IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 29, 2020, accepted July 7, 2020, date of publication July 13, 2020, date of current version July 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3008523

Self-Supervised Animation Synthesis

Through Adversarial Training

CHENG YU"''2, WENMIN WANG “13, (Member, IEEE), AND JIANHAO YAN'

!Faculty of Information Technology, Macau University of Science and Technology, Taipa 999078, China

2Chongging College of Electronic Engineering, Chongging 401331, China

3International Institute of Next Generation Internet, Macau University of Science and Technology, Taipa 999078, China

Corresponding author: Wenmin Wang (wmwang @must.edu.mo)

This work was supported by the Science and Technology Development Fund (FDCT) of Macau under Grant 0016/2019/A1.

ABSTRACT In this paper, we propose a novel deep generative model for image animation synthesis.
Based on self-supervised learning and adversarial training, the model can find labeling rules and mark
them without origin sample labels. In addition, our model can generate continuous changing images based
on the automatically labels learning. The labels learning model can be implemented on a large number
of out-of-order samples to generate two types of pseudo-labels, discrete labels and continuous labels. The
discrete labels can generate different animation clips, and the continuous labels can generate different frames
in the same clip. Embedding pseudo-labels with latent variables into latent space, our model discovers
regularities and features from latent space. Animation features are fully characterized by the pseudo-labels
learned from the self-supervised module. Using upgraded adversarial training steps, the model learns to
map animation features to pseudo-labels from the latent space and then organizes pseudo-labels embedding
into latent variables to generate animation features. By adapting dimensions of pseudo-labels, we match
fine features with latent variables. Such as using the two types of pseudo-labels, our model can also
generate different styles of videos from the same dataset. The specific implementation tricks depend on the
different pseudo-label dimensions and the number of pseudo-label dimensions. Comparing the results of our
model with other state-of-the-art approaches, the model does not use complicated components, such as 3D
convolution layers and recurrent neural networks. Our experimental results show that an appropriate number
of the pseudo-label dimensions can better characterize animation features. In this case, an animation which
reached human-level perception can be synthesized. The performance of animation synthesis has reached

relatively superior results on several challenging datasets.

INDEX TERMS Self-supervised learning, animation synthesis, pseudo-label, adversarial training.

I. INTRODUCTION

Visual generation is a frontier challenge in computer vision,
and it can be used to create visual content automatically and
so on. By training out-of-order image samples, generating an
animation from noisy images or a single image is a complex
problem.

The challenge of visual generation can be briefly divided
into two tasks. The first task is image generation, which
focuses on different image synthesis applications, such as
image to image translation [1], [2], high resolution image
synthesis [3]-[7].

The second task is video generation, which involves
applying trained a model to generate video. Comparing with
image generation, video generation needs not only to gen-
erative images that treated as frames from a training video,

The associate editor coordinating the review of this manuscript and

approving it for publication was Shiping Wen

128140

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

but also to generate a changing and continuous sequence that
corresponded with the original frames.

There are two subtasks for video generation. One of them is
video prediction [8], [9]. This task trains video clips to predict
a few future frames. Another one is animation synthesis
[1], [10], [11]. By training a single image or random image
samples, the task needs to make a model that generates a short
image sequence.

All of the above work depends on generating models.
Current mainstream generative models include Generative
Adversarial Networks (GAN) [12], Variational Auto-Encoders
(VAE) [13], Autoregressive models [14], [15], and Flow
models [16]. In this article, adversarial training mainly refers
to training the networks of GAN. GAN is one of the most
popular models that can generate high quality and quantity
image, it is widely used in image synthesis tasks.

However, GAN still has many difficulties and challenges
when directly generating video. Because GAN is used for

VOLUME 8, 2020

https://orcid.org/0000-0003-4816-1586
https://orcid.org/0000-0003-2664-4413
https://orcid.org/0000-0001-8077-7001

C. Yu et al.: Self-Supervised Animation Synthesis Through Adversarial Training

IEEE Access

@

<

&:ir

=
Q

BEEEDD0 s

OEEEDD

FIGURE 1. Our deep generative model can synthesize an animation from shuffled images. Using a self-supervised manner,

the model learned discrete labels {d,, d,} and continuous labels {c;, c,, ..
represent different animation clips. Continuous labels {c;, c;, ..

., cn} without any given labels. Discrete labels {d;, d,}

., cn} represent different motions in one type of clips. Finally the

model can generate motions by learned d; and c; from diverse datasets.

generating an image as a single frame. Besides, the task of
video generation also needs to generate motions related to
the content of consecutive frames. The main method cur-
rently used for processing image sequences is the Recurrent
Neural Network (RNN) [17]-[19], which is widely used
in natural language processing to generate text sequences.
But in the training process, RNN requires a large number
of known sequences as prior conditions for generating new
sequences. the RNN node should share its weights with other
nodes in the same sequence. So the main disadvantage of
RNN is that generating sequences requires a large number
of known sequences for calculation, especially in image
sequence generation [20].

Current research rarely generates animations using a single
GAN directly. In a semi- supervised manner, these methods
should take sequence information to generate consecutive
frames, such as using 3D Convolutional Neural Networks
(Conv3D) [21]-[23], GAN [24], [25], and RNN [11] to gen-
erate motions, at next, using other networks to generate each
content frame.

In a supervised manner, the current works are mainly
utilizing appropriate prior conditions as labels [1], [2], [10],
[26] to control each frame generation, such as Conditional
Generative Adversarial Networks (CGAN) [27]. The training

VOLUME 8, 2020

of CGAN concatenates labels with the label’s image samples.
The semantic segmentation and optical flow can be used
as prior conditions that treat as image sample labels. Using
different types of labels, the target images can be generated
according to the corresponding labels. Especially using a
semantic segmentation as the label, the label can control
the image generation at the pixel level. But this method
usually needs large-scale prior conditions as image labels.
Meanwhile, the method always results in pixel distortions in
some areas of its generated images.

We design a model that can learn two types of
pseudo-labels by itself. Different from the real label, The
pseudo-labels are obtained through image features calcula-
tion. By implementing the self-supervised training module,
the model outputs animation from random image samples.
Our model does not require any real labels and sequences.
The result of our animation synthesis can reach the human
level perception on multiple datasets. Some examples are
given in Fig. 1.

