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ABSTRACT Change-point detection within random networks is essential for many applications. Generally,
the typical methods focus on the Erdős-Rényi random networks, or assume that the anomalous subnetworks
only have high link probability with the fixed membership. In this paper, we consider the stochastic block
model of random graphs, and study the change-point detection regarding to the scenario that after a change-
point, the connectivity of subnetworks becomes denser or sparser while the membership of nodes also
changes. Based on local graph features, we explore a local statistic with dynamic vertex selection for
detecting the emergence of an abrupt change-point. In addition, we derive an analytic expression with respect
to average run length to set detection threshold in a theoretical fashion, and achieve the probability bounds
related to the dynamic vertex selection to characterize the performance of the presented algorithm. As a
result, the proposed scheme can provide performance improvement as well as reduce the computational
complexity. The proposed algorithm can address amore general problem than the typicalmethods. Numerical
experiments are provided to show the effectiveness of our method.

INDEX TERMS Anomaly detection, change-point detection, stochastic block model, random networks,
local statistic.

I. INTRODUCTION
The study of anomaly detection or change-point detection
within networks is a fundamental but important topic in signal
processing, and has a wide range of applications ranging
from sensor networks, smart grid, vehicle networks to inter-
net of things [1]–[8]. In one type of scenarios, the network
data of interest are composed of nodes and the relationships
between nodes, where the relationships can be the communi-
cation links [11] or correlation structures [9]. Conventionally,
the network data are named as the relational data, and can be
naturally modeled using random graph form. In this paper,
the problem under consideration is to detect the emergence
of a change-point that affects the statistical behaviors of a
small fraction of the network data. In other words, given time
series of random graphs over timeG1,G2, · · · , in a streaming
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fashion, we are interested in obtaining a change-point as soon
as possible after it occurs subject to the constraint of the false
alarm probability or average run length (ARL).

Statistical models, involving a form of graphical represen-
tation, is of significant importance for both analysis of the
network data as well as change-point detection in random
networks. Accordingly, many graph models have been devel-
oped over the past several decades [10]. For example, given a
vertex set, the Erdős-Rényi random graphs can represent the
random networks where the edges between any two vertices
are the Bernoulli random variables with a same probabil-
ity parameter. The preferential attachment models, however,
are a popular class of evolving networks, and have many
variants. Moreover, the stochastic block models [12]–[14],
which divide the network into subnetworks, are the typical
graph models for representing random networks. Addition-
ally, the dynamic version of the stochastic block models have
also been developed to explain the structures of the network
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data [15]. In particular, the reference [16] has investigated
spectral features of the stochastic block models, which can
allow one to obtain insights for analyzing the statistical
behaviors of random graph models.

Since the spectral characteristics or graph features can
capture the changes of the network data, many detection
statistics based on the above information have been proposed
for detecting the anomalous behaviors of random networks.
Specifically, in [17], a graph Fourier scan statistic has been
presented to detect anomalous activity over graphs. Similarly,
the spectral methods [18], [19], based on the spectral features
of matrix representations of random graphs, is another popu-
lar class of anomaly detectionmethods. Recently, some statis-
tical properties of these algorithms [20] have been revealed.
In addition, the optimal statistics, i.e., likelihood ratio statis-
tics [21], [22], and belief propagation [23] have been applied
to address anomalous detection relevant to Erdős-Rényi ran-
dom graph model. Although all the above methods can detect
the anomalous patterns of the network data, most of these ref-
erences only consider the single snapshot or an offline case,
and the simply extension of the methods to the sequential
observations for change-point detection may not be suitable.

With respect to the streaming data scenario, there has
been some investigation of change-point detection in the
context of time series of random graphs, including sequen-
tial likelihood ratio statistics [24], and locality statis-
tics [25]. Amongst them, based on sequential likelihood
ratios, Marangoni-Simonsen et al. developed three algo-
rithms for online community detection [24]. These methods
have optimal statistical properties, and assume that the model
of networks is the Erdős-Rényi random graphs. Focusing on
stochastic block models, Wang et al. studied two classes of
locality statistics, and derived the corresponding asymptotical
distribution [25].

