSO over time period 7 minus the satisfaction of the EV
owners. Higher charging satisfaction helps EVA reduce user
churn and increase its long-term benefits. The EV owners
hope that their EV's can be charged as early as possible to meet
their next travel (especially when the owners need to use EVs
in advance with sufficient power). The objective function of
EVA can be obtained as:

minF; = E (- Z; Ui(t) + Z; C,'(t)) )
K,

G = 00 =p) Y 010 §)

Ui = w3

m=t

1 Q20 + 20max.im()Qim(1))
6)
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Qi,m(t) = Pi,m(t) - At (7)
t
wi(t) = T)»i (8)

where E is the desired operator; w;(z) is in $/(kW- h)? or
$/(MW- h)?> which is monotonically increasing and non-
negative; A; indicates the importance of each EVA to user
satisfaction.

Note that it is difficult to solve or calculate Eq.(4) directly,
due to the system state of EVA in the future time is unclear
at the current time-slot ¢. Therefore, the MPC theory is
introduced to deal with the uncertain problems in future time.
The objective function of EVA can be converted into new
form and divided into two parts(current time and future),
which can be expressed as:

min F;, = —U,~(z)+c,~(t)—z;+1 U,~(r)+z;+1 Ci(v)
O

At each optimization time-slot ¢, EVA makes the opti-
mization decision over time period C; based on the known
information and forecasting information, but only the first
part of decision(current time-slot 7) can be adopted to
schedule large-scale EVs.

D. DYNAMIC ELECTRICITY PRICE SCHEME

The DSO is responsible for providing power to the conven-
tional load and all EVAs in real time. Therefore, the total
power supply from DSO and the total power requirement of
all EVAs can be expressed as:

Orotal(?) = Oload(t) + Osum(?) (10)
N
Qum(®) =) Qi(0) (1)

The aim of DSO is to perform the peak load shifting and
production cost reducing. By adopting a reasonable dynamic
electricity price scheme, EVA is motivated to shift the
charging load from the peak of the system load to the bottom,
which not only reduces the peak-to-valley difference of the
system load, but also reduces the risk of grid operation. For
example, in the period of high load, high electricity price can
be set to suppress the charging desire of each EVA, so the risk
of exceeding the capacity of the transformer can be avoided,
and the peak clipping effect can be achieved. In the period
of low load, the transformer capacity is sufficient, so the
low electricity price can be set to stimulate EVAs. Generally
speaking, DSO has to set the dynamic electricity price based
on the load ratio of the transformer [29]. A common dynamic
electricity price scheme can be expressed as:

p(t) = 8(t) - Qrorat(?) (12)
1

§ = — Pmax 13

Omax” (13)

where pmax 1S set by the DSO based on the government
policies limit or the practical experience of the grid.
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IV. SOLUTION METHODOLOGY

A. DYNAMIC NON-COOPERATIVE GAME MODEL
According to the dynamic electricity price provided from
DSO, considering their own benefits, EVAs will actively
adjust their charging plans to minimize their own value of
objective function. In addition, each EVA is competitive with
each other and has no cooperative relationship with each
other, which indicates that the game model proposed in this
paper is a dynamic non-cooperative game model.

According to the non-cooperative game theory, each EVA
is regarded as an individual rational and selfish game player,
and there is no direct connection and no mutual restraint
agreement among them. In the process of dynamic game,
each EVA always pursue the minimum of value of objective
function. Therefore, the interaction among EVAs can be
described as the follow:

Game 1: EVAs’ Dynamic Non-cooperative Game:

1) Players: All EVAs within the jurisdiction of the DSO;

2) Strategies: The strategy of EVA i at the time-slot ¢ is
xi(t); x_i(¢) is the strategy set removing the strategy of EVA
i x(t) ={xi(t),i € N'}={x;(t), x_i(t)} is the strategy set of all
EVAs; X;(¢) is the decision space of EVA i at the time-slot 7.

3) Payoffs: It can be known from Eqs.(10)-(13) that the
dynamic electricity price is a function of the total electricity
consumption. Therefore, payoff of the each EVA can be
expressed as F; ;(x;(t), x_;(t)).

