IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 11, 2020, accepted June 25, 2020, date of publication July 13, 2020, date of current version July 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3008719

Hi-End: Hierarchical, Endurance-Aware
STT-MRAM-Based Register File for

Energy-Efficient GPUs

WON JEON !, (Graduate Student Member, IEEE), JUN HYUN PARK',

YOONSOO KIM2, GUNJAE KOO?, (Member, IEEE),
AND WON WOO RO, (Senior Member, IEEE)

!Electrical and Electronic Engineering Department, Yonsei University, Seoul 03722, South Korea

2SSD System Engineering Team, NAND Solution Division, SK Hynix, Seongnam 13558, South Korea

3Department of Computer Science and Engineering, Korea University, Seoul 02841, South Korea

Corresponding author: Won Woo Ro (wro@yonsei.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) funded by the Korea Government (MSIT) under
Grant NRF-2018R1A2A2A05018941, and in part by the Institute of Information and Communication Technology Planning and Evaluation
(IITP) funded by the Korea Government (MSIT) under Grant 2019-0-00533, Research on CPU vulnerability detection and validation.

ABSTRACT Modern Graphics Processing Units (GPUs) require large hardware resources for massive
parallel thread executions. In particular, modern GPUs have a large register file composed of Static
Random Access Memory (SRAM). Due to the high leakage current of SRAM, the register file consumes
approximately 20% of the total GPU energy. The energy efficiency of the register file becomes more
critical as the throughput of GPUs increases. For more energy-efficient GPUs, the usage of non-volatile
memory such as Spin-Transfer Torque Magnetic Random Access Memory (STI-MRAM) as the GPU
register file has been studied extensively. STT-MRAM requires a lower leakage current compared to
SRAM and provides an appropriate read performance. However, using STT-MRAM directly in the GPU
register file causes problems in performance and endurance because of complicated write procedures and
material characteristics. To overcome these challenges, we propose a novel register file architecture and its
management system for GPUs, named Hi-End, which exploits the data locality and compressibility of the
register file. For STT-MRAM-based GPU register files, Hi-End increases the data write performance and
endurance by caching and data compression, respectively. In our evaluation, Hi-End enhances the energy
efficiency of a GPU register file by 70.02% and reduces the write operations by up to 95.98% with negligible
performance degradation compared to SRAM-based register files.

INDEX TERMS Graphics processing unit, register file, spin-transfer torque magnetic random access

memory, data compression, energy efficiency, endurance, chip area.

I. INTRODUCTION

Graphics Processing Units (GPUs) have emerged as the most
important computing platform since throughput applications,
such as artificial intelligence workloads, became popular.
Many emerging applications, such as image classification,
audio synthesis, and recommender systems, are accelerated
using GPUs. Because modern GPUs are deployed from
mobile systems to high-performance data centers, the power
consumption of GPUs becomes a critical issue. A GPU core,
called a streaming multiprocessor (SM), provides a large reg-
ister file for massive thread-level parallelism and fast context

The associate editor coordinating the review of this manuscript and

approving it for publication was Songwen Pei

127768

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

switching. For instance, the recent NVIDIA Ampere architec-
ture includes a 27,648 KB register file whereas the previous
Fermi architecture has a 2,048 KB register file [1], [2]. To pro-
vide sufficient on-chip memory performance, the register file
in a GPU is implemented with Static Random Access Mem-
ory (SRAM) which requires a significant amount of power
and area. Previous studies revealed that the GPU register
file consumes 15-20% of the total energy consumption on
NVIDIA GPU devices [3], [4]. As a modern GPU provides
a larger register file, the power consumption and the area
overhead by the register file become more critical.

As Complementary Metal-Oxide—Semiconductor
(CMOS) scales down, the static power consumption by
leakage current occupies a considerable proportion of the

VOLUME 8, 2020


https://orcid.org/0000-0002-5304-2007
https://orcid.org/0000-0001-5390-6445
https://orcid.org/0000-0003-0810-1458

W. Jeon et al.: Hi-End: Hierarchical, Endurance-Aware STT-MRAM-Based Register File for Energy-Efficient GPUs

IEEE Access

entire power budget. To reduce the static power of mem-
ory cells, researchers have investigated the Non-Volatile
Memory (NVM) technologies such as Spin-Transfer Torque
Magnetic Random Access Memory (STT-MRAM). The
STT-MRAM cells provide similar read performance and
a significantly low leakage power compared to the con-
ventional SRAM cells. However, the STT-MRAM cells
are affected by inferior write performance and endurance.
The long write latency and the limited write endurance of
STT-MRAM are critical obstacles preventing it from directly
substituting SRAM cells despite its leakage power advantage.
Previous studies proposed architectural solutions to over-
come these performance hurdles of STT-MRAM [4]-[13].
For instance, SRAM-based write buffers have been utilized to
minimize the performance degradation from STT-MRAM’s
long write latency [4], [5]. However, despite their impor-
tance, none of the previous studies have considered the
low endurance issues of STT-MRAM cells used in place of
SRAM cells.

In this paper, we propose a novel STT-MRAM-based
register file architecture for GPUs, named Hierarchical,
Endurance-aware STT-MRAM-based register file (Hi-End).
Hi-End employs a hierarchical structure and a compression
technique to solve the problems of STT-MRAM. We designed
Hi-End based on two observations. The first observation is
that most read/write accesses to the GPU register file are
concentrated to a small number of registers. Hence, the GPU
register file accesses exhibit a high locality. The second obser-
vation is that most write accesses to the GPU register file are
compressible. Hence, the number of register file bank activa-
tion can be effectively reduced if the data can be compressed.

To fully exploit the locality of the GPU register file,
we adopted a register cache and a delay buffer. The register
cache works as a write cache for the slow STT-MRAM regis-
ter file. The operation of the register cache is similar to that of
the conventional cache except it only caches write-back data.
When the cache block is evicted from the register cache, the
delay buffer operates as a station-like buffer that maintains
the evicted block until it is written to the STT-MRAM register
file. When evicted data are written to register files, data are
compressed to minimize the dynamic power and increase the
endurance of STT-MRAM. Since the data are compressed,
we can store the same data with a small number of register
banks. Hi-End utilizes unused register banks to enhance the
endurance of STT-MRAM cells. Parts of the STT-MRAM
register banks are accessed sequentially to write data. Conse-
quently, the number of write operations for each STT-MRAM
cell is decreased owing to the compression ratio; hence,
endurance is improved accordingly.

The contributions of this paper are summarized as follows:

o By exploiting the locality of the GPU register file,

we propose a register cache and a delay buffer architec-
ture to minimize direct access to the STT-MRAM-based
register file. Using the register cache and the delay buffer
architecture, we can reduce the STT-MRAM write over-
head and take advantage of the STT-MRAM register file.

VOLUME 8, 2020

GPU
SEDISED]  [1-Coore [ Varp Shetiler -
1$/F/D | [1s/F/D ]| [I-Cache/Fetch/Decode Warp Scheduler
E WS Warp Scheduler Pras Bank Arbiter
m Register File
N o R
R oogod -
Cores Cores CUDA Cores \
LIDS (N LIDS [l ___ L1 Data Cache __|lf\
Scrat Scrat Scratchpad Memory \‘
[Lsu || Lsu Load/Store Unit_|| f {"Operand Collector Ji
| L2 Shared Cache (Last-Level Cache) |
\ CUDA Cores
Memory Memory T
Controller 0 Controller K-1 Register File Architecture
| Off-Chip DRAM |

FIGURE 1. Baseline GPU and register file architecture.

o We propose a compression technique to employ the
value similarity of GPU register file and decrease the
high dynamic power of the STT-MRAM register file.
Furthermore, bank-level wear-leveling utilizes concen-
trated bank access to increase endurance with low-cost
architecture.

o With cycle-accurate simulations, we show that Hi-End
reduces the energy consumption of GPU register files
by 70.02% with a 0.86% of performance drop compared
to SRAM-based register file GPUs. Hi-End reduces the
number of write operations to the most frequently writ-
ten register file bank by 95.98%.