In order to detect a possible change-point that minimizes
the detection delay under the constraint of ARL, some meth-
ods mentioned above employ graph features to construct the
corresponding statistics over the whole vertex set of ran-
dom graphs, which can result in high computational com-
plexity. Especially, with the growth of the size of networks,
it becomes evidently difficult to detect the emergence in real
time.Moreover, some of thesemethods, such as [24] and [25],
exploit both current and past data to extract the anomalous
patterns of the streaming data for improving detection per-
formance.

In this paper, we design a low-complexity algorithm of
change-point detection, which also provide detection perfor-
mance improvement. Here, we restrict our attention to the
stochastic block model. In particular, we assume that after
the change, the connectivity of the anomalous subnetworks
can be sparser or denser than before, while the memberships
of nodes also change. In practice, the assumption is more
general than that of the typical algorithm, where the subnet-
works only become denser after a change-point. In order to
overcome the problem of change-point detection, this paper
develops a dynamic vertex selection scheme to choose a

few vertices for building the detection statistic. Therefore,
the presented method has low computational burden. Fur-
thermore, the designed scheme can efficiently capture the
statistical features that leads to detect the emergence of an
abrupt change with low detection delay.

The main contributions of the paper include:

• We design a dynamic vertex selection scheme for
choosing a few vertices associated with change of net-
works, and then develop a local statistic to address the
change-point detection problem. The dynamic vertex
selection method can discard most of vertices of ran-
dom graphs during the construction of the local statistic.
Consequently, the proposed algorithm of change-point
detection has low complexity of computation.Moreover,
the chosen vertices can characterize the change of ran-
dom graphs that leads to high detection performance.
Simulations show that the dynamic vertex selection can
capture the anomalous patterns of the network data,
and guarantee the high detection performance of the
presented algorithm.

• We derive the probability distribution of the proposed
statistic under the null scenario that there is no change
in the network data, and then can theoretically set the
detection threshold associated with the ARL, which is
corresponding to false alarm level and a key challenge of
change-point detection. More specifically, the theoretic
result can avoid the large amount of computation of
setting detection threshold involved in the Monte Carlo
simulations.

• We analyze the properties of the dynamic vertex selec-
tion scheme and derive the related probability bounds
with the aid of concentration measure theory [26], [27].
The analytic expressions illustrate that the dynamic ver-
tex selection method can characterize the anomalous
patterns of the sequential observations, and ensure the
performance of change-point detection algorithm.

The rest of this paper is outlined as follows. In section II,
we provide a brief description of stochastic block model and
formulate the problem of change-point detection. Section III
introduces the dynamic vertex selection scheme and the pro-
posed detection statistic to solve the change-point detection
problem in detail. In section IV, the theoretical analysis of the
presented algorithms is derived to validate the local statis-
tic. Simulation examples are provided in section V. Finally,
themain conclusions of this paper are presented in section VI.

II. BACKGROUND AND PROBLEM STATEMENT
A. NOTATION AND STOCHASTIC BLOCK MODEL
Consider a random network with N nodes, and represent the
network by time series of random graphs, with Gt = (V ,Et)
denoting the observed graph at each time t , where V and Et
stand for vertex (node) set and edge set of random graphs,
respectively. In this paper, we assume that the random graphs
are undirected and unweighted graphs without self-loops.
Suppose that the corresponding vertex set V is fixed across
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time. Let At denote the adjacency matrix of the observed
graph Gt . The adjacency matrix At is a N × N symmetric
matrix. The (i, j) th element [At ]ij of At is a Bernoulli random
variable, which denotes the connectivity between vertices vi
and vj.

As mentioned above, there are some random graphs to
model random networks. Among these random graph mod-
els, the stochastic block model is widely used in the ran-
dom networks [28], [29]. In this paper, we concentrate on
the change-point detection of the stochastic block model.
For a graph Gt in stochastic block model, the vertices in
V are partitioned into M blocks corresponding to the sub-
sets Vt,1,Vt,2, · · · ,Vt,M , and the numbers of vertices and
the adjacency submatrices of Vt,1,Vt,2, · · · ,Vt,M are cor-
responding to Nt,1,Nt,2, · · · ,Nt,M and At,1,At,2, · · · ,At,M ,
respectively. Without loss of generality, we have Vt,1 ={
v1, · · · , vNt,1

}
, Vt,2 =

{
vNt,1+1, · · · , vNt,1+Nt,2

}
, · · · ,

Vt,M =
{
vN−Nt,M+1, · · · , vN

}
, and the vertices in each subset

share the same membership. Additionally, we refer Pt to the
M × M connectivity probability matrix of Gt . Any one of
the diagonal elements of Pt is the connectivity probability
between the two verteices which belong to the same block (or
membership), while the off-diagonal elements of Pt represent
the connectivity probabilities between the two blocks. For
example, let [Pt ]rs denote the (r, s) th element of Pt , assume
that the ith and jth vertices vi, vj belong to the subsets Vt,r and
Vt,s, respectively, then we have

[At ]ij =

{
1 with probability [Pt ]rs
0 otherwise.