According to the definition of NE, at the current scheduling
time-slot 7, xNE(#) ={xNE(#),i € N} is the NE solution of the
game. By adopting this strategy, all EVAs have no intention to
modify their own strategies unilaterally, i.e., for Vx;(¢) €X;(¢),

Fioi0), x50(0)) = Fip o) 0, 2550, i e N (14)

Therefore, the NE solution can be considered as the
solution to the optimization problem of each EVA when other
EVAs’ strategies are fixed as NE solution:

min F (xi(1), xNE(1)),
xi(t)eX;(t)

ieN (15)

B. EXACT POTENTIAL GAME
In general, it is a difficult task to proof the existence of a pure
strategy NE in a game. However, Game 1 can be regarded
as an exact potential game. According to the characteristics
of exact potential game, the existence of NE strategy can be
guaranteed [30]. The definition is given as follow:
Definition: A game can be regarded as an exact potential
game if there is a function P(x(¢)) for all i € A and strategies
(x'(2), x_i()) and (x(t), x_;(1)), there is:

P(x;(1), x-i(1)) — P(xi(t), x—i(1))
= Fi(xj(1), x_i(t)) — Fi(xi(t), x_i(t)) ~ (16)
Equation indicates that the change in the potential function
equals to the unilateral change in the payoff of an individual

EVA, i.e., the potential function can completely reflect the
change in the payoffs of the players.
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Remark 2: Game 1 is an exact potential game, and its
potential function can be constructed as follow:

P(x(1)) = P1(x(1) + Pa(x(1))
Pix() =—)_ Y Uih)
ieN kek
Pyx() =Y | Y (8(Kk)Qioad(k)Qik) (17)
ieN Lkek
+8(QFK) + Y 8(K)Qi(k)Qi(k))
i<jeN

The correctness of construction can be proved in
Appendix A. In addition, we prove that P(x(¢)) is a convex
function of x(#) and feasible space is convex in Appendix B.
According to the characteristics of the potential game,
the unique NE solution of the potential game is mapped
onto the global minimum point of the corresponding potential
function. Therefore, solving the game model proposed in this
paper is equivalent to finding the global minimum point of
the potential function.

C. DISTRIBUTED REAL-TIME SOLUTION METHOD BASED
ON ADMIM
It is available to solve the exact potential game model by a
centralized approach. However, centralized approach is not
suitable to apply in RTOS with gaming situation, which
requires high communication bandwidth, fast computing
power, and high level of privacy protection of EVAs.
Distributed approach is introduced to enable each EVA to
solve its own optimization problem using local information
and update a little bit of information to advance the
iteration, which protect the privacy of EVAs and reduced
communication bandwidth and computing requirements.
In this paper, the model is solved by the ADMM algorithm
with good convergence and adaptability. It should be pointed
out that other distributed algorithms can also be applied to
solve the model [31], [32].

Remark 3: The potential function in Eq.(17) can be
decomposed by variables into independent sub-optimization
problems of DSO and each EVA, as shown as follow:

1
W1(Qum) = 5 I;Cs(wzum(k)
+ ) 800 Q10aa Q3 (k) (18)
kel
1
Wa(Qr U = = 3 Uitk) + 5 3 8()Q7 (k)
ke ke

where W} and W, are sub-optimization problems of DSO and
each EVA, respectively; The proof of decomposition process
can be found in Appendix C.
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Referring to [33], the iteration of each decision variable in
the ADMM algorithm can be expressed as:
(z+1)

(i = argmin(Wi (Qsum)
+2 | om — 0+ 29 +u0)
O = argmin(Wa(Qs, Uy)
Lot o ro0 vy O
u@tD — Q(Z) 4 4@
0" = g + 3 o)
e

The convergence criterion of the ADMM algorithm is that
the primal infeasibility and the dual infeasibility are less
than the convergence precision. For more detailed of specific
formula derivation and the proof of the convergence of the
ADMM algorithm, readers can refer to [33].