Our contributions are summed up as follows:

(1) We propose an animation synthesis model based on
adversarial training. This model can learn two types of
pseudo-labels in a self-supervised manner and embed the
pseudo-labels to latent variables, so that the model can map

128141

IEEE Access

C. Yu et al.: Self-Supervised Animation Synthesis Through Adversarial Training

the pseudo-labels to animation features which come from
latent space.

(2) We show the interrelationships between the two
types of pseudo-labels, and the different results by differ-
ent dimensions of pseudo-labels. One type of pseudo-label
(discrete label) can generate different types of animation
clips. The other kind of pseudo-label (continuous label) can
generate different frames in the same animation clip. We com-
bine two types of pseudo-labels to complete animation
synthesis

(3) By improving existing image quality metrics,
we propose a new method to measure the quality of gener-
ated animations. Our method takes sequence continuity into
account when evaluating generated images. Compared with
the current state-of-the-art methods, our experiment results
verify the effectiveness of our proposed method.

Il. RELATED WORK
A. GENERATIVE ADVERSARIAL NETWORKS
GAN is a generative model based on the minimax game
theory. Since its first appearance in 2014, it makes a huge suc-
cess in image generation tasks. The original GAN [12] is an
unsupervised generation model, composing of two networks,
Generator and Discriminator.

We denote Generator as G and Discriminator as D.
In practice, the brief loss-function as

mGaxrrgnf(D, G). €))]

The G inputs random noise z ~ p,, and then generate fake
image samples G(z). The D inputs both real and fake samples
and tries to discriminate them.

We use back-propagation to update the parameters of the
networks, training the networks to optimize our target func-
tion. The first step is that we should train D to figure out the
fake image samples, as

FD)1 = —Eznp [log(1 — D(G(2)))], (©))

and then we denote the true image samples as x ~ py, try
to figure out the true image samples as follow

F (D)2 = =Ex~p, [logD(x)]. 3)

At the next step, we train G depending on D. Let D guide

G to generate the better fake image samples, the process is
given by

J(G) = —Eznp [logD(G(2))]. “

The GAN is a good strategy to estimate the complicated
distribution. However, GAN is not easy for training [28].
In order for GAN to generate higher resolution, better quan-
tity and quality image samples, there are two problems that
need to be solved [5], [29]-[32], one is model collapse and
the other is training instability.

128142

B. CONDITIONAL GAN AND LATENT VARIABLES
Conditional Generative Adversarial Nets (CGAN) [27] is an
extended type of GAN. We denote y as the labels of the image
samples x. The CGAN loss function is given by

fD) = _Ex'Vpx [logD(x|y)]
HEo~p, [—log(1 — D(Gly)]. (5)

The entire input of G comes from different distributions
in high dimensions, and these input variables are called latent
variables. ACGAN [33] and InfoGAN [34] are improvements
of CGAN. The ACGAN does not take labels y as input.
Instead, it outputs y by D, while adding cross-entropy loss
to estimate the output labels y. In addition, InfoGAN adds
more parameters to estimate multi labels in an unsupervised
manner.

StyleGAN [6] does not use labels as prior conditions,
it uses fully connected layers to better embed the latent
variables when generating images. So that the StyleGAN
embedded latent variables can be used as labels to generate
images. However, latent variables used to generate images are
usually more complex than known labels, which come from
more complex distributions and cannot be directly used as
good labels for animation synthesis.

C. ANIMATION SYNTHESIS AND VIDEO PREDICTION
Video prediction and animation synthesis are two subtasks of
video generation. Video prediction aims to generate contin-
uous video frames based on previous video frames. Similar
to most generation problems of sequence to sequence, RNN
[17]-[19] are often used to deal with this problem.

MoCoGAN [11] separates contents and motions from the
same video. It trains one type of RNNs, Gate Recurrent Units
(GRUgs) [19], to generate motions and train GANSs to gen-
erate content images (as frames). Similar to training RNNs,
Uni&Bi [9] generates intermediate sequences by training its
front sequence and rear sequence.

During RNNS training, each RNN’s node needs to share its
weights with other neighbors [20]. The calculation and update
of the current node weights depend on the update of many
adjacent node’s weights. In this way, the input sequences
can be fitted to the sequences composing of RNN nodes.
However, as the sequence length increases, the requirement
of calculation will explode, and meanwhile the quality of the
sequence generation will become worse.

Animation synthesis is another subtask of video
generation. This direction aims to use image samples to
generate video. Common methods include using pose estima-
tion [2], [35], [36], optical flow [10], [37], [38]and semantic
segmentation [1], [2] as prior conditions to train model and
generate continuous images with corresponding conditional
features. Pixel-level control can be achieved by generating
the labeled pixel distribution.

By using the prior conditions as training labels, each
label needs to be the same size as its paired image sample.
The requirement of various detailed labels makes animation

VOLUME 8, 2020

C. Yu et al.: Self-Supervised Animation Synthesis Through Adversarial Training

IEEE Access

synthesis methods that can only be implemented in a
supervised manner.

In addition, TGAN [24] uses a GAN to generate motions.
Similar to RNN, The GAN uses sequence information as the
weak labels which come from a video dataset. The weak
labels come from a video dataset that corresponds to a cat-
egory of the video. These labels can be used to generate
motions by the GAN. Such labels are weak and cannot be
controlled to generate pictures and videos in pixel-level.

lil. METHOD

Inspired by InfoGAN and StyleGAN, we design a novel
model that can learn pseudo-labels as an animation sequence
guide in a self-supervised manner.

Our method bases on adversarial training. It not only
uses an improved CGAN to estimate common labels but
also improves the estimation of conditional variables in the
model’s input and output. We propose a self-supervised mod-
ule to make two types of pseudo-labels, discrete labels d;
and continuous labels c;. As shown in Fig.1, these are two
types of pseudo-labels that control the image generation to
human-level perception changes.

A. DISCRETE LABEL LEARNING
As show in Eq. (5), y can be treated as the one-hot variables or
the pixel-level variables (e.g., from semantic segmentation).

Here we denote discrete labels d as one-hot variables.
d; is one of the dimensions of d which can be inputted to G
(as G(d)), then the D tries to figure out the better
pseudo- labels d and gives a label score A,.