The rest of this paper is organized as follows. Section II
presents the baseline GPU architecture, register file organi-
zation, and characteristics of STT-MRAM. Section III intro-
duces the motivational data and opportunities for our study.
In Section IV, we present the detailed architecture and oper-
ation of Hi-End. The experimental results of Hi-End, such
as the performance and energy efficiency, are described in
Section V. In Section VI, we introduce related studies, and
we conclude our paper in Section VII.

Il. BACKGROUND

A. BASELINE GPU ARCHITECTURE

In this paper, we use NVIDIA GPU terminologies for con-
sistency [1], [2], [14]-[18]. Our baseline GPU model com-
prises several SMs, and each SM contains dozens of cores;
therefore, the GPU device contains hundreds to thousands of
computing cores. An SM can execute thousands of threads
at a time (e.g. 2,048 in recent GPUs). To provide sufficient
memory bandwidth to the massive number of concurrently
executing threads, GPUs exploit a large number of register
files. Consequently, the register file occupies a large portion
of the entire on-chip memory in GPUs.

Fig. 1 describes the baseline GPU and the register file
architecture used in this work. The on-chip memory systems
of GPUs have hierarchical structures with a register file, L1
data cache, scratchpad memory (or shared memory), and L2

127769



IEEE Access

W. Jeon et al.: Hi-End: Hierarchical, Endurance-Aware STT-MRAM-Based Register File for Energy-Efficient GPUs

B Leakage MDynamic (read)

ODynamic (write)

Energy Consumption Ratio

Z2sSe2sS20v2za% BS28590
ZézégomZHUEEEEZV’w>
ocso&s®g o=8 -~ 5 <
9 7 O &

g 2

N el

FIGURE 2. Energy consumption of SRAM-based GPU register file.

shared cache (or last-level cache). The register file is used
as operands for instructions and additional memory space
for context switching. The L1 data cache and the scratchpad
memory are located inside of each SM and provide private
cache memory space. In particular, the scratchpad memory
stores user-defined data for higher throughput. The memory
space for the L1 data cache and the scratchpad memory are
often exchangeable. Finally, the L2 shared cache is located
outside of the SMs and provides shared memory space for
all threads operating on a GPU. The L2 shared cache is
connected with an off-chip main memory system through
memory controllers.

B. GPU REGISTER FILE ARCHITECTURE

Conventional GPUs provide large SRAM-based register files.
As shown in Fig. 1, the register file in a single SM is
composed of multiple banks in order to provide parallel
bank access and higher bandwidth. The baseline GPU model
used in this study employs a 128 KB register file composed
of 64 banks. Each register file bank contains 256 entries,
and each entry is 64-bit wide; hence, a single entry stores
two 32-bit data. A GPU hardware executes multiple threads
in a group, known as a warp, which comprises 32 threads
that share the same program counter and execute identi-
cal instructions simultaneously. To access multiple registers
concurrently, the registers for 32 threads in the same warp
are allocated to the same entry location that exists across
multiple banks [19]. For instance, assuming the size of a
register r0 is 4 bytes, r0 of 32 threads in warpO can be
stored in entry0 of register banks from O to 15. Hence,
multiple threads in a single warp access tens of registers
simultaneously to minimize clock cycles required to access
the register file. However, a large amount of dynamic and
static power is dissipated in the register file, as a single warp
instruction can activate dozens of register file banks [19].

C. CHARACTERISTICS OF STT-MRAM

High leakage current in SRAM-based memory cells is the
major source of large power dissipation in the GPU regis-
ter file. As shown in Fig. 2, approximately 59.6% of the
total GPU register file energy is consumed by the leakage

127770

TABLE 1. Characteristics of SRAM and STT-MRAM [4], [5], [21].

[ Parameter [SRAM [STT-MRAM |

Cell factor (F'2) 146 57.5

Area (mm?) 0.194 0.038

Read latency (cycle) 1 1

Write latency (cycle) 1 4

Read energy (pJ/bit) 0.203 0.239

Write energy (pJ/bit) 0.191 0.300

Leakage power (mW) 248.7 16.2

Endurance 1076 1013

current in the SRAM cells under 32 nm CMOS technology.
Detailed simulation methodologies for the figure are provided
in Section V. Using the emerging NVM cells is a prominent
approach, as most NVM technologies exhibit extremely low
leakage current. For instance, STT-MRAM provides a similar
read lartency with a smaller cell size and an extremely low
leakage current compared to SRAM-based memory cells.
However, NVM technologies still have drawbacks in terms of
write performance and endurance. Other NVM technologies
such as Phase Change Memory (PCM) and Resistive Ran-
dom Access Memory (ReRAM) exhibit drawbacks, such as
extremely low endurance or long access latency; therefore,
they are not suitable for use as fast on-chip memories [20].
In this work, we use STT-MRAM to build an energy-efficient
register file for GPUs.

We compare the characteristics of STT-MRAM with the
conventional SRAM cells in Table 1. The parameters are mea-
sured using NVSim [4], [5], [21]. More detailed experimental
methodologies are provided in Section V. The endurance
parameter of STT-MRAM is configured based on the actual
usage environment [22]. Even though STT-MRAM exhibits
the same read latency, the longer write access latency (four
times slower) and higher write energy consumption are crit-
ical disadvantages of STT-MRAM cells. Another critical
drawback of STT-MRAM is its low write endurance, which is
1,000 times lower compared to that of SRAM. In particular,
the register file is the memory space that is closest to the
computational unit; therefore, data read and write occurs
most frequently. Consequently, the low write endurance of
STT-MRAM results in the short lifetime of the entire GPU
system.

To investigate the effect of STT-MRAM-based regis-
ter files on GPU performance and lifetime, we con-
figured the STT-MRAM parameters listed in Table 1
into a cycle-accurate GPU simulator [23]. In the study,
we replaced the SRAM-based register file in the GPU with
an STT-MRAM-based register file without any additional
techniques. Our simulation study reveals that the performance
decreases by 18% due to slower register file write operations,
and the GPU lifetime becomes only 11 months due to the
limited register file write endurance. Both the performance
drop and short lifetime are impractical for GPUs.

Ill. MOTIVATION
As introduced in the previous section, low write performance
and endurance are critical obstacles hindering the usage of

VOLUME 8, 2020



W. Jeon et al.: Hi-End: Hierarchical, Endurance-Aware STT-MRAM-Based Register File for Energy-Efficient GPUs

IEEE Access

mm Register File (RF) EBL1D + Scratchpad CJL2 -%RF/Total

S 100 1
=7 2
g 80 0.8 €
wn I=J
-9
560 0.62
2
§40 04
a 20 0.2 -5
o— )
S o 0~
S £2 55 3TE 3& & 2§ &
S5 5% S iE 35 55 E%
=8 2% &3 =¢ -g £& E¢

FIGURE 3. On-chip memory size of NVIDIA GPUs by generations.

OFermi OKepler @ Maxwell @ Pascal B Volta B Turing B Ampere
6

On-Chip Memory Size
per Shader Unit (KB)
[} — N w - W

L1 Data Cache +
Scratchpad Memory

L2 Cache Register File

FIGURE 4. On-chip memory size per shader unit.

STT-MRAM cells as on-chip memory structures, such as
register files and L1 caches. In this section, we address the
high energy consumption problem of GPU register file, and
analyze the unique patterns of register file read and write
operations in GPU applications. In addition, we analyze the
similarities in the register data accessed by adjacent threads
within the same warp. Furthermore, we demonstrate that the
register file data can be effectively compressed to a smaller
size by exploiting the data similarity observed in the register
data. Such observations motivate the development of archi-
tectural solutions that can employ STT-MRAM to achieve an
energy-efficient register file design.