(1)

It is worth noting that in general the diagonal elements of Pt
are bigger than the off-diagonal elements Pt , which implies
that the connectivity of the vertex pairs within each block
is denser than that of the vertex pairs between blocks, and
displays the community structures of stochastic block model.

B. CHANGE-POINT DETECTION PROBLEM
The observed data is a sequence of random graphs with
N vertices drawn from stochastic block model associated
with a M1 × M1 connectivity probability matrix Pt = P0.
Let [P0]rs represent the (r, s) th element of P0. The corre-
sponding adjacency matrices A1,A2, · · · with At ∈ RN×N

of the observed sequence of random graphs are mutually
independent. At an unknown but non-random time point τ ,
the observed sequence is still independent and follows from
stochastic block model but with a newM2×M2 connectivity
probability matrix Pt = P1.
Generally, the change-point detection can be formulated as

a sequential binary hypothesises. The null hypothesis with
t < τ is that the observed graph Gt related to a network is
a realization of a stochastic block model, and we have

H0 : [At ]ij =

{
1 with probability [P0]rs
0 otherwise,

(2)

where [At ]ij is the (i, j) th element of the adjacency matrix At ,
which denotes the connectivity between the vertex vi in block
r and the vertex vj in block s. The alternative hypothesis with
t ≥ τ is that the statistical behavior of the observed graph Gt
depends on the connectivity probability matrix P1 with size
M2 ×M2, i.e.,

H1 : [At ]ij =

{
1 with probability [P1]rs
0 otherwise.

(3)

Under the alterative hypothesis, the statistical behavior of
random graph Gt changes from P0 to P1. Generally speak-
ing, because of malicious traffic, surreptitious behavior or
suspicious activity [18], [24], [30], a small fraction of the
network data exhibits anomalous behavior. More specifi-
cally, in the cyber security application [30], since suspi-
cious activity occurs, the rates of communication between
a small subset of nodes are notable higher than that of
the normal scenario. Additionally, as shown in [24], after
a change-point time, nodes inside a subset have much
higher frequencies of interaction. In practice, these exam-
ples can be reviewed as the scenario that the connectivity
of subnetworks becomes denser while the membership of
nodes also changes. For instance, we assume that before
a change-point τ , the M1 vertex blocks of Gt are given
by V0,1,V0,2,V0,3, · · · ,V0,M1 , the vertex numbers of these
blocks are corresponding to N0,1,N0,2, · · · ,N0,M1 , respec-
tively, and the connectivity probability matrix P0 is

P0=


[P0]11 [P0]12 [P0]13 · · · [P0]1M1

[P0]21 [P0]22 [P0]23 · · · [P0]2M1
...

...
...

...

[P0]M11 [P0]M13 [P0]M13 · · · [P0]M1M1

 .
(4)

After the change-point time τ , we suppose without loss
of generality that only the vertices in blocks V0,1 ={
v1, · · · , vN0,1

}
and V0,2 =

{
vN0,1+1, · · · , vN0,1+N0,2

}
exhibit

abnormal behavior related to memberships and the connec-
tivity probabilities, i.e, V0,1 and V0,2 are divided into three
blocks V1,1, V1,2, and V1,3. Please note that the vertices in the
same block have the same membership. The new (M1 + 1)
vertex blocks are V1,1,V1,2,V1,3,V0,3, · · · ,V0,M1 and the
vertex set

{
V1,1,V1,2,V1,3

}
is same as

{
V0,1,V0,2

}
. The con-

nectivity probability matrix P1 is given by

P1 =
[
Pa Pb
Pc Pd

]
, (5)

where

Pa =

 [P1]11 [P1]12 [P1]13
[P1]21 [P1]22 [P1]23
[P1]31 [P1]32 [P1]33

 . (6)

where Pa is a connectivity probability submatrix corre-
sponding to the vertex pairs in