D. DISTRIBUTED REAL-TIME OPTIMIZATION PROCESS

A scheduling algorithm that can be executed by DSO and
EVAs is proposed. The algorithm involves the initiation and
scheduling phases, which are presented in Algorithm 1.

Algorithm 1 Scheduling Algorithm in Time-Slot #
« Initiation phase

IiHr=0

DSO and EVAs randomly initialize strategy profile
xD).

Based on the complete prediction information, EVAs
initialize the boundary information of each EVC by Eq.(2).

Else

DSO and EVAs initialize strategy profile x!(¢) by the
NE strategy xNE(z—1) in the previous time-slot t — 1.

Based on the prediction information and accessed
EVs information, EVAs update the boundary information
of each EVC by Eq. (2).

End if

« Scheduling phase

Repeat

DSO and each EVA solve their own optimization
problem and update the strategy x‘z)(r) by Eq. (18).

EVAs upload the charging strategy information to
DSO.

DSO updates the unbalance magnitude and the
lagrangian multiplier by Eq.(18), and broadcasts them to
EVAs.

z=z+1

Until convergence conditions are satisfied

EVAs allocate their own managed EVs charging
strategies

V. CASE STUDIES

A. PARAMETER SETTINGS

The optimization horizon starts from 7:00 am and ends at
7:00 am the next day, and the simulation time interval At is
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FIGURE 3. The driving patterns of the EV owners.

15 min, which means that the horizon is divided into 7 =
96 time-slots. The charging scenarios involve 3 EVAs and
1200 EVs unless otherwise specified. Each EV selects one
of the EVAs to be charged randomly. The driving patterns
of the EV owners are shown in Fig.3. Three types of EV
are considered whose characteristic parameters are shown in
TABLE 1. Assuming that all the owners of the EVs expect
that the EV battery can be fully charged before departure time
tout- The charging efficiency 7 is set to be 99%. A; is set to be
0.003$/(kWh)?. 8(t) is set to be 0.204$ /MWh. SOCipitia is
assumed to follow the normal distribution N(0.5, 0.12). The
convergence criterion of ADMM algorithm is set to 1073, The
forecasting error of the conventional load is not considered.

TABLE 1. EV characteristic parameters in simulation.

Number of EV battery EV charging .
EVA capacity/kW+h imit/kW I3l
24 4 30
3 36 6 40
48 8 30

All simulations are modeled in MATLAB R2017a using
a PC with inter(R) Core(TM) i7-6700 3.40GHz, and 16G
memory. Each sub-problem is solved by CPLEX toolbox in
GAMS.

B. PERFORMANCE OF OPTIMIZATION MODEL

In this section, the optimization result of the proposed model
is shown in Fig.4, compared with conventional load curve
and disordered charging curve (i.e., EVs are charged at the
maximum charging power after arriving at EVA).

It can be seen that the conventional load has two peaks of
electricity consumption at noon and at night, since large-scale
of EVs arrive at EVAs to start charging during these periods.
This situation will increase the peak-valley difference of the
system, and raise the risk of system operation. By adopting
the proposed model, the peak-valley difference is 8.77%
lower than that of disordered charging.

C. EQUIVALENCE VERIFICATION OF DISTRIBUTED
OPTIMIZATION

Fig.5 and Fig.6 compares the results and the value of objec-
tive function between distributed and centralized optimal
scheduling methods at each time-slot, respectively. It can
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FIGURE 5. Comparisons of distributed and centralized optimal scheduling
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FIGURE 6. Objective function comparison of the decentralized model and
the centralized model at each time-slot.

be seen that the results of the distributed and centralized
scheduling method are basically consistent, which indicates
that the equivalence of the distributed optimization method
and correctness of the decomposition process are verified.
So the distributed and centralized optimal scheduling method
are equivalent at each time-slot within the allowable error.
In addition, the privacy security of DSO and EVAs can be
guaranteed by using distributed real-time solution method,
because the communication information between the DSO
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and each EVA is only overall charging strategies, Lagrangian
multiplier and other few information, whose size is very
small. It is very easy to transmit information by using
high-speed communication means such as 5G network and
optical fiber.