A. ENERGY CONSUMPTION OF GPU REGISTER FILE

To achieve a high throughput, GPUs execute hundreds of
thousands of threads concurrently. For example, the recent
NVIDIA Ampere GA100 executes up to 221,184 threads
in one GPU device [2]. The large number of register files
has been a key enabler for the high throughput of GPUs.
We analyzed the on-chip memory size and a portion of the
register file for NVIDIA GPUs over the last decade [1], [2],
[14]-[18]. As shown in Fig. 3, the register file constituted
approximately 60% of the total on-chip memory. Despite
SRAM’s high energy consumption, the register file occupies
a large portion of the on-chip memory system. The relatively
low register file portion (approximately 30.1%) of Ampere is
due to a substantial increase in the L2 caches. The sizes of
L2 caches in NVIDIA GPUs are increased for workloads that

VOLUME 8, 2020

OTop-5 Most Written Register B Top-5 Most Read Register

0.8
2
50.6
§0.4
<«
0.2
0
22 ZEPBZEBEZEZ268¢Y
szoz®”z Sa =H-Z2 =
oo™ & Ok =
& &
o Lag]

FIGURE 5. Read and write ratios of Top-5 most accessed registers.

have non-cacheable dataset for conventional L2 caches, such
as artificial intelligence and high performance computing
workloads.

The register file size of NVIDIA GPUs has increased
steadily. Fig. 4 shows the on-chip memory size per shader unit
(or CUDA core). Except the unique L2 cache in Ampere, the
register file size per shader unit is always the largest among
various on-chip memory structures. In fact, the register file
size per shader unit has remained at 4 KB since Pascal GPUs.
The number of computing cores in a GPU device will con-
tinue to increase to achieve higher throughput. Hence, the
register file size is expected to increase accordingly. How-
ever, large SRAM-based register files consume a substantial
amount of static energy, as presented in Section II-C. As a
result, the energy consumption of register files in GPUs
becomes an increasingly important issue.

B. LOCALITY IN GPU REGISTER FILE

We discovered that the register file accesses possess locality
based on the register IDs. To reveal this register locality,
we measured the read and write access counts by register IDs
using a cycle-accurate GPU simulator [23]. Detailed simu-
lation methodology is provided in Section V. For instance,
if an instruction requires r0 and r1 as operands and writes
the execution result to r2, we increment the read counts
of r0 and r1 and the write count of r2 by 1, respectively.
Subsequently, we sorted the register access counts based on
the register IDs. This measurement reveals two important
characteristics in GPU register file accesses. First, most reg-
ister file accesses are concentrated on several register IDs.
On average, more than 80% of register write accesses are
from the Top-5 most written register IDs as shown in Fig. 5.
Second, the write access counts from these register IDs are
similar to the read counts. This study reveals that high locality
and concentration are observed in GPU register file accesses.

C. DATA SIMILARITY IN GPU REGISTER FILE

The other characteristics observed in the GPU register file
data is that the data written by the adjacent threads within
the same warp have similar values. Hence, this type of data

127771



IEEE Access

W. Jeon et al.: Hi-End: Hierarchical, Endurance-Aware STT-MRAM-Based Register File for Energy-Efficient GPUs

C] Baseline D New Structure for Hi-End

Operand information Issue
N 1
5 %D é Bank 0 - V|[Reg ID|R [Operands| =
5[l e =™ 5| (256 x 64-bit) ndiBimg g ™  [WID|V|Reg ID|R|Operands| | | .
g ko) 1; =2 2 2 Wi = » V|Reg ID|R [Operands =
— = = q =] o
] g = 21=| s S+ & > St 2= 2 = =)
—_ = o = S
% 5 N ﬁa 3::; £ 2 | 2 ; ““ Z g E V[Reg ID|R [Operands L g
2l WID|V|Reg ID|R |Operands =
U180 12 12 = |2 eLleLlz & 1D|R [0p :
:};’_’g A A g .i? g_’g_’ e g_’-g V|Reg ID|R [Operands| || _,§
g | & Sl HMERE - a8l | & : g :
= | S »;Bank(ﬁ—» = > & e s -
JJ o V[Reg ID|R [Operands =
hl-l  S— ~— —  S— = w2
- WID|V [Reg ID|R |Operands
Delay buffer hit V|Reg ID|R [Operands| >
e Register cache hit \ ) VL J
Writeback

FIGURE 6. Hi-End architecture.

can be easily compressed using simple compression methods,
such as the Base-Delta-Immediate (BDI) algorithm [24]. The
BDI compression method can perform fast and simple com-
pression and decompression processes. A BDI compressor
extracts two parameters, called base and delta, from multiple
sets. The data to be compressed are split into multiple pieces,
and the first piece is set as the base. Subsequently, the differ-
ence from this base is computed for other pieces. These differ-
ences are represented as delta for other values. For instance,
128-byte register data composed of 32 values of 4-byte can be
compressed to 35-byte data when BDI compression is applied
using 4-byte base and 1-byte delta resolutions. Furthermore,
in case all 32 values are the same, the 128-byte register
data can be compressed to 4-byte, as the delta is O-byte.
Hence, by applying BDI compression, read/write accesses for
multiple memory banks can be reduced.

The original BDI algorithm exploits multiple bases and
corresponding deltas to achieve optimal compression ratio.
However, in this study, we fixed the base resolution to 4-byte
to simplify the hardware design. Furthermore, we restricted
the deltas to only have 0-byte, 1-byte, and 2-byte resolutions.
By applying these limitations we can minimize clock cycles
and power consumption of the compression and decompres-
sion units. In this work, if the data cannot be compressed
using such fixed base and delta resolutions, the data will
remain uncompressed. We calculated the ratio of register
write that can be compressed using the BDI algorithm to
demonstrate the value similarity of the GPU register file.
In fact, more than 62% of the register write can be com-
pressed using the BDI algorithm. Furthermore, recent studies
revealed that the register file can be effectively compressed
using the BDI compression algorithm [4], [19].

IV. HIERARCHICAL, ENDURANCE-AWARE STT-MRAM
REGISTER FILE ARCHITECTURE (HI-END)

We propose an energy-efficient STT-MRAM-based regis-
ter file for GPUs. Our proposed register file architecture

127772

exploits STT-MRAM as a primary memory unit for register
data to reduce the static power dissipation. To overcome
STT-MRAM’s poor write performance, we apply a hierarchi-
cal structure that employs a small SRAM as a cache for the
STT-MRAM register file. It is effective because of the strong
locality observed in the GPU’s register file data, as men-
tioned in Section III-B. In addition, we propose an efficient
wear-leveling mechanism using register data compression
to extend the lifetime of STI-MRAM cells. The detailed
architecture will be described in the following subsections.

A. OVERALL ARCHITECTURE OF HI-END

In this section, we describe the detailed architecture of the
proposed STT-MRAM-based hierarchical, endurance-aware
register file, called Hi-End. The overall architecture of
Hi-End is depicted in Fig. 6. Hi-End includes additional
components (register cache, delay buffer, compression unit,
and bank-level wear-leveling) on the baseline GPU register
file. The newly added blocks are shown in gray in the fig-
ure. Hi-End employs a hierarchical structure that exploits
an SRAM-based write cache to hide the long write latency
of the STT-MRAM register file and reduce write counts to
the STT-MRAM cells. The SRAM-based write cache works
as a gateway for register writes to the STT-MRAM register
file. Hence, for register writes, the register values are first
written to the register cache. The GPU’s register data exhibits
strong locality (see Section III-B); therefore, the frequently
written register data can remain for a long time in the register
cache. Once the cached data are evicted from the register
cache, the evicted data are compressed using the compres-
sion unit. As the size of the register data is reduced by the
compression step, the register data can occupy less banks of
the STT-MRAM register file. Furthermore, Hi-End applies
bank-level wear-leveling (BWL) to increase the lifetime of
the STT-MRAM cells. BWL equally distributes the write
requests to multiple banks of the STT-MRAM register file.
Hi-End employs the delay buffer between the register cache

VOLUME 8, 2020



W. Jeon et al.: Hi-End: Hierarchical, Endurance-Aware STT-MRAM-Based Register File for Energy-Efficient GPUs

IEEE Access

Read Request

Register Cache
| Cache Hit | | Cache Miss |

Write Request

Register Cache
| Cache Hit | | Cache Miss |

Evicted from cache
Delay Buffer

1 Delay Buffer

| Buffer Hit | | Buffer Miss | Evicted Block
Register File Register File

Read Access

(a) Hi-End read operation.