The difference between our method with CGAN is that
we do not input any ground-truth labels as prior conditions.
Instead, we input random discrete variables which combine
with latent variables z. We optimize the D to output a judged
score which is corresponded to learned pseudo-label. After
that, we optimize G to generate images with intermittent
changes through discrete labels d.

Finally, the learned discrete labels d will be embedded
to the latent variables. D and G jointly use the same
loss-function for optimization, this loss-function is as
follows:

ra = —Ei~p,[logD(G(d]2))-d]. (6)

B. CONTINUOUS LABEL LEARNING

Different from discrete labels d, we define continuous labels
¢ as continuous variables, and one of the dimensions of
continuous labels ¢ can be denoted as ¢;. Compared with dis-
crete labels d, ¢ will be more sensitive to generative control.
So we do not use cross-entropy (CE) like Eq. (6). We use
mean-square error (MSE) as the loss-function to optimize
continuous labels c. Although both d and ¢ coming from dif-
ferent uniform distributions, optimizing continuous variables
depend on one dimension of discrete label d. we denote the
loss-function as

he = Benp (D(G(cldi)) — c). (N

VOLUME 8, 2020

Same as d, the learned continuous labels will be embedded
to the latent variables which are corresponded with one d;.
The learned ¢ will control the details of the image changes.

C. SELF-SUPERVISED LEARNING MODULE

Here, we introduce a self-supervised module to learn
pseudo-labels composing of discrete and continuous labels.
During model training, we input latent variables z that
come from Gaussian distribution. Meanwhile we input dis-
crete variables embedded discrete labels d and continuous
variables embedded continuous labels c.

In Eq. (1), we train a model from z so that the model can
output fake images. The method optimizes a network D in a
loss-function given by Eq. (2) and Eq. (3), it also optimizes a
network G given by Eq. (4).

Next in Eq. (5), we need to know the labels y as prior
conditions. But in a self-supervised manner we do not need
to know the labels y. We try to learn pseudo-labels by d and ¢
from an improved network D. In practice, we denote variables
concatenation as @. The D can be defined as

x',d,cd =DGz®d® c)). (8)

The D not only outputs a score x” to judge the quality of the
image generated by G, but also outputs two additional scores
d’ and ¢’ to judge the quality of the discrete variables and the
continuous variables. Each type of output score corresponds
to that type of learning pseudo-label.

In two types of pseudo-labels, the interval of discrete labels
is greater than the interval of continuous labels, so we first
optimize Eq. (6) to learn discrete labels d, and then optimize
Eq. (7) to learn continuous labels c in the same discrete label.
With the improved D, we define its overall optimization as

f(D,G)=E[-log(1 —=D(G(z® d & ¢)))]
+E[—logD(x)] + Aq + Ae. (9)

The target function is shown in Eq. (9), we input latent
variables z, pseudo-labels d and c at the same time. When
processing 3 types of variables from the outputs of D, which
shown in Eq. (8). We first process the d’, then process ¢’ in
one dimension of d’. By training in this way, we make sure
the continuity of the generated animation from generator G.

D. TRAINING STEPS

As shown in Fig. 2, we design two stages to train our model.
In stage 1, we optimize a discriminator network D and use its
outputs, x’, d’ and ¢/, to evaluate one latent variable z and two
types of pseudo-labels which are represented by two types of
variables d and c. The latent variables z, which is required
in the common unsupervised generative model, comes from
Gaussian distribution. Two types of the marked variables,
d’ and ¢/, are used to learn two levels of latent features.
In stage 2, we optimize a generative network G to generate
sequences from three types of input variables z, d and c. z
sampled from Gaussian Distribution, d sampled from discrete
uniform distribution and ¢ sampled from continuous uniform
distribution.

128143

IEEE Access

C. Yu et al.: Self-Supervised Animation Synthesis Through Adversarial Training

Fully Connected Layer
Binary Label Score H

Convolution
Continuous Label Score

Discrete Label Score Convolution-Transpose

Stage 2:

/

Gaussian Distribution

Continuous Uniform Distribution

Discrete Uniform Distribution

w. EEEEE
. Emm >

e

O e e

p max :

FIGURE 2. The pipeline of our proposed model with adversarial training for animation synthesis. In stage 1, we design a
discriminator D. x is the input which is a batch of disordered images. D output three types of label scores that contain discrete
label score d’ and continuous label score c’. In stage 2, we design a generator G. z, d and c are its input, which will be compared
with the output from the stage 1, x’, d’ and ¢’. We need to train d and c to be representatives of pseudo-labels. We choose
multiple convolution2D layers as the upsampling operation and multiple convolution-transpose2D layers as the downsampling
operation. Some repeated layers of the network have been omitted. At the same time, the normalization layers and the activation
layers between the sampling layers are also omitted. The above operations implement on the PyTorch library [39]. More detailed

network Architecture can refer to Tab. 1 and Tab. 2.

The binary label score x" output from D, we use Binary
Cross Entropy (BCE) as the loss function to optimize D. For
two different types of pseudo-label scores output from D, dis-
crete label score d’ and continuous label score ¢/, we respec-
tively use Cross Entropy (CE) as the loss function of discrete
label score and Mean Square Error (MSE) as the loss function
of continuous label score. We use two different loss functions
to deal with different types of pseudo-labels score to ensure
that continuous labels are more sensitive than discrete labels.
In the second stage of Fig. 2. We can see the difference in
the results of two different dimensions of d; and numerical
changes of a ¢; value. When calculating the update parameters
in back propagation, we use Adam [40] as the optimizer. Our
method are implemented on a deep learning library called
PyTorch [39].

E. NETWORK ARCHITECTURE

Tab. 1 detailed the generator G architecture which used in
our model. The G we designed is mainly composed of two
types of layers, fully connected layers, and convolution-
transpose2D layers. They are designed as functions and
denoted as Linear() and Deconv2d() respectively. The input

128144

TABLE 1. Network architecture of the animation generator G.