{
V1,1,V1,2,V1,3

}
after the

change-point τ , and the submatrices Pb, Pc and Pd can be
given by the connectivity probability matrix P0. It means
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that the connectivity probability between the vertex in{
V1,1,V1,2,V1,3

}
=

{
V0,1,V0,2

}
(or

{
V0,3, · · · ,V0,M1

}
)

and the vertex in
{
V0,3, · · · ,V0,M1

}
remains unchanged and

is given by the corresponding element of P0. For exam-
ple, the parameter of the Bernoulli random variable [At ]ij
associated with the vertices vi, vj ∈

{
V1,1,V1,2,V1,3

}
(or vi, vj ∈

{
V0,1,V0,2

}
) is given by Pa, while

vi, vj ∈
{
V0,3, · · · ,V0,M1

}
or vi ∈

{
V0,1,V0,2

}
, vj ∈{

V0,3, · · · ,V0,M1

}
, the success probability of [At ]ij remains

unchanged, which is given by P0. Note that Gt is undi-
rected graph, we have [P0]ij = [P0]ji ([P1]ij = [P1]ji).
Here, in this example, we assume that the blocks regrad-
ing to V0,1 and V0,2 spilt into three blocks associated with
V1,1,V1,2,V1,3. It is observed from P0 and P1 that the detec-
tion problem of significant interest involves in the settings
that the dimension N of network is typically larger than(
N0,1 + N0,2

)
related to abnormal vertices. Moreover, in this

paper, the self-connectivity probabilities of the vertex pairs
of the anomalous blocks in post-change can be higher or
lower than that in pre-change. For example, the diagonal
elements of Pa may be bigger or smaller than the diagonal
elements [P0]11 (or [P0]22). However, the typical detection
algorithms [25] assume that the self-connectivity probability
of the vertex pairs with altered statistic behaviour in one
block is just higher than before. Therefore, from this point of
view, the assumption of this paper is more general than that
of the typical algorithms. Additionally, we consider that the
memberships V0,1,V0,2,V0,3, · · · ,V0,M1 and the connectiv-
ity probability matrix P0 are known, which can be obtained
from historic data [24]. We also assume that the change
parameters, i.e., P1, τ , and the memberships related to P1,
are unknown.

The goal of change-point detection problem is to design a
detection statistic to decide a stopping time T for declaring
the emergence of the change. In order to quantify the perfor-
mance of the algorithm, we define average run length (ARL)
as the expectation E (T ) of the stopping time T under the null
hypothesis, which is another form of the probability of false
alarm in the off-line detection problem. The performance
metric of detection is given by the expected detection delay
E (T − τ |T > τ), which represents the expected delay to fire
an alarm after a change-point occurs. Therefore, the change-
point detection aims tominimize the expected detection delay
under the constraint of a given ARL. In the following section,
based on the sequential observations, we will present a stop-
ping rule to detect the occurrence of a change-point.

III. PROPOSED ALGORITHM
The previous works consider the fusion of the multiple fea-
tures of the observed graphs, or exploit both the current data
and the past data for change-point detection. The detection
statistics are built on the whole vertex set, which may result
in huge computational burden, especially in the large scale
networks. In addition, the typical algorithms always assume
that the connectivity probabilities of the vertex pairs corre-
sponding to the anomalous subnetworks (anomalous blocks)

just become higher, and the memberships are fixed across
time. However, these algorithms may not be suitable for
the case that after a change, the connectivity of anomalous
subnetworks can be sparser or denser than before, while the
memberships of vertices also change. In practice, the latter
assumption is more general than the former.

Aiming to solve the problem, we propose a local detec-
tion statistic based on a dynamic vertex selection strategy.
The objective of the developed vertex selection scheme
is to reduce the computational complexity of the change-
point detection algorithm and improve its detection perfor-
mance. First of all, the low computational complexity of
the algorithm is especially in favor of real-time requirement
of change-point detection on the sequential observations.
In order to reduce the computational complexity, the dynamic
vertex selection scheme just chooses a few vertices to con-
struct the detection statistic. On the other hand, to guaran-
tee the detection performance of the proposed algorithm,
the graph features related to the selected vertex pairs shall
efficiently capture the anomalous behavior. The dynamic
vertex selection scheme will be discussed in detail below.