Write Access

(b) Hi-End write operation.

FIGURE 7. Read and write operations in Hi-End.

and the bank arbiter to compensate the additional cycles from
the compression unit and slow STT-MRAM write operation.
We will describe the detailed structures and mechanisms of
Hi-End components in the following sections.

1) HIERARCHICAL REGISTER FILE

Because Hi-End exploits the hierarchical register file, the
requested register data can be found in the various lev-
els of the memory units (register cache, delay buffer, and
STT-MRAM register file). Fig. 7 summarizes the read and
write operations in Hi-End.

The GPU utilizes the operand collector to read register
data from the unified register file. When a warp issues an
instruction that accesses register data, the warp scheduler
passes operand information required for register file accesses
(see Fig. 6). Each operand collector contains the operand
information, such as warp IDs, valid flags, register IDs, and
ready flags. Such operand information is sent to Hi-End,
to access register data from the hierarchical register file.

For a read operation, Hi-End first searches the requested
data in the register cache. Since the register cache has an
SRAM-based high performance cache structure, Hi-End can
quickly service the register data to the operand collector if
the requested data is found in the register cache. Second, the
requested data can be found in the delay buffer if the data is
evicted from the register cache and not written completely
to the STT-MRAM register file. When the requested data
does not exist in both the register cache and the delay buffer,
the data is read from the STT-MRAM register file. In this
case, if the data stored in the compressed form, the bank
arbiter activates and accesses the smaller number of banks.
The operand collector obtains the original data form via the
decompression unit. Due to the hierarchical structure, the
register read latency can degrade the GPU performance when
the target data is in the STT-MRAM register file. However,
as most read requests are handled in the register cache, the
read delay is negligible in Hi-End. A detailed analysis on the
effect of read latency on GPU performance is presented in
Section V-C.

Once the Single Instruction Multiple Data (SIMD) exe-
cution units complete arithmetic operations, a register write
request occurs. Hi-End first searches the register cache for

VOLUME 8, 2020

Tag Calculation 11-bit 1024-bit

V  Tag Data

Index

Tag Matching

Hit N\

FIGURE 8. Register cache structure.

the write request, and when a cache hit occurs, the target
cache line is updated with the new value. Otherwise, the
write-back data is newly allocated in the register cache. The
data evicted from the register cache must be stored in the
STT-MRAM register file if the register cache is already full
with the data that was previously written back; hence, the
evicted data enters the delay buffer. Subsequently, the evicted
data is compressed by the compression unit and written to the
STT-MRAM register file. This mechanism is similar to the
conventional cache write-back policy that employs the store
buffer except that every evicted data is written to the slower
STT-MRAM register file. Once the data is compressed, the
bank arbiter selects the banks to be activated for register write
operation. Hi-End applies the BWL technique in this step
to improve endurance of STT-MRAM cells. The long write
latency of STT-MRAM can cause read-after-write hazards
and pipeline stalls in SMs. In Hi-End, with the support of
the register cache and delay buffer, a register write request
instantly obtains a cache line in the register cache; hence, the
write delay is negligible.

B. DETAILED ARCHITECTURE OF HI-END COMPONENT

In this subsection, we discuss the detailed architecture and
operations of each structure in Hi-End, such as the regis-
ter cache, delay buffer, compression unit, and bank-level
wear-leveling.

1) REGISTER CACHE

The register cache is an SRAM-based, fast, and tem-
porary cache memory for write-back data. The register
cache employs a direct-mapped cache structure to simplify
the hardware complexity. While the write performance of
STT-MRAM is much slower than that of SRAM, the read
performance of STT-MRAM is similar to that of SRAM.
Using this characteristic, the register cache in Hi-End only
allocates write data, unlike the general cache memory. A read
request can be quickly serviced from the STT-MRAM reg-
ister file due to its read performance. Therefore, the read
request does not require the support of the register cache.
Furthermore, requesting the previously written-back register
data is more probable than reusing the data previously read

127773



IEEE Access

W. Jeon et al.: Hi-End: Hierarchical, Endurance-Aware STT-MRAM-Based Register File for Energy-Efficient GPUs

Read data from
other instructions
Write data to

Evicted from STT-MRAM

register cache register file
|:t\v Remove
—¥.__entry

| 1 | 1 | 7 | $rl | 17
Valid  Allocate Counter Register ID  Warp ID
(1-bit)  (1-bit) (3-bit) (5-bit) (6-bit)

16 Entries

| 0x2E3C ..... ?2 |

In-write Data
(1024-bit)

FIGURE 9. Delay buffer structure.

from the register file. Hence, the register cache effectively
increases the write hit ratio by allocating only write data.
Using this approach, Hi-End can reduce the number of write
requests to the STT-MRAM register file, thereby increasing
the lifetime of the STT-MRAM cells. In this work, the register
cache contains 256 blocks with 1024-bit sized cache lines.
As shown in Fig. §, a single cache line includes a 1-bit valid
flag and a 11-bit tag field. Unlike conventional cache tags
that use part of an address field, the tags in the register cache
utilizes the combination of a 6-bit warp ID and a 5-bit register
ID. The tag calculation logic is implemented with a logical
shifter and an adder.

2) DELAY BUFFER

The role of the delay buffer is similar to that of the store
buffer in the conventional cache architecture. The delay buffer
temporarily stores the dataset evicted from the register cache
before the dataset are written to the STT-MRAM register file.
This buffer space is required for the evicted data since several
cycles are taken for data compression and write operation
to STT-MRAM cells. Note that the write performance of
STT-MRAM used in this work is four times slower than
that of SRAM cells, as explained in Section II-C. In this
work, we configure the delay buffer to include 16 entries,
as shown in Fig. 9. Our simulation study reveals that this
depth is sufficient to minimize the structural hazards in the
delay buffer considering the cycles required by the compres-
sion unit and the STT-MRAM writes. As mentioned pre-
viously, the data read requests can be read from the delay
buffer. This feature allows Hi-End to read the data while they
are being compressed, thereby hiding compression latency.
In addition, if the delay buffer does not support the read
operation, the operand collector can obtain incorrect data
from the STT-MRAM register file due to the redundant write
delay. This is because, during the time between data leaves
the register cache and is written to the STT-MRAM register,
no corresponding register exists in the register cache, and only
old data exists in the STT-MRAM register file.

To support the read operation of the delay buffer, each entry
of the delay buffer has additional control fields as shown in
Fig. 9. These control fields include a 1-bit valid flag, 1-bit
allocate flag, 3-bit counter, 5-bit register ID, 6-bit warp ID,
and 1024-bit register data. While other fields contain general

127774

128-byte Original Data |

4-byte Base l l l l
A
32-bit 32-bit 32-bit 32-bit
[ Subtractor ] [ Subtractor ] [ Subtractor ] [ Subtractor ]

l

4, | | 430

4o | 4,

Sign Extension Sign Extension Sign Extension Sign Extension
Comparator Comparator Comparamr Comparator

| Yes ]
|4-byte Base| Ay 44 AZ| Az A30| Packing Data Compressible?
[ Compressed Data Out ] [ Uncompressed Data Out ]

FIGURE 10. Implementation of the compression unit [19].

information, the allocate flag and the counter contain unique
information for STT-MRAM. These two fields are used to
validate the completions of write operations. In case the
polling-based approach is used for the validation, every entry
of the delay buffer and STT-MRAM register bank should
communicate with each other, and the completion of a write
process must be verified in every cycle. Hi-End employs
the counter-based approach to avoid such an overhead. The
allocate flag indicates whether the corresponding entry is
currently writing data into the STT-MRAM register file. The
counter field contains the number of cycles remaining to
complete the write process of the corresponding entry. The
counter is set to 6 when a write process is initiated and
decreased by 1 while the allocate flag is 1. In detail, writing
data to the STT-MRAM register file requires two cycles for
compression and four cycles of STT-MRAM write latency;
hence, six cycles are required in total, and the counter must
be set accordingly.