G Configuration

zi ~ N(0,1),d; ~U{1l,nq}, ¢c; ~U(0,1)
Linear(n, + ng + ne, 1024), BN, ReLU
Linear(1024, 128 x8x8), BN, ReLU
Reshape(-1, 128, 8, 8)

Deconv2d(128, 64, K=4, S=2), BN, ReLU
Deconv2d(64, 32, K=4, S=2), BN, ReLU
Deconv2d(32, 3 K=4, S=2), BN, Tanh

Input

[Y B e O R S

of G includes three types of variable, z;, d; and ¢;. The latent
variable z; comes from latent space and follows gaussian
distribution. The discrete label d; follows discrete uniform
Distribution and the continuous label ¢; follows continuous
uniform Distribution. Except for the last layer, all other layers
use batch normalization (BN) layer followed by the ReLU
nonlinearity. The last layer uses Tanh nonlinearity which is
more suitable for output. We denote the parameter of kernel
size as K and the parameter of stride size as S.

As shown in Tab. 2, we show the discriminator D which
used in our model. The input of D is a batch of frames.

VOLUME 8, 2020

C. Yu et al.: Self-Supervised Animation Synthesis Through Adversarial Training

IEEE Access

TABLE 2. Network architecture of the animation discriminator D.

D Configuration

Input [N, C,H, W]

1 Conv2d(C, 32, K=4, S=2), LeakyReLU

2 Conv2d(32, 64, K=4, S=2), LeakyReLU

3 Conv2d(64, 128 K=4, S=2), BN, LeakyReLU

4 Reshape(-1, 128 x8x 8)

5 Linear(128 x8x 8, 1024, K=4, S=2), BN, LeakyReLU
6 Linear(1024, n, + ng + n¢, K=4, S=2)

We record the number of frames as N, the number of channels
in one frame as C, and the height and width of the frame as H
and W respectively. In D, we mainly use the convolution2D
layer and denoted it as Conv2d(). Different from the G,
we only use BN for the last Conv2d layer. And the last fully
connected layer does not need BN layer and nonlinearity.
The above changes are to make the D better to output the
evaluation of the three types of variables.

The addition of fully connected layers can enhance the
ability of latent variable representation. Here, we use two
fully connected layers to enhance the ability of G and D.

IV. EXPERIMENTS

In this part, we first introduce 5 datasets that we use for our
experimental benchmarks. Next, we show an ablation study
about the numbers of the pseudo-label dimensions. After
that, we introduce a new approach to evaluate the quality
of animation synthesis. Finally we compare our model with
existing related models by multiple metric methods.

A. BENCHMARK DATASETS

1) 2D SHAPES

The dataset contains 4,000 videos [42], and each video
involves different 2D moving shapes. There are three kinds
of shapes (triangles, circles and squares) with different sizes
and colors. We split the video as clips, and we choose
15,997 clips contain moving circles and squares. Each clip
contain 32 frames and the size of each frame is 64 x 64 pixels.
We do not need any sequence from the dataset. So we split the
clips to individual frames(256,002 frames in total) and shuffle
these frames as random images.

2) MOVING MNIST

The Moving-MNIST [43] contains 10,000 sequences. Each
of sequence have 20 frames showing 2 handwritten digits
moving in a 64 x 64 pixel frame. In this experiment, we split
this sequences to individual frames. Finally, we choose
9,000 sequences to make 180,000 shuffled frames as our
training input images.

3) 3D BASEL FACE MODE

The 3D Basel Face Model (BEM) [41] is calculated from
registered 3D scans of 100 male and 100 female faces. Each
face presents the main characteristics of the head, gender, and
facial features of the person. We make 40,000 different face
images to generate animation of 3D face.

VOLUME 8, 2020

4) HUMAN ACTION

From [44], the human action contain 81 clips of 9 people
performing 9 human action including jumping-jack and
waving-hands. By selecting 71 clips, we make the clips to
7,199 frames and shuffle them. In order to keep the same
image size with other our selected dataSets, we also scaled
the shuffled frames to 64 x 64 pixels.

5) CelebFaces ATTRIBUTES DATASET

CelebFaces Attributes Dataset (CelebA) [45] is a large-scale
face attributes dataset with more than 200K celebrity images,
each with 40 attribute annotations. The images in this
dataset cover large pose variations and background clut-
ter. CelebA has large diversities, large quantities, and rich
annotations, including 202,599 number of face images. The
CelebA contains in-the-wild type and align-cropped type.
We choose align-cropped type with original image size is
178 x 218 pixels and crop each image to 64 x 64 pixels.
Unlike using BFM dataset, in our experiments, we focus on
generating human 2D facial animations through CelebA.

B. ABLATION STUDY

In this section, we present an ablation study to empirically
assess the impact and correlation when we use the different
numbers of pseudo-label dimensions. In previous section,
we have introduced our self-supervised module that can
learn two types of pseudo-label from shuffled samples, dis-
crete labels d and continuous labels c. In our design, d are
pseudo-labels that can distinguish different clips which are
apart of one animation. The continuous labels ¢ are used
to distinguish detailed features, and the features represent
different motions in one kind of clips.

But in reality, we can not determine the required
dimensions of the two types of pseudo-labels in different
datasets. Therefore, the dimensions of d and ¢ are problems
that need to be explored. We denote ny as the number of
discrete label dimensions and denote n. as the number of
continuous label dimensions.

We have proved a result by our experiments that if there is
large number of n; and n, to learn, the difficulty of optimizing
will increase and all the features of the samples cannot be
found well. Otherwise, if there is a small number of n; and
nc, the model also cannot be classified well according to the
small dimensions, and the training results are also blurred.
In order to get a better experimental result, the dimensions of
pseudo-labels need to suit the size of the dataset.

In small-scale datasets, such as BFM and Human Action.
ng is suitable to take a smaller number. As shown in Fig. 3,
the BFM sequence changes significantly when ny is small
(ng =95), as ng increases, the changing performance becomes
weak (ng = 10, ng = 20). Corresponding with n,4, the number
of n. need to be set in a range. As the Fig. 4 shows, in the
case of fixed ny (ng = 20) using Human Action dataset, too
small dimensions of ¢ (n. = 5) leads to a poor result that
each frame is the same feature, and also the features learned
are not obvious when n, is too large (n, = 20).