D. APPLICATION FEASIBILITY VERIFICATION

The convergence speed of the distributed algorithm deter-
mines whether the model can be practically applied in
engineering. Fig.7 and Fig.8 show the variation of the
primal feasibility and the dual feasibility at each optimization
time-slot, respectively. It can be seen that at most of the
time-slots during the RTOS, convergence can be achieved
through around 40 to 55 times (average iteration number is
about 49 times). Note that since the iterative initial point of
the time-slot 1 is arbitrarily chosen, the calculation speed
of time-slot 1 are slow with 541 iteration times to reach
convergence. However, it is possible to deal with this problem
by adopting a day-ahead scheduling in advance to obtain an
initial iteration point which is close to the optimal solution of
RTOS.

_ - Day ahead scheduling

o
%

o
2N

<o
~

Primal infeasibility

e
o
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FIGURE 7. Convergence curve of primal feasibility.
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FIGURE 8. Convergence curve of dual feasibility.

After simulation, the maximum time of each sub-problem
at each iteration does not exceed 0.58s (average time is
0.43s) In practical engineering applications, assuming that
the communication delay is 0.05s and parallel computing is
adopted by DSO and EVAs, optimization solving of each
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time-slot can be done within 24s. To conclude, the model
and algorithm can meet the requirements of rolling real-time
optimization once every 15 minutes.

E. COMPARISON OF DIFFERENT SCHEDULING METHODS
In this section, five optimal scheduling methods are used
to evaluate the performance of proposed method in this
paper. Cases design of different scheduling methods can be
represented as follows:

Case 1: The proposed method;

Case 2: Disordered charging;

Case 3: Optimal scheduling by using time-of-use electric-
ity pricing policy;

Case 4: Centralized optimization with the target of
pursuing the maximum of overall social welfare;

Case 5: Regardless of the interests of EVA and the EV
owners, the goal is to perform peak load shifting.

The objective functions for Case 3-5 are described as
follows:

The EVA objective function of Case 3 is consistent with
Eq.(9). The only difference is that the time-of-use electricity
price is based on the conventional load, which remains
unchanged at each time-slot.

The objective function of Case 4 for each time-slot can be
described as:

min Y _ Fi, (20)
ieN
where F;; is consistent with Eq.(9).
The objective function of Case 5 for each time-slot can be
described as:

: 2
min E (Qrotar (k) — Qavg,t) 2n
kelC
Z Qtotal(k)
kelC
= 22
Qavg,t T—r+1 (22)
. . \ . . .
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FIGURE 9. Comparison results of different scheduling methods.
The optimization results and the objective function values
of different cases are shown in Fig.9 and Table 2, respectively.

It can be seen that Case 1, Case 4 and Case 5 can perform
the peak load shifting effectively. More importantly, Case 1
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TABLE 2. Objective function values of different scheduling methods.

Objectives Total/$ EVAL1/$ EVA2/$ EVA3/$
Case 1 5295.77 1744.36 1750.23 1801.16
Case 2 6074.59 1996.27 2010.27 2068.04
Case 3 5435.10 1788.28 1797.93 1848.89
Case 4 5293.18 1744.5 1748.92 1799.69
Case 5 5432.41 1787.70 1800.30 1844.40

TABLE 3. Calculating time for different amount of EVs and EVAs.

Number Number Average calculation time Average calculation time

of EVA  of EV of sub-problem /s of each period /s

3 1200 0.43 23.45
3 5000 0.46 29.26
3 10000 0.73 35.82
10 10000 0.87 43.92
20 10000 1.06 51.38

(proposed method) has the best effect. In addition, Case 1 gets
the lowest total objective function value except for Case 4,
caused by the rational and selfish feature of the EVAs in the
game, which indicates that the NE strategy does not lead to
the optimal social welfare in the system.