3) COMPRESSION UNIT

We implement a compression unit using the BDI algorithm
used in warped-compression [19]. In the BDI algorithm, the
compression ratio can be improved by supporting various
configurations for the base and delta. However, a higher
number of options for the base and delta results in a higher
hardware overhead; hence, we limit the number of possible
sizes of the base and delta. The size of base is fixed to 4-byte,
whereas the size of delta can be 0-byte, 1-byte, or 2-byte.
Based on our observations shown in Section III, most GPU
register file data can be efficiently compressed using these
three options for delta. Therefore, the compression unit in
Hi-End supports only three compression options to simplify
the hardware design. The hardware architecture of the com-
pression unit is described in Fig. 10. Hi-End can reduce the
dynamic power for accessing the STT-MRAM register file
by compressing the data size. In addition, we can reduce the
number of activated banks in the STT-MRAM register file

VOLUME 8, 2020



W. Jeon et al.: Hi-End: Hierarchical, Endurance-Aware STT-MRAM-Based Register File for Energy-Efficient GPUs

IEEE Access

| Register data 0 || Register data 1 | Register data2 | Register data 3

4 warp register write operations

U U U

:
.
:

:
:
:

:
:
:

Register File Banks

E

Register File Banks

:

Register File Banks

:

(a) Baseline (b) Warped-Compression (c) Hi-End

FIGURE 11. Example of bank-level wear-leveling operation in Hi-End
compared to the baseline register file and warped-compression [19].

when storing compressed data. For instance, the compressed
data will activate only 5 banks if the data size is reduced
by a 4-byte base and a 1-byte delta, whereas the uncom-
pressed 128-byte data accesses 16 banks in the register file.
Hence, Hi-End can effectively reduce the access counts to
STT-MRAM cells, and prolong the lifetime of the register file
based on BWL.

4) BANK-LEVEL WEAR-LEVELING

To prolong the lifetime of the STT-MRAM cells, Hi-End
applies BWL by exploiting the advantages of the compressed
data. Hi-End can reduce the overall write counts for the
STT-MRAM banks using a hierarchical structure. However,
some register banks may have a shorter lifetime if the com-
pressed data is written more frequently to several specific
banks. To avoid such cases, Hi-End applies the wear-leveling
mechanism, which can balance the write accesses among
multiple register file banks.

Fig. 11 presents an illustrative example of BWL of Hi-End
compared to the baseline register file without compression
and warped-compression [19]. Without using the compres-
sion technique, each register data is written across multiple
banks, as shown in Fig. 11(a). In the baseline model, all
banks are affected by the high write count, which results
in a short lifetime when the register file is implemented
with STT-MRAM. Warped-compression compresses register
data, uses less number of banks, and power gates the unused
banks to reduce leakage power, as shown in Fig. 11(b).
However, in case of STT-MRAM, power gating has a less
prominent effect compared to the case of SRAM because
the leakage power of STT-MRAM is extremely small. Fur-
thermore, although the lifetime of the unused banks can
be prolonged, the banks that frequently store compressed
data are still affected by high write count and short life-
times. The lifetime of a device is determined by the structure
with the shortest lifetime. Consequently, the lifetime of the
STT-MRAM-based register file with warped-compression is
equivalent to that of the baseline register file. As shown in
Fig. 11(c), Hi-End compresses register data and stores them
into multiple banks to avoid write concentration which occurs
in warped-compression. Using the wear-leveling technique,

VOLUME 8, 2020

TABLE 2. Simulation Parameter.

[Parameters [ Value
GPU Microarchitectural Parameter
Process 32 nm
Core clock frequency 700 MHz
SMs/GPU 15
Warp size 32-threads
Warp scheduling policy Greedy-Then-Oldest
Register file size 128 KB
Number of register banks/SM 64
Maximum number of warps/SM 48
Maximum number of threads/SM 1,536
Maximum number of registers/SM 32,786
Bit width/bank 64-bit
Number of entries/bank 256
Hi-End Architecture Parameter
Number of blocks in register cache 256
Register cache size 32.375 KB
Number of entries in delay buffer 16
Delay buffer size 2.03 KB
Compression unit energy/activation (pJ) |23
Compression unit leakage power (mW) 0.12
Decompression unit energy/activation (pJ) | 21
Decompression unit leakage power (mW) | 0.08

Hi-End can decrease the write concentration and improve the
lifetime of the GPU device.

The Compression Indicator Table (CIT) in the bank arbiter
contains a compression range that indicates the compres-
sion method used in the previous compression operation.
The arbiter determines the number of banks to access by
referring to the compression range because the number of
banks to access changes based on the compression method.
Furthermore, the CIT contains the Bank Point Value (BPV),
which indicates the next bank ID of previously compressed
data accessed. In the write bank allocation process, the bank
arbiter sends a BPV to the compression unit with the data.
The compression unit identifies the bank ID to start a write
operation using the BPV. While the compression unit writes
data to the register file, it concurrently updates the CIT with
anew BPV and compression range. In the read operation, the
decompression unit can identify the number of banks to read
by referring to the compression range as well as identify the
bank ID to start the access process by subtracting the numbers
of banks to access from the BPV.

V. EVALUATION

A. METHODOLOGY

We evaluated our proposed architecture using cycle-accurate
simulator, GPGPU-Sim version 3.2.2 [23]. The detailed GPU
hardware parameters are shown in Table 2. The parameters of
the STT-MRAM and SRAM register files shown in Table 1
are evaluated using circuit-level simulator, NVSim, and con-
figured from previous studies [4], [21]. The parameters of the
compression/decompression unit are configured from a previ-
ous study [19]. The detailed parameters of Hi-End, such as the
register cache, delay buffer, and compression/decompression
unit are shown in Table 2.

127775



IEEE Access

W. Jeon et al.: Hi-End: Hierarchical, Endurance-Aware STT-MRAM-Based Register File for Energy-Efficient GPUs

2 OSRAM BESTT 8STT+WB+BDI mHi-End
E,I.Z
@ 1
Eo.s
% 0.6 |
&
Z 04
]
= 0.2
E o
> > »n &) 17 > a 17%] =] a A Q o
© gz EEgEfzECEEZIZEEE G
o Q9 ° A o = =
a a
(o] o
FIGURE 12. Normalized register file energy consumption.
OSRAM &STT 8&STT+WB+BDI mHi-End
1.2
g1
= 08
Q
30.6 H
= 04
E
2 0.2
0
> > n Q @ > a @R 2] a A Q
2 2z 2 &8¢ fzECEEEEE RS
o Y 90 - m o = - =
=) =
(o] o

FIGURE 13. Normalized GPU IPC.

We selected 17 benchmarks from Parboil [25], CUDA
Software Development Kit [26], Rodinia [27], Poly-
Bench [28], and GPGPU-Sim benchmark suite [23]. Using
the benchmarks and architectural configuration above,
we compared the following four different architectures:

o SRAM: GPU architecture with SRAM register file.

o STT: GPU architecture with STT-MRAM register file
without additional techniques.

o STT+WB(Write Buffer)+BDI: STT-MRAM-based reg-
ister file which includes a centralized write buffer and
BDI compression from the previous study [4].

o Hi-End: The proposed architecture which includes
a register cache, a delay buffer and a compres-
sion/decompression unit with the BWL technique.