128145

IEEE Access

C. Yu et al.: Self-Supervised Animation Synthesis Through Adversarial Training

ne=5 n.=2 ﬁ
na=5 n.=5 ﬁ i‘;‘;
na=10 ne=5 ‘ :3

Py

na=10 n.=10

ni=20 ne=5 w
na=20 n.=10 é’

F
na=20 n.=20 4

FIGURE 3. Ablation study on 3D Base Face mode (BFM) [41], we compare
with the different numbers of the discrete label dimensions (ng) with
different numbers of continuous labels dimensions (n¢). The results show
that the growth of ny will cause the influence of ¢ to become weak.

At the same time, as the n¢ increases, its influence will become weak or
even ineffective (the last row).

0o d Q@@
0o @@

ne=20 n.=20

FIGURE 4. A part of ablation study on human action [44]. When the gap
between ng and n¢ is too large, that will cause the result to blurred or
even invalid.

c’:*w. ' u -.- . - - !
c':rm. - . - .- . - - -

FIGURE 5. A set of experiments for quantitative analysis of c; in 2D
shapes [42] dataset, the same dimensions of discrete labels d and
continuous labels c can generate regular sequences, and the difference
value of c; control the color (row 2) or size (row 3) of the object in the
animation sequence.

The different d; causes the generated images to change
significantly. Otherwise, the different c; causes these images
to change slightly. One of the reasons is that the value of d;
is the one-hot type and its value set to true or false, while
¢; is a continuous variable that can change the value within
a range. As shown in the different columns in Fig. 5. The
change of c¢; is within a range of values. If ¢; exceeds this
range, the maximum and minimum values will also allow
the generated sequence to converge to a stable feature. Our
method can set the maximum and minimum values of ¢;

128146

na=5 n.=5

na=10 n=5

na=20 n=10

ne=20 n=20 |

FIGURE 6. Ablation study on CelebFaces Attributes Dataset(CelebA) [45],
in this large-scale dataset, we found that the animation generation
results are blurred when ngy and n¢ are too small. As the ngy and n¢
increased, the animation synthesis performance will be better. At the
same time, an appropriate increase in n¢ will make the animation control
more detailed and diverse.

TABLE 3. Ablation study on datasets of different sizes.

nd, Ne FIDBEM) FID(CelebA)
ng=5,ne=2 424 11.24

ng=5 , ne=5 2.33 10.55

ng=10, ne=5 3.65 9.42

nq=20 , ne=10 4.07 6.67

ng=20 , ne=20 5.86 17.10

to generate objects of different colors (row 2) or shapes
(row 3) in the same sequence.

In large-scale dataset (such as CelebA). ng is suitable to
take a larger value. As shown in Fig. 6, the quality of the
CelebA sequence generated by our method is significantly
improved when ng, is greater than 5. At the same time, with
the increase of n., the performance of image change in the
same value of d; will be more detailed and diverse (from the
3rd row to the 5th row).

We provide a comparison of the ablation study on two
datasets showing in Tab. 3. When n; and n, are smaller
(ng = 5, n. = 5), the small-scale dataset BFM works bet-
ter. Large-scale datasets CelebA requires larger ny and n,
(ng =20, n. = 10). We use FID [46] (low is better) to measure
the quality of the generated sequence.

The embedded pseudo-labels follow two uniform
distributions (discrete and continuous). Compared with the
original latent variables that follow the Gaussian distribution,
the pseudo-labels simplifies the mapping of animation fea-
tures to latent variables. The one reason is that the uniform
distribution is easier to control. In addition, the discrete
uniform distribution and the continuous uniform distribution
also easy to make a sizable difference.

Two types of uniform distributions also provide convenience
for learning the two types of pseudo-labels and forming dis-
tinct features mapping. In the animation features, the different
clips correspond to discrete variables, and different frames

VOLUME 8, 2020

C. Yu et al.: Self-Supervised Animation Synthesis Through Adversarial Training

IEEE Access

in the same clip correspond to continuous variables. Both
types are implicitly embedded as pseudo-labels in the latent
variables that follow the Gaussian distributions and reduced
the mapping complexity on latent space to animation features.

C. METRICS OF ANIMATION EVALUATION

In the image quality evaluation method, Peak Signal to Noise
Ratio (PSNR) and Structural Similarity Index (SSIM) are two
well-known objective image quality metrics [47], [48].

PSNR measures the quality of the picture by the MSE
between the pixels compared with the ground-truth. The
larger the PSNR value, the better the generated image qual-
ity, and the smaller distortion. SSIM compares the gener-
ated image luminance, contrast and picture structure with
ground-truth. When the generated image is the same as
ground-truth, SSIM gets the maximum value. Both methods
measure a single image and cannot measure a continuous
sequence of animation.

In the method of measuring the image generation model,
Inception Score (IS) [49] and Fréchet Inception distance
(FID) [46] are two of the most popular methods, which are
used to measure the distance between the distribution of the
generated images and the distribution of the ground-truth.
IS measures the distribution distance between the generation
and ground-truth by comparing the distance between them
and ImageNet [50], a large-scale hierarchical image database.
When the generated distribution to be measured is not similar
to ImageNet, IS cannot accurately measure the generated
model. FID can directly measure the similarity between the
distribution under test and ground-truth, but neither of them
can accurately measure the sequence relationship between the
image distribution.

To solve the problem of image sequence measurement,
we changed the metric object of the above methods from a
single image to an animation sequence. At the same time,
we divided a weight based on the characteristics of the above
indicators. We denote the measurement scores of the above
three methods are s), s; and sy. The final animation score,
which evaluate animation synthesis, is s and defined as

1
s=spt+ass+pf—.
St

According to the importance of the animation sequence
structure, we set the weight value « of s to 20. Meanwhile
the FID score sy is different from the other two method scores
PSNR s, and SSIM s;. The closer a generative distribution is
to the real distribution, the smaller the sy value is. When the s¢
value equals zero, it represents that the generative distribution
is equal to the ground-truth distribution. Therefore, we set the
weight value g for 1/sy to 1 according to the quality score sy
of the currently generated distribution.

(10)

D. COMPARE WITH EXISTING WORK

We compare our method with the baseline MoCoGAN [11]
and TGAN [24] using the metrics of evaluating animation
which offered in the previous subsection. On the benchmark

VOLUME 8, 2020

of Human Action [44], Our qualitative results show in Fig. 7
and measured value show in Tab. 4. The low value of FID
means result better, and the minimum value of FID is 0.
Conversely, the larger of the other three metrics, the better
the results. The maximum value of PSNR is 255, and the
maximum value of SSIM is 1. The minimum value of both
are (. Animation Score corrects the shortcomings of the three
metrics through different weights (In this case « = 20,
g=1.