A. DYNAMIC VERTEX SELECTION
In order to capture the complex structure of the random
graphs, we first choose one referenced vertex in each block
for capturing the statistical pattern of subnetwork. We denote
by vRm the referenced vertex in mth block with m ∈

{1, 2, · · · ,M1}, and refer toAt,m as theN0,m×N0,m submatrix
of the adjacency matrix At at time t , which corresponds to the
mth block. Note that since the subgraph corresponding to the
mth block is an Erdős-Rényi random graph before a change-
point, which has homogeneous connectivity within the block,
we can choose any one of vertex from the vertex set V0,m as
the referenced vertex vRm associated with the mth block. For
convenience, we denote the index of vRm in V0,m by 1. Then,
we define the degree of the vertex vRm in V0,m as

F0,m = degV0,m

(
vRm
)
=

N0,m∑
i=1

[
At,m

]
1i, (7)

where degV0,m
(
vRm
)
denotes the vertex degree of the refer-

enced vertex vRm in the mth block with the vertex set V0,m,
and can be used for expressing the graph feature of the mth
block. The value of degV0,M

(
vRm
)
is an evidence of connec-

tivity characteristic within the block. We further define the
following localized graph feature

F1,m = N0,m − 2− degV0,m

(
vRm
)
. (8)

Recall that the connectivity probability within a block is
evidently bigger than that between blocks. Consider the sce-
nario that after a change-point, the mth block may be par-
titioned into multiple blocks. Therefore, the change that the
localized feature F1,m suddenly increase, is a clear evidence
of anomalous pattern of random graphs and implies that a
change-point appears. However, besides the change related to
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the memberships of some of vertices in V , we also consider
a more general assumption that the connectivity probability
associated with the anomalous subgraph can be sparser or
denser, or even remain unchange. Namely, the growth of
F1,m caused by the membership change may be taken out
by the change that the block contained the vertex vRm become
excessive interconnectivity. Consequently, the graph feature
F1,m that just relies on the vertex vRm can not robustly indicate
the presence of a change-point under the general assumption.

Without loss of generality, assume that the mth block is
partitioned into two blocks after a change-point, and let the
vertices of V0,m be divided into two vertex set V ∗1,m and V ∗2,m,
which correspond to the two new blocks. Let the vertex vRm
belong to V ∗1,m. Naturally, the graph features corresponding to
the vertices in V ∗1,m have similar properties because the con-
nectivity characteristic within the subgraph related to V ∗1,m is
homogeneous. In other words, the graph pattern related to the
vertices in V ∗2,m is different from that of the referenced vertex
vRm since the related vertices belong to two different blocks.
Consequently, except the referenced vertex vRm, we also need
to choose one vertex in V ∗2,m for adequately capturing the
anomalous pattern of the mth block. However, both the
change-point and the change of memberships are unknown
for detector. In this paper, we develop a dynamic vertex selec-
tion scheme to decide one vertex v∗m, which belongs to V ∗2,m
with high probability. Therefore, we can combine the graph
features related to both vertices vRm and v∗m for uncovering the
hidden structure of themth block. It is worth emphasizing that
although the discussion above supposes that the mth block is
only partitioned into two blocks, the graph features related
to both vertices vRm and v∗m are still applicable for the more
complex change of membership when the selected vertices
(vRm and v∗m) belong to the different memberships.
LetV n

0,m denote the neighborhood vertex set inV0,m regard-
ing to the vertex vRm. Consider a pair of vertices (v1, v2)
with {v1, v2} ⊆ V0,m, and let dm (v1, v2) represent the
shortest path distance between v1 and v2 in the mth block.
pathkl,m (v1, v2) stands for one path of the vertex pair (v1, v2)
with dm (v1, v2) = k and index l in themth block. By counting
the number of paths with path distance dm

(
vRm, vi

)
= 2

between vRm and vi ∈ V0,m\V n
0,m, we can obtain v∗m through

the following formula

v∗m = argmin
vi∈V0,m\V n0,m

∑
l

path2l
(
vi, vRm

)
. (9)