B. ENERGY EFFICIENCY

The normalized energy consumption of the register file is
shown in Fig. 12. Each data is normalized to the energy
consumption of the baseline SRAM-based register file. Using
the STT-MRAM directly with the register file instead of using
SRAM can reduce the register file energy consumption by
43.98%, but it causes a 17.36% degradation in the GPU
Instructions per Cycle (IPC), as shown in Fig. 13. In several
benchmarks such as 3DCONYV, BFS, GS, LBM, and ND,

127776

STT shows relatively low energy consumption compared to
other benchmarks. As presented in Fig. 2 in Section II, the
SRAM-based register file energy in such benchmarks are
largely consumed by the SRAM leakage energy. In particular,
the leakage energy in BFS and GS are over 80% of the
total register file energy consumption. High leakage energy
consumption can be effectively decreased by directly using
the STT-MRAM without additional techniques. Furthermore,
as the leakage energy ratio increases, the read and write
energy ratio decreases, which results in the lower effect of the
additional techniques in Hi-End. Consequently, STT shows
the similar or the lowest energy consumption in such bench-
marks.

In the previous work (STT+WB+BDI), both the write
buffer and the STT-MRAM register file handle read requests
simultaneously, thereby requiring additional dynamic energy.
Hi-End accesses the STT-MRAM register file only if the
read request cannot obtain the data in the upper hierarchy,
such as the register cache or the delay buffer; hence, the
process is more energy-efficient. Hi-End obtains register
files in an energy-efficient manner owing to the following
two factors. The first involves the lower leakage current
with STT-MRAM. Since STT-MRAM is an NVM and does
not require a constant power supply, it affords almost no

VOLUME 8, 2020



W. Jeon et al.: Hi-End: Hierarchical, Endurance-Aware STT-MRAM-Based Register File for Energy-Efficient GPUs

IEEE Access

O Register Cache BSTT-MRAM
1 —

H Delay Buffer

Read Access Ratio

< > < =4

=} ~ S =)} =]

2DCONV —
2MM
3DCONV
3MM

BESET T T ]
BICG
BS
CONV

FDTD & [ [ [ [

G T T T ]
HW
LBM
LIB
MUM
ND
SP
SC

AVG h ﬁ"

FIGURE 14. Read access ratio of Hi-End memory structures.

leakage current compared to SRAM. The second involves
the usage of the compression unit. STT-MRAM consumes
high dynamic power for read and write operations, as pre-
sented in Table 1. Meanwhile, Hi-End reduces the number
of bits for read and write operations by compressing data
for STT-MRAM, thereby reducing the dynamic power. As a
result, Hi-End reduces 70.02% of the register file energy,
whereas STT+WB-+BDI reduces only reduces 58.79% of the
energy compared to the SRAM-based register file.

C. IPC PERFORMANCE

Fig. 13 shows the GPU IPC performance normalized
to the baseline SRAM-based register file. Directly using
STT-MRAM with the register file instead of using SRAM
decreases the performance by 17.36% due to the long write
latency of STT-MRAM. In particular, BS, HW, MUM, and
SC are affected more in STT in terms of both energy and
performance. As presented in Fig. 2 in Section II, these
applications have a large portion of read and write energy
consumption, which means the number of read and write
requests are larger than other benchmarks. As the number of
read and write increases, STT cannot fully cover the in-flight
requests due to the low write performance; hence, results in
performance degradation. The previous work that adopts WB
covers some of the problems and improves the IPC compared
to STT. However, merely using WB cannot fully hide the
long write latency of STT-MRAM; therefore, a performance
degradation of 8.12% is observed.

Fig. 14 shows the ratio of read access to the different
memory structures in Hi-End, such as the register cache,
STT-MRAM, and delay buffer. In Hi-End, 85.40% of the
read operations are served from the register cache, 14.45%
from the STT-MRAM-based register file, and 0.15% from the
delay buffer. Despite its low read access ratio, the delay buffer
is an essential component, as it prevents incorrect data reads
as explained in Section IV-B. As reads from the delay buffer
and the STT-MRAM with the decompression unit require
two and four cycles, respectively, the average read latency
is 1.43 cycles. By employing the register cache, Hi-End has
one cycle write latency, as all write accesses are performed
in the register cache. As a result, the overall latency increase

VOLUME 8, 2020

OSTT-MRAM  ®Hi-End without BWL ~ mHi-End
%
08 | —HHHHHHHHHHHAHHHAHHHH
<@
<
£ 06 {4 HHHAHHHHHAAHHHHH
<
=]
204 fHAHEHHHHHAHHHHHAHEHH
2
§02[ i wissisl =izl winisiml simmln
z
0 | o | l_._ l_.- | ___l__ L.Ll
> P20 2>a® B Sa88&00
ZézégDmZFUEEEEZWV)>
cl <IN = C 2 = s <
o 70 O
a =]
(o} Lae]

FIGURE 15. Normalized access count of the most accessed register bank.

is only 0.43 read latency. This latency can be hidden by warp
scheduling or using other techniques to hide short latency.
Consequently, the evaluation results demonstrate that Hi-End
can achieve 99.14% in terms of performance compared with
the SRAM-based register file.

D. ENDURANCE

Despite the endurance of STT-MRAM being one of the
most critical issues in using STT-MRAM, it was consid-
ered insignificant in previous studies [4]-[6]. In Hi-End,
we improve the endurance of STT-MRAM using two archi-
tectural techniques, the register cache and BWL. Fig. 15
shows the access count of the most accessed register bank
normalized to the directly used STT-MRAM register file.
By reducing the write access to the STT-MRAM register
file using the register cache, Hi-End decreases 90.25% of
the write access to the STT-MRAM register file compared
to directly using the STT-MRAM register file. However,
the concentrated bank access provides additional opportuni-
ties to improve the endurance of STT-MRAM. Using BWL
technique, Hi-End distributes concentrated write accesses of
compressed data, thereby deceasing an additional 58.78% of
bank accesses to the most written bank compared to Hi-End
without BWL. As a result, Hi-End decreases 95.98% of the
write accesses in the most written bank compared to directly
using the STT-MRAM register file, thereby enhancing the
endurance considerably.

E. AREA ANALYSIS

To analyze the area of Hi-End, we used NVSim for
the area simulation of the STT-MRAM-based regis-
ter file, register cache, and delay buffer [4], [21].
The compression/decompression unit are is evaluated based
on a previous study [19]. Table 3 shows the relative area of
Hi-End by structures compared to the baseline SRAM-based
register file. Hi-End reduces 8.19% of the area compared to
the baseline SRAM-based register file despite the additional
structures in Hi-End. The main reason for area saving of
Hi-End is the high density of STT-MRAM compared to
that of SRAM; 128 KB of the STT-MRAM register file
only occupies 19.59% of the area compared to 128 KB of

127777



IEEE Access

W. Jeon et al.: Hi-End: Hierarchical, Endurance-Aware STT-MRAM-Based Register File for Energy-Efficient GPUs

TABLE 3. Relative Area of Hi-End Compared to SRAM-based Register File.

[Hi-End Component [ Area Ratio (%) |
Compression/decompression unit 36.08
Register cache 30.55
STT-MRAM register file 19.59
Delay buffer 5.59
Area saving 8.19
Total 100

the SRAM register file. Each register cache, delay buffer,
compression/decompression unit, and STT-MRAM-based
register file occupies 30.55%, 5.59%, 36.08%, and 19.59% of
the SRAM-based register file, respectively, thereby resulting
in an 8.19% area reduction.

VI. RELATED WORK

Hi-End aims to provide higher energy efficiency, lower per-
formance degradation, and higher endurance for GPUs with
STT-MRAM-based register file. To the best of our knowl-
edge, this work is the first that investigated compositive
optimization techniques of register file cache, compression,
and wear-leveling for STT-MRAM-based register file. In this
section, we discuss previous techniques that are related to
our study, such as optimization techniques for GPUs with
STT-MRAM register file and GPU register files with com-
pression techniques.

A. REGISTER FILE ADOPTING STT-MRAM

Recent studies attempted to solve the power consumption of
the GPU register file by substituting SRAM to STT-MRAM.
However, directly using STT-MRAM in a GPU register file
instead of SRAM is challenging due to the drawbacks. Sev-
eral previous works attempted to solve the challenges of
STT-MRAM with architectural approaches.