To evaluate the metrics of PSNR and SSIM, we choose
10 consecutive frames generated from the two methods which
comparing with related ground-truth frames. In addition,
we compare 10 consecutive frames with 7,000 ground-truth
frames to calculate the FID value. Finally, we combine the
three metrics to calculate a relatively fair metric named
animation score.

In baseline of MoCoGAN, the one type of recurrent neural
networks, GRUs [19], have be used for sequence generation.
We tested on the same device with 4 GPUs embedded, and
the GPU model is Tesla V100 32GB SXM3. Compared to
the baseline, which needs to input more animation sequences
from dataset, our method only needs to input unordered
images in the same dataset. From the evaluation results,
our method is better than MoCoGAN when the time and
computing resources are fixed.

We also compared our model with TGAN under the
Moving-MNIST dataset. Some examples of results are shown
in Fig. 8. The first two rows are the results of TGAN,
and the last two rows are the corresponding results of our
method. In TGAN, latent variables z, which is composed of
z1 and zp, are slightly better than the latent variable only
composing of z;. Testing our model on the benchmark of
Moving-MNIST, the numbers of dimensions are ny = 20 and
n. = 10, are better than the numbers of dimensions ng = 20
and n, = 20. The overall effect of our method is better
than TGAN. The specific evaluation can be seen in Tab. 5.
We select 5 frames of each method result to measure PSNR
and SSIM which compare with corresponding ground-truth
frames. Meanwhile, we use these 5 frames to compare with
20,000 ground-truth frames to evaluate the FID score. The
weights of the animation score are « = 20 and § = 1.

This result also indirectly validates our empirical judgment
on the effect of the pseudo-label dimensions, which shown
in ablation study that the large-scale dataset needs more
dimensions of pseudo-label to train a better result. At the
same time, we can see in Fig. 8 that TGAN cannot generate
sequences well in an unsupervised manner, and the prob-
lem can overcome by adding supervised labels. This is also
different from our method by self-supervised learning.

V. DISCUSSION

A. COMPUTATIONAL ANALYSIS

By comparing different models, we found that adding
effective calculations, such as adding the network layers and
increasing the quality of training dataset, can improve the
quality of animation synthesis. Upgrading the model structure

128147

IEEE Access

C. Yu et al.: Self-Supervised Animation Synthesis Through Adversarial Training

Grqgnd Truth:

FIGURE 7. Qualitative results for image animation on the 2D Action dataset: MoCoGAN against our method. The first and second
rows are the sequences from the ground-truth. The third and fourth rows are the sequences from the MoCoGAN output which
similar with the ground-truth. The last two rows are the sequences from our method output which similar with the ground-truth. The
input of MoCoGAN are motions and contents from the dataset. The input of our method does not need such motions. Our input are

out-of-order motions extracted from the dataset [44].

TABLE 4. Animation comparisons with MoCoGAN on the benchmark of
Human Action.

MoCoGAN Ours
PSNR (sp) 17.36 18.92
SSIM (ss) 0.54 0.68
FID (s) 423.87 5.22
Animation Score (s) 27.1 33.29

to improve computing efficiency is also a valuable task,
especially when we only got limited computing resources.

As shown in the Tab. 6, we analyzed the computational
consumption of models through its open code repository.
Where TGAN [24] and MoCoGAN [11] require motions as
supervised conditions, Monkey-GAN [10] and Pix2pix [1]
require stronger supervision conditions, such as optical flow
and semantic segmentation.

In the motions generation part, we observe the main
computational networks in each model, the motions gen-
erator Gyorion, and the animation discriminator D uimation
which contain mainly the computation of animation synthe-
sis (motions and contents). For convenience, we abbreviate
Conv2D and Deconv2D as C2D. Similarly, both Conv3D and
Deconv3D are abbreviated as C3D.

128148

TGAN (z)

TGAN (z1, z2)

o (nd_zo nc_1o
o (nd=20, nC=20) EEH

FIGURE 8. Qualitative results for animation synthesis on the
Moving-MNIST: TGAN [24] against our method. The first and second rows
come from TGAN. The third and fourth rows come from our method. The
result shows that our method is much more consistent between
continuous frames.

MoCoGAN needs to use GRU (one type of RNN) and
C2D to complete the sequence generation training, and to
use C3D to complete the discriminator training. Since each
animation synthesized clips require more than 12 frames,
it is empirically estimated that the training C3D requires
36-48 frames as input. So the calculation of C3D is 3-4 times
higher than that of C2D which only calculates a single
frame.

VOLUME 8, 2020

C. Yu et al.: Self-Supervised Animation Synthesis Through Adversarial Training

IEEE Access

TABLE 5. Animation comparisons with TGAN on the benchmark of
Moving-MNIST.

Method PSNR / SSIM FID Animation Score
TGAN (z1) 8.67/0.48 0.41 20.71
TGAN (z1, 22) 9.32/0.56 0.33 23.52
Ours (ne = 20,n. = 10) 9.39/0.54 0.77 21.49

Ours (ng = 20,nc = 20) 10.17/0.64 0.12 31.30

TABLE 6. Comparison of computational performance based on network
architecture.

Model Supervision Gmotion Danimation
TGAN [24] Motion C2Db C3D
MoCoGAN [11] Motion RNN+C2D C3D
Monkey-GAN [10] Optical Flow C3D C3D
Pix2pix [1] Segmentation ~ C2D C2D
Ours - C2Db C2D

Normally, using C2D to replace the parts of C3D and
RNN to train motions is the key ideal to reduce the amount
of calculation in motions generation. In the case of insuffi-
cient computing resources and unsupervised conditions, our
model is more effective than other high resolution animation
synthesis models.

B. PSEUDO-LABELS WITH LATENT VARIABLES

In applied research that uses GAN as a generative model,
high-dimensional latent variables as inputs, travel in a latent
space, have always been an important research area. From
simple one-hot labels to semantic segmentation labels, we can
find the huge potential ability of latent variables to control the
characteristics of GAN generation.