In Case 3, a peak-valley inversion phenomenon occurred
between the curve of optimized result and conventional
load, which is because the change trend of time-of-use
electricity price is consistent with that of conventional load,
i.e., the electricity price in the peak period is high, while
the electricity price in the valley period is low. Due to the
incentive of electricity price, EVAs will adjust the charging
plan and concentrate on charging during the valley period.
However, since the time-of-use electricity price cannot be
adjusted in real-time during each iteration process and there
has no direct coordinated scheduling among all EVAs, a large
charging peak is generated at the period of low conventional
load. Besides, the objective function values of all EVAs are
higher than those of Case 1. Therefore, when large-scale EVs
are connected to the grid, it is not suitable to use the time-
of-use electricity price policy to guide EVAs to make charging
plan.

In Case 4, the total objective function value is slightly
lower than that of Case 1, which confirms that the NE
solution is inconsistent with the optimal solution of the whole
social welfare. However, the proposed method (Case 1) is
more suitable for multi-player to perform RTOS than the
method of Case 4,because of the differences of the objective
function of each gaming individual, the rational and selfish
characteristics, and the requirement of privacy protection.

Case 5 directly performs peak load shifting by the
centralized optimal scheduling. From the results, not only the
total objective function value, but also the objective function
value of each EVA is higher than those of Case 1. It can
be foreseen that all EVAs have more interest to choose the
proposed method

In summary, from the DSO’s side, the peak load shifting
effect of Case 1 is the best, and the total objective function
value is just slightly higher than the scheduling Case with the
maximum social welfare. Therefore, the proposed method is
more suitable for RTOS with large-scale EVs.

F. COMPARISON OF DIFFERENT EV ACCESS LEVELS
In this section, different EV access levels are set to evaluate
the performance of propose method.
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It can be seen from Table 3 that the calculation time
under all the EV access levels can meet the requirement
of engineering practice. As the number of EVAs and EVs
participating in the scheduling increases, the algorithm can
still maintain good performance in the calculation time.
The average calculation time is less than 1 minute. This is
because the increase in the number of EVs does not affect the
number of variables in the model after adopting EVC method.
At the same time, each EVA adopts distributed parallel
computing, so the increase in the number of EVAs does not
have a large impact on the time for each iteration. If a more
computationally efficient device is used, the calculation time
can be further reduced. Therefore, the scheduling architecture
and algorithm proposed in this paper are suitable and can
effectively solve the RTOS problem with large-scale EVs.

VI. CONCLUSION

This paper proposes a large-scale EVs real-time opti-
mal scheduling based on dynamic non-cooperative game
approach and proves the existence and uniqueness of NE
solution of dynamic game model, and uses ADMM algorithm
to achieve distributed solving. Simulation cases show that:

1) The proposed model with dynamic electricity price
scheme effectively achieves load-flattening and reduces
charging cost of EVAs effectively.

2) The centralized optimization model is decomposed
and solved by ADMM algorithm to achieve distributed
computing. Thus, the proposed method can protect the
information security of each EVA and reduce the possibility
of information leakage.

3) By comparing the optimization results with different
number of EVs, the proposed method is robust and obtains
the optimal solution quickly. The feasibility of the model in
practical application is demonstrated, which is suitable for
solving the real-time scheduling problem of large-scale EV
access.

In this paper, the interaction mechanism is limited to
among DSO and EVAs. Designing a bilevel game which
accounts the interests of DSO, EVA and EV owners and its
own solution method or artificial intelligence method [34] are
the focus in future study.

APPENDIX A

PROOF OF THE CORRECTNESS OF THE POTENTIAL
FUNCTION

From the potential game theory and the Eq. (16), it can be
seen that the proof that the constructed potential function (17)
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satisfies the potential game theory is equivalent to:

Vit P(x(1)) = Vi Fi(x(1)) (23)

Among them, V is the gradient operator; in this problem, x;(¢)
is Q;(¢); that is, only the proof is required. For any Q;(¢), t €
T, the following formula holds:

OP(x(1)  Fi(x(n)

9Qi(1) 9Qi(1)

Since P1(x;(t)) the part of the potential function P(x;(t))
that represents the satisfaction is consistent with the part
of the EVA optimization target that satisfies the satisfaction
degree, the result of the part is still equal after the derivation.
Therefore, it is only necessary to prove that for any Q;(¢),
t € T, the following formula holds:

(24)

aPr(x(r)) 0
90i(r)  3Qi(1)

The left side of the equation:

Z Ci(k) (25)

keTy

0P
2D (1) Diaa 1)+25)0110)+ > 8101
30i(t) S
(26)
The right side of the equation:
Cik
90i(1) ,;: “
3 otal
= 8(1) f‘QI (l()t)Qi(t) +8()Qrota(1)

= S(I)Qz(t) + 3(¢)(Q10ad(t) + qum(t))
= 8(t)Quoad(?) + 28(1)Qi(1) + Z 8)Qj(r)  (27)
JEN j#i
The equations are equal on both sides. Therefore, the func-
tion P(x(t)) is the potential function of each EVA game.

APPENDIX B

PROOF OF THE POTENTIAL FUNCTION IS CONVEX

AND FEASIBLE SPACE IS CONVEX

For the potential function P(x(¢)), P1(x(¢)) and P>(x(¢)) can
be separated for analysis.

For P1(x(t)), it can be known from Eq. (6)-(8) that P1(x(t))
is composed of a series of convex quadratic functions, and it
is easy to know that Py (x(#)) is a convex function.

For Py(x(t)), calculate the Hessian matrix of P»(x(¢)) due
to

3Py (x(t 32Py(x(t

O) _ gy BPEO) o
2002(1) 00:1(19Q;(1)

Therefore, the Hessian matrix of the potential functions
with N EVA participating games can be expressed as follows:

26(t) &(¢) --- 8(1)

8(t) 26(¢) --- 6(2)
A=| . . . (29)

8(t) 8(t) -+ 28(D) |y,
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The eigenvalues of the Hessian matrix can be calculated:
A = (N 4+ D8(t), Aa, A3, -+ , Any = 8(t); when 8(¢) > 0
all eigenvalues are greater than O and the Hessian matrix is
positive, the provable function P,(x(¢)) can be proof to be a
convex function.

In summary, the potential function P(x(¢)) is a convex
function. In addition, the constraints on the feasible domain
xi(t) are linear functions, and it is easy to know that the
feasible domain x;(¢) is a convex set.

APPENDIX C
DISTRIBUTED OPTIMIZATION TARGET
DECOMPOSITION PROCESS

Pi(x(t) = — Y Y Uilk)

ieN keTy

== Uik + Va(k) + - -

keTy
Po(x(tr))

+ Un(k))  (30)

= 8(k)Q10aa(k)Qi(k) + S(k)Q?(k)
>

ieN | keTy

+ Y 8(k)Qik)Qi(k)
i<jeN
Q2 (k) + Q3(k) + 01(k)Qa(k)
+-+ Q10N (k)+
05(k) + 02(k) Q1 (k) + Q3(k)
+ - 4 O (k)On (k)+

1
= 500 >

keTy

0%, (k) + On (k) Q1 (k)
+On(K)Q2 (k) + -+ -+ 0% (k)
2Q010ad(k)Q1(k)+
2Q10dd<k)Qz(k)+

+ = a(k) Z
"\ 20008 ®

Ql (k)qum(k)+
O2(k)Qsum(k)+

1
= 8(k) >

keTy

On () Qsum(k)
1
+5800 Y (@1 + Q3+

keTy

+8(Kk) Y Qioad(k)Qsum(k)

keTy

= —8<k> > 0imo)

keTy

1
+ 5800 Y (@) + Q3+
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+QY(0)

+ ko)

+8(Kk) Y Qioad (k) Qsum(k) 31)

keTy
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P(x(tx)) = P1(x(tx)) + P2(x(t))

1
= 500 > Qhun(R)+8(K) Y Croaa(k)Qsum(k)

keTy keTy
1
+5800 Y (@) + 03k + -+ + G} k)
keTy
— Y (i) + Us(k) + - - + Uy (k)
keTy
= Wi (Qsum) + W2(01, Ul)
+ Wa(Q2, Uz) + - - + Wa(On. Un) (32)
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