Li et al. proposed a hybrid STT-MRAM register file archi-
tecture [5]. They adopted bank-level write buffer and warp-
aware write back techniques to overcome the performance
drop of STT-MRAM-based register files. They employed two
SRAM buffers for every STT-MRAM register file. When a
warp is active, one SRAM buffer is used to write back reg-
isters, and the next active warp uses the other SRAM buffer.
The two buffers provide services alternately between the two
warps, thereby hiding the long latency stall of STT-MRAM.
However, in this approach, the entire pipeline of the GPU
can be stalled when the active period of one warp is not
adequate to write back data from the SRAM write buffer to
the STT-MRAM register file. Furthermore, such per bank
write buffer designs cannot fully utilize SRAM resources
when the write requests are unbalanced.

To address the limitations of the previous approach [5],
Zhang et al. proposed centralized write buffer [4]. They
employed an SRAM buffer in the bank arbiter, and the buffer
is shared by all register banks. Furthermore, they adopted
the compression technique to decrease the dynamic power
consumption of STT-MRAM. However, in this work, the
centralized write buffer and the STT-MRAM register file

127778

are concurrently accessed to minimize read latency. This
approach decreases the energy efficiency of the GPU register
file due to the redundant memory accesses. We compared the
effect of the centralized write buffer on the energy consump-
tion and performance with Hi-End in Section V. In addition,
unlike Hi-End, the endurance problem of STT-MRAM is not
considered in the previous studies.

Liu et al. proposed a Multi-Level Cell (MLC) STT-MRAM
register file for GPUs [6]. Using the MLC STT-MRAM
design, they achieve a larger storage density of regis-
ter file. Furthermore, they proposed an MLC-aware reg-
ister file remapping strategy and a warp rescheduling
scheme to optimize the different read and write performance
between soft and hard-bit operations in MLC STT-MRAM.
This work focused on the optimization techniques for
MLC STT-MRAM, whereas our work uses hierarchical
approaches and the wear-leveling technique. Consequently,
the MLC-aware technique proposed herein is orthogonal to
Hi-End; hence, it can be combined.

B. GPU REGISTER FILE WITH COMPRESSION

Previous works utilized several compression techniques to
minimize the static or dynamic power consumption of the
SRAM-based register file in GPUs.

Lee et al. proposed warped-compression, an SRAM-based
GPU register file with BDI compression algorithm [19], [29].
They restricted base and delta parameters and adopted BDI
compression directly to a warp register in an SRAM-based
register file GPU. After values are compressed, a smaller
number of register banks is used, and the unused regis-
ter banks are power gated; hence, the technique reduces
the power consumption of GPUs. In addition to adopting
the compression technique to an STT-MRAM-based GPU
register file, we propose additional optimization techniques
specific to STT-MRAM. Unlike SRAM that merely ben-
efits from power saving, the compression technique for
STT-MRAM additionally benefits from endurance with the
support of BWL in Hi-End. In addition, the effect of power
saving due to the compression technique of STT-MRAM
is more prominent than that of SRAM, since STT-MRAM
requires a higher dynamic power consumption.

Wong et al. proposed warp approximation, which stores
a representative value for a warp using an approxima-
tion technique [30]. They demonstrated effects similar to
those of warped-compression and reduced the number of
read or write bits, thereby reducing the dynamic and static
power of the SRAM-based register file. Their approach can
further increase the compression ratio compared to warped-
compression, as values that differ slightly from the rep-
resentative value can be additionally removed. Since the
approximation-based compression technique is orthogonal to
Hi-End, it can be applied to our work.

VIi. CONCLUSION
With the scaling down of CMOS and adaption of larger
register files by the latest GPU devices, the leakage current

VOLUME 8, 2020



W. Jeon et al.: Hi-End: Hierarchical, Endurance-Aware STT-MRAM-Based Register File for Energy-Efficient GPUs

IEEE Access

of conventional SRAM-based register files becomes a critical
problem. Recent studies proposed the usage of STT-MRAM
as aregister file because of its low leakage current and accept-
able read performance. However, STT-MRAM-based GPU
register files must be carefully designed due to write over-
heads and endurance problems. These challenges have been
addressed in various existing techniques. However, write
latency and endurance issues were not completely addressed.
Hence, addressing these issues, we propose Hi-End register
file architecture for GPUs. In Hi-End, we adopt a register
cache to exploit the locality in the register file and a delay
buffer to cover evicted data. Moreover, we implement a
compression unit to reduce high dynamic power and employ
BWL to address concentrated accesses of compressed data.
Our experimental results demonstrate that Hi-End reduces
energy consumption by 70.02% with only a 0.86% perfor-
mance degradation compared to an SRAM-based register file.
Moreover, Hi-End reduces 95.98% of the write access to the
register bank by distributing concentrated bank accesses and
reducing write accesses with register caches.

ACKNOWLEDGMENT
(Won Jeon and Jun Hyun Park contributed equally to this
work.)

REFERENCES

[1]1 NVIDIA’s Next Generation CUDA Computer Architecture: Fermi,
NVIDIA, Santa Clara, CA, USA, 2009.

[2] NVIDIA A100 Tensor Core GPU Architecture: Unprecedented Accelera-
tion at Every Scale, NVIDIA, Santa Clara, CA, USA, 2020.

[3] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim,
T. M. Aamodt, and V. J. Reddi, “GPUWattch: Enabling energy optimiza-
tions in GPGPUs,” ACM SIGARCH Comput. Archit. News, vol. 41, no. 3,
pp. 487-498, 2013.

[4] H. Zhang, X. Chen, N. Xiao, and F. Liu, “Architecting energy-efficient
STT-RAM based register file on GPGPUs via delta compression,” in Proc.
53rd Annu. Design Autom. Conf. (DAC), 2016, p. 119.

[5]1 G. Li, X. Chen, G. Sun, H. Hoffmann, Y. Liu, Y. Wang, and H. Yang,
“A STT-RAM-based low-power hybrid register file for GPGPUs,” in Proc.
52nd Annu. Design Autom. Conf. (DAC), 2015, pp. 1-6.

[6] X.Liu, M. Mao, X. Bi, H. Li, and Y. Chen, “An efficient STT-RAM-based
register file in GPU architectures,” in Proc. 20th Asia South Pacific Design
Autom. Conf., Jan. 2015, pp. 490-495.

[71 S. Mittal, “A survey of techniques for architecting and managing GPU
register file,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 1, pp. 16-28,
Jan. 2017.

[8] H. Zhang, X. Chen, N. Xiao, L. Wang, F. Liu, W. Chen, and Z. Chen,
“Shielding STT-RAM based register files on GPUs against read distur-
bance,” ACM J. Emerg. Technol. Comput. Syst., vol. 13, no. 2, pp. 1-17,
Mar. 2017.

[9] Z.Gong, K. Qiu, W. Chen, Y. Ni, Y. Xu, and J. Yang, “‘Redesigning pipeline
when architecting STT-RAM as registers in rad-hard environment,” Sus-
tain. Comput., Informat. Syst., vol. 22, pp. 206218, Jun. 2019.

[10] Q. Deng, Y. Zhang, M. Zhang, and J. Yang, ‘“Towards warp-scheduler
friendly STT-RAM/SRAM hybrid GPGPU register file design,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2017,
pp. 736-742.

[11] Y. Ni, Z. Gong, W. Chen, C. Yang, and K. Qiu, ‘““State-transition-aware
spilling heuristic for mlc stt-ram-based registers,” VLSI Des., vol. 2017,
pp. 1-8, Nov. 2017.

[12] X. Guo, E. Ipek, and T. Soyata, “Resistive computation: Avoiding the
power wall with low-leakage, STT-MRAM based computing,” ACM
SIGARCH Comput. Archit. News, vol. 38, no. 3, pp. 371-382, Jun. 2010.