Under the pre-training model of a high resolution network
[6], [7], we can add mapping models with embedding latent
variables to control generative features. By changing the
image features to generate videos, The ability of mapping
features is related to the components of the networks and
the dimensions of latent variables. To deal with this situation,
StyleGAN added more fully connected layers to complete the
features mapping. In this work we used a similar structure to
enhance the capability of feature mapping. There are many
possibilities for the mapping of latent variables to features.
The latent variables with higher dimensions have more fea-
tures that they can control. Our ablation study also prove
this.

We attempt to discover how to use simple latent variables
as much as possible to complete the mapping of animation
features. In this paper, two types of pseudo-labels are learned
to embedding in the latent variables, and then we map the
latent variables into animated features. This is an effective
way of animation synthesis by features mapping.

VI. CONCLUSION

In this paper we introduced a novel deep learning method
for image synthesis. Motivated by InfoGAN and StyleGAN,
we designed a new discriminator that can be trained to learn

VOLUME 8, 2020

two types of pseudo-labels. In a self-supervised manner, our
method allows a new generator to make pseudo-labels in
the image dataset from latent variables. Our method can
generate animations with the new generator by learning the
pseudo-labels which can map the animation features by the
discriminator.

In the experiment, we researched the relationship between
the different numbers of pseudo-label dimensions and the
performance of animation synthesis. Moreover, we stud-
ied controlling techniques for animations synthesis by
the pseudo-labels of different dimensions and types.
Furthermore, we compared our method with existing related
methods through multiple metrics. Our experiments confirm
the validity and feasibility of our proposed method.

Finally, we analyzed the computational efficiency from
the network architecture and made a wider comparison.
We discussed the relationship between pseudo-labels and
latent variables, and the mapping relationship between latent
variables and image features. In future work, we plan to
extend our method on the more deep network architectures
to generate higher quality animations and videos. Meanwhile,
we will stand on the pre-training models of the current famous
deep generative networks and explore the efficacy of pruning
model for features mapping to generate higher quality anima-
tions and videos.

ACKNOWLEDGMENT

The authors would like to thank Yujun Shen (Ph.D. student
at CUHK) and Timothy Jakobi (Ph.D. student at RMIT) for
insightful discussions. They would also like to thank the help
from the reviewers whose comments helped to shape this
article.

REFERENCES

[1] P.Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “‘Image-to-image translation
with conditional adversarial networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 5967-5976.

[2] C. Chan, S. Ginosar, T. Zhou, and A. Efros, “Everybody dance
now,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 5932-5941.

[3] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, ‘“Photo-realistic
single image super-resolution using a generative adversarial network,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 105-114.

[4] T.R.Shaham, T. Dekel, and T. Michaeli, “SinGAN: Learning a generative
model from a single natural image,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2019, pp. 4569-4579.

[5] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normal-
ization for generative adversarial networks,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2018, pp. 1-26.

[6] T.Karras, S. Laine, and T. Aila, “A style-based generator architecture for
generative adversarial networks,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 4401-4410.

[71 R. Abdal, Y. Qin, and P. Wonka, “Image2StyleGAN: How to embed
images into the StyleGAN latent space?”” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 4431-4440.

[8] A.X.Lee,R.Zhang, F. Ebert, P. Abbeel, C. Finn, and S. Levine, *“Stochas-
tic adversarial video prediction,” 2018, arXiv:1804.01523. [Online]. Avail-
able: http://arxiv.org/abs/1804.01523

[9] X.Chen and W. Wang, ““Uni-and-bi-directional video prediction via learn-
ing object-centric transformation,” IEEE Trans. Multimedia, vol. 22, no. 6,
pp. 1591-1604, Jun. 2020.

128149

IEEE Access

C. Yu et al.: Self-Supervised Animation Synthesis Through Adversarial Training

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

A. Siarohin, S. Lathuiliere, S. Tulyakov, E. Ricci, and N. Sebe,
“Animating arbitrary objects via deep motion transfer,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 2372-2381.

S. Tulyakov, M.-Y. Liu, X. Yang, and J. Kautz, “MoCoGAN: Decompos-
ing motion and content for video generation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 1526-1535.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2672-2680.

D. P Kingma and M. Welling, “‘Auto-encoding variational Bayes,” 2013,
arXiv:1312.6114. [Online]. Available: http://arxiv.org/abs/1312.6114

A. Van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, ““Pixel recurrent
neural networks,” in Proc. Int. Conf. Mach. Learn. (ICML), New York, NY,
USA, Jun. 2016, pp. 1747-1756.

A. Van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves,
and K. Kavukcuoglu, “Conditional image generation with PixelCNN
decoders,” in Proc. Int. Conf. Neural Inf. Process. Syst. (NIPS), Red Hook,
NY, USA, 2016, pp. 4797-4805.

D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible 1 x 1
convolutions,” in Proc. NIPS, 2018, pp. 10215-10224.

Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of recur-
rent neural networks for sequence learning,” 2015, arXiv:1506.00019.
[Online]. Available: http://arxiv.org/abs/1506.00019

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, Nov. 1997.

K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘“Learning phrase representations using RNN
encoder—decoder for statistical machine translation,” in Proc. Conf. Empir-
ical Methods Natural Lang. Process. (EMNLP), Doha, Qatar, Oct. 2014,
pp. 1724-1734.

R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proc. Int. Conf. Mach. Learn., Atlanta, GA,
USA, vol. 28, no. 3, Jun. 2013, pp. 1310-1318.

S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 221-231, Jan. 2013.

B. Chen, W. Wang, and J. Wang, “Video imagination from a single
image with transformation generation,” in Proc. Thematic Workshops
ACM Multimedia-Thematic Workshops, New York, NY, USA, 2017,
pp. 358-366.

D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3D convolutional networks,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 4489—4497.

M. Saito, E. Matsumoto, and S. Saito, “Temporal generative adversarial
nets with singular value clipping,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 2849-2858.

S. Wen, W. Liu, Y. Yang, T. Huang, and Z. Zeng, ‘“Generat-
ing realistic videos from keyframes with concatenated GANs,” IEEE
Trans. Circuits Syst. Video Technol., vol. 29, no. 8, pp.2337-2348,
Aug. 2019.