[13] J. Zhang, M. Jung, and M. Kandemir, “FUSE: Fusing STT-MRAM into
GPUs to alleviate off-chip memory access overheads,” in Proc. IEEE Int.
Symp. High Perform. Comput. Archit. (HPCA), Feb. 2019, pp. 426-439.

VOLUME 8, 2020

[14] NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110,
NVIDIA, Santa Clara, CA, USA, 2012.

[15]1 NVIDIA GeForce GTX 980: Featuring Maxwell, The Most Advanced GPU
Ever Made, NVIDIA, Santa Clara, CA, USA, 2014.

[16] NVIDIA Tesla P100: The Most Advanced Datacenter Accelerator Ever
Built, NVIDIA, Santa Clara, CA, USA, 2016.

[17] NVIDIA Tesla V100 GPU Architecture: THE WORLD'S MOST
ADVANCED DATA CENTER GPU, NVIDIA, Santa Clara, CA, USA,
2017.

[18] NVIDIA Turing GPU Architecture: Graphics Reinvented, NVIDIA,
Santa Clara, CA, USA, 2018.

[19] S.Lee, K. Kim, G. Koo, H. Jeon, W. W. Ro, and M. Annavaram, ‘““Warped-
compression: Enabling power efficient gpus through register compres-
sion,” ACM SIGARCH Comput. Archit. News, vol. 43, no. 3, pp. 502-514,
2015.

[20] S. Mittal, J. S. Vetter, and D. Li, “A survey of architectural approaches
for managing embedded DRAM and non-volatile on-chip caches,” IEEE
Trans. Parallel Distrib. Syst., vol. 26, no. 6, pp. 1524-1537, Jun. 2015.

[21] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 31, no. 7,
pp. 994-1007, Jul. 2012.

[22] S. Yazdanshenas, M. R. Pirbasti, M. Fazeli, and A. Patooghy, ““Coding last
level STT-RAM cache for high endurance and low power,” IEEE Comput.
Archit. Lett., vol. 13, no. 2, pp. 7376, Jul. 2014.

[23] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in Proc.
IEEE Int. Symp. Perform. Anal. Syst. Softw., Apr. 2009, pp. 163-174.

[24] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Base-delta-immediate compression: Practical data
compression for on-chip caches,” in Proc. 21st Int. Conf. Parallel Archit.
Compilation Techn. (PACT), Sep. 2012, pp. 377-388.

[25] J.A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari,
G. D. Liu, and W.-M. W. Hwu, “Parboil: A revised benchmark suite for
scientific and commercial throughput computing,” Center Reliable High-
Perform. Comput., vol. 127, pp. 1-12, Mar. 2012.

[26] NVIDIA CUDA SDK Code Sample 4.0, NVIDIA, Santa Clara, CA, USA,
Mar. 2016.

[27] S.Che,J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and K. Skadron,
“A characterization of the Rodinia benchmark suite with comparison
to contemporary CMP workloads,” in Proc. IEEE Int. Symp. Workload
Characterization (IISWC), Dec. 2010, pp. 1-11.

[28] L.-N. Pouchet. (2012). Polybench: The Polyhedral Benchmark Suite.
[Online]. Available: http://www.cs.ucla.edu/pouchet/software/polybench

[29] S.Lee, K. Kim, G. Koo, H. Jeon, M. Annavaram, and W. W. Ro, “Improv-
ing energy efficiency of GPUs through data compression and compressed
execution,” IEEE Trans. Comput., vol. 66, no. 5, pp. 834-847, May 2017.

[30] D. Wong, N. S. Kim, and M. Annavaram, “Approximating warps with
intra-warp operand value similarity,” in Proc. IEEE Int. Symp. High Per-
form. Comput. Archit. (HPCA), Mar. 2016, pp. 176-187.

WON JEON (Graduate Student Member, IEEE)
received the B.S. degree in electrical and elec-
tronic engineering from Yonsei University, Seoul,
South Korea, in 2014, where he is currently
& pursuing the Ph.D. degree with the Embedded
 — Systems and Computer Architecture Laboratory,
) School of Electrical and Electronic Engineering.

o His current research interests are GPU mem-
b8,

ory systems, non-volatile memory, processing-in-
computing for neural network applications.

T

memory architecture designs, and approximate

127779



IEEE Access

W. Jeon et al.: Hi-End: Hierarchical, Endurance-Aware STT-MRAM-Based Register File for Energy-Efficient GPUs

JUN HYUN PARK received the B.S. degree
in electrical and electronic engineering from
Chung-Ang University, Seoul, South Korea,
in 2018, and the M.S. degree in electrical and
electronic engineering from Yonsei University,
Seoul, in 2020. He is currently working as an IP
Design Engineer with the System LSI Division,
Samsung Electronics. His current research inter-
ests are interconnection technology in SoC and
GPU architecture.

YOONSOO KIM received the B.S. and M.S.
degrees in electrical and electronic engineer-
ing from Yonsei University, Seoul, South Korea,
in 2016 and 2018, respectively. He is currently
working as a System Engineer with NAND Solu-
tion Division, SK Hynix. His current research
interests are the functionality of solid-state drive
and GPU architecture.

127780

GUNIJAE KOO (Member, IEEE) received the B.S.
and M.S. degrees in electrical and computer engi-
neering from Seoul National University, in 2001
and 2003, respectively, and the Ph.D. degree
in electrical engineering from the University of
Southern California, in 2018. He is currently an
Assistant Professor with the Department of Com-
puter Science and Engineering, Korea University.
His research interests are in the general area of
computer system architecture and spans parallel
processor architecture, storage and memory systems, accelerators, and secure
processor architecture. Prior to joining Korea University, he was an Assistant
Professor at Hongik University. His industry experience includes the position
of Senior Research Engineer at LG Electronics and also a Research Intern
with Intel. He is a member of the ACM.

WON WOO RO (Senior Member, IEEE) received
the B.S. degree in electrical engineering from Yon-
sei University, Seoul, South Korea, in 1996, and
the M..S. and Ph.D. degrees in electrical engineer-
ing from the University of Southern California,
in 1999 and 2004, respectively. He worked as a
Research Scientist with the Electrical Engineering
and Computer Science Department, University of
California, Irvine, CA, USA. He currently works
as a Professor with the School of Electrical and
Electronic Engineering, Yonsei University. Prior to joining Yonsei Univer-
sity, he worked as an Assistant Professor with the Department of Electrical
and Computer Engineering, California State University, Northridge, CA,
USA. His industry experience includes a college internship with Apple
Computer, Inc., and a Contract Software Engineer with ARM, Inc. His
current research interests include high-performance microprocessor design,
GPU microarchitectures, neural network accelerators, and memory hierarchy
design.

1
[
E

1.

VOLUME 8, 2020



	INTRODUCTION
	BACKGROUND
	BASELINE GPU ARCHITECTURE
	GPU REGISTER FILE ARCHITECTURE
	CHARACTERISTICS OF STT-MRAM

	MOTIVATION
	ENERGY CONSUMPTION OF GPU REGISTER FILE
	LOCALITY IN GPU REGISTER FILE
	DATA SIMILARITY IN GPU REGISTER FILE

	HIERARCHICAL, ENDURANCE-AWARE STT-MRAM REGISTER FILE ARCHITECTURE (HI-END)
	OVERALL ARCHITECTURE OF HI-END
	HIERARCHICAL REGISTER FILE

	DETAILED ARCHITECTURE OF HI-END COMPONENT
	REGISTER CACHE
	DELAY BUFFER
	COMPRESSION UNIT
	BANK-LEVEL WEAR-LEVELING


	EVALUATION
	METHODOLOGY
	ENERGY EFFICIENCY
	IPC PERFORMANCE
	ENDURANCE
	AREA ANALYSIS

	RELATED WORK
	REGISTER FILE ADOPTING STT-MRAM
	GPU REGISTER FILE WITH COMPRESSION

	CONCLUSION
	REFERENCES
	Biographies
	WON JEON
	JUN HYUN PARK
	YOONSOO KIM
	GUNJAE KOO
	WON WOO RO