S. Wen, W. Liu, Y. Yang, P. Zhou, Z. Guo, Z. Yan, Y. Chen, and T. Huang,
“Multilabel image classification via Feature/Label co-projection,” IEEE
Trans. Syst., Man, Cybern. Syst., early access, Feb. 6, 2020, doi: 10.1109/
TSMC.2020.2967071.

M. Mirza and S. Osindero,
nets,” 2014, arXiv:1411.1784.
abs/1411.1784

M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet, “Are GANs
created equal? A large-scale study,” in Proc. Int. Conf. Neural Inf. Process.
Syst. (NIPS), 2018, pp. 700-709.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
“Improved training of Wasserstein GANs,” in Proc. Int. Conf. Neural Inf.
Process. Syst. (NIPS), Red Hook, NY, USA, 2017, pp. 5769-5779.

N. Kodali, J. Abernethy, J. Hays, and Z. Kira, “On convergence
and stability of GANs,” 2017, arXiv:1705.07215. [Online]. Available:
http://arxiv.org/abs/1705.07215

J. Hyun Lim and J. Chul Ye, “Geometric GAN,” 2017, arXiv:1705.02894.
[Online]. Available: http://arxiv.org/abs/1705.02894

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen,
and X. Chen, “Improved techniques for training GANs,” in Proc. Int. Conf.
Neural Inf. Process. Syst. (NIPS), 2016, pp. 2234-2242.

“Conditional generative adversarial
[Online]. Available: http:/arxiv.org/

128150

(33]

(34]

[35]

[36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

[50]

A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with
auxiliary classifier GANSs,” in Proc. 34th Int. Conf. Mach. Learn., Sydney,
NSW, Australia, vol. 70, Aug. 2017, pp. 2642-2651.

X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel,
“InfoGAN: Interpretable representation learning by information maximiz-
ing generative adversarial nets,” in Proc. Int. Conf. Neural Inf. Process.
Syst. (NIPS), Red Hook, NYY, USA, 2016, pp. 2180-2188.

Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2D
pose estimation using part affinity fields,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1302-1310.

G. Balakrishnan, A. Zhao, A. V. Dalca, F. Durand, and J. Guttag, “Syn-
thesizing images of humans in unseen poses,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8340-8348.

L. Ma, X. Jia, Q. Sun, B. Schiele, T. Tuytelaars, and L. Van Gool, “Pose
guided person image generation,” in Proc. Int. Conf. Neural Inf. Process.
Syst. (NIPS), 2017, pp. 406—416.

A. Siarohin, E. Sangineto, S. Lathuiliere, and N. Sebe, “Deformable
GAN:S for pose-based human image generation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3408-3416.

A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Int. Conf. Neural Inf. Process. Syst. (NIPS),
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and
R. Garnett, Eds., 2019, pp. 8026-8037.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA,
May 2015, pp. 1-15.

P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter, “A 3D
face model for pose and illumination invariant face recognition,” in
Proc. 6th IEEE Int. Conf. Adv. Video Signal Based Surveill., Sep. 2009,
pp. 296-301.

T. Xue, J. Wu, K. Bouman, and B. Freeman, “Visual dynam-
ics: Probabilistic future frame synthesis via cross convolutional net-
works,” in Proc. Int. Conf. Neural Inf. Process. Syst. (NIPS), 2016,
pp. 91-99.

N. Srivastava, E. Mansimov, and R. Salakhutdinov, “Unsupervised learn-
ing of video representations using LSTMs,” in Proc. Int. Conf. Mach.
Learn. (ICML), Lille, France, 2015, pp. 843-852.

M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri, “Actions as
space-time shapes,” in Proc. 10th IEEE Int. Conf. Comput. Vis. (ICCV),
vol. 2, Oct. 2005, pp. 1395-1402.

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in
the wild,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Santiago, Chile,
Dec. 2015, pp. 3730-3738.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“GANs trained by a two time-scale update rule converge to a local Nash
equilibrium,” in Proc. Int. Conf. Neural Inf. Process. Syst. (NIPS), 2017,
pp. 6626-6637.

A. Hore and D. Ziou, “Image quality metrics: PSNR vs. SSIM,” in
Proc. 20th Int. Conf. Pattern Recognit., istanbul, Turkey, Aug. 2010,
pp. 2366-2369.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.

S. Barratt and R. Sharma, “A note on the inception score,”
2018, arXiv:1801.01973. [Online]. Available: http://arxiv.org/abs/
1801.01973

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248-255.

CHENG YU received the M.S. degree in
technology of computer application from
Northeastern University, Shenyang, China, in2017.
He is currently pursuing the Ph.D. degree in
artificial intelligence with the Macau University
of Science and Technology, Taipa, Macau. Since
2017, he has been a Lecturer with the Chongqing
College of Electronic and Engineering, China.
His research interests include computer vision,
machine learning, and deep learning.

VOLUME 8, 2020

http://dx.doi.org/10.1109/TSMC.2020.2967071
http://dx.doi.org/10.1109/TSMC.2020.2967071

C. Yu et al.: Self-Supervised Animation Synthesis Through Adversarial Training

IEEE Access

WENMIN WANG (Member, IEEE) received the
Ph.D. degree in computer architecture from the
Harbin Institute of Technology, China, in 1989.
After then, he worked as an Assistant Professor
and an Associate Professor with the Harbin Uni-
versity of Science and Technology and the Harbin
Institute of Technology. Since 1992, he gained
about 18 years of overseas industrial experiences
in Japan and America, where he served as a Staff
Engineer, the Chief Engineer, and the General

Manager of software division. By the end of 2009, he worked with the School
of Electronic and Computer Engineering, Peking University, China, as a
Professor. Since 2019, he has been a Professor with the Macau University
of Science and Technology. His current research interests include computer
vision, multimedia retrieval, artificial intelligence, and machine learning.

VOLUME 8, 2020

JIANHAO YAN received the M.S. degree in
statistical practice from Boston University,
Boston, MA, USA, in 2019. He is currently pursu-
ing the Ph.D. degree in artificial intelligence with
the Macau University of Science and Technol-
ogy, Taipa, Macau. His research interests include
computer vision, multimedia retrieval, and deep
learning.

128151