We further write (9) into the form of the adjacency matrix
At,m, given as

v∗m = argmin
vi∈
{
V0,m\V n0,m∪v

R
m

}
,vj∈V n0,m

∑
j

[
At,m

]
ij, (10)

where the notation ∪ denotes the union operator. The above
formula depends on the fact that if the block associated with
V0,m disjoins into several blocks, the shortest path distance
between vRm ∈ V

∗

1,m and vi ∈ V ∗1,m is generally smaller than
that between vRm ∈ V ∗1,m and vi ∈ V ∗2,m. The expression

implies that when a sudden change related to memberships
occurs, the referenced vertex vRm and the vertex v∗m selected
from (9) or (10) belong to two different blocks with high
probability. Similar to (8), we define the graph feature related
to v∗m as

F2,m = degV0,m
(
v∗m
)
, (11)

and

F3,m = N0,m − 2− degV0,m
(
v∗m
)
. (12)

Obviously, when the membership of the mth block changes,
the graph feature F1,m or F3,m just can capture one part of
structure of the mth block. Therefore, we combine F1,m and
F3,m into the following form

F4,m=max
(
F1,m,F3,m

)
=N0,m−2−min

(
degV0,m

(
vRm
)
, degV0,m

(
v∗m
))
. (13)

This means that the graph feature F4,m related to the vertex
pair

(
vRm, v

∗
m
)
can adequately express the statistical behavior

of the block, and also give an evidence of an abrupt change
related to membership and connectivity probability. Note
that since the elements of At,m in (10) is Bernoulli random
variables, the index of v∗m also changes over time. Specifically,
before a change-point, the above procedure can select any
one of vertices in V n

0,m\v
R
m as v∗m with the same probability

because of homogeneous connectivity within the block. How-
ever, when the change about membership emerges in the mth
block, one vertex in V ∗2,m can be randomly chosen as v∗m with
high probability. Because of the dynamic property about the
index of v∗m, we name the procedure of selecting the vertex
pair

(
vRm, v

∗
m
)
as dynamic vertex selection scheme in this

paper. Additionally, with respect to the statistical behavior of
the selection procedure, we will present theoretical analysis
in the next section.

B. LOCAL STATISTIC FOR CHANGE-POINT DETECTION
Consider the alternative hypothesis that at a unknown time
τ , a small subset of V changes the corresponding proba-
bilistic behavior, while the majority of vertices in V still
remain their normal pattern. Meanwhile, the subset associ-
ated with anomalous vertices is unknown to detector. More-
over, the vertex pair

(
vRm, v

∗
m
)
can just be utilized to capture

the local behavior within themth block. Therefore, we search
M1 pairs of vertices

(
vRm, v

∗
m
)
, m ∈ {1, 2, · · · ,M1} with

respect to M1 blocks for expressing the graph features via
recursive implementation of the dynamic vertex selection
scheme mentioned above, so that the hidden change can be
detected efficiently. Let the vertex setV ∗ with dimension 2M1
denote the M1 vertex pairs, that is

V ∗ =
{
vR1 , v

∗

1, v
R
2 , v
∗

2, · · · , v
R
M1
, v∗M1

}
. (14)

It is observed from (13) that the graph features F4,m, m ∈
{1, 2, · · · ,M1} can respectively characterize the probabilis-
tic behavior within the corresponding blocks. Nonetheless,
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the characteristic associated with F4,m does not contain the
connectivity feature between-blocks. In practice, the con-
nectivity between-blocks may also include the anomalous
pattern generated by the change, and it is necessary to con-
struct a graph feature that can demonstrate the probabilistic
behaviors of both within-block and between-blocks. Here,
we denote the indices of the vertices in V\

{
V0,m ∪ V ∗

}
by{

1, 2, · · · ,N − 2 (M1 − 1)− N0,m
}
. Then, let l represent the

index of v∗m, define the degree of v
∗
m related to the outside of

the mth block, given by

F5,m = degV\{V0,m∪V ∗}
(
v∗m
)
=

N−2(M1−1)−N0,m∑
i=1

[At ]li. (15)

where degV\{V0,m∪V ∗}
(
v∗m
)
denotes the vertex degree of the

vertex v∗m regarding to the vertex set V\
{
V0,m ∪ V ∗

}
. Conse-

quently, a graph feature F6,m associated with the vertex pair(
vRm, v

∗
m
)
is defined as

F6,m = max
(
F1,m,F3,m

)
+ degV\{V0,m∪V ∗}

(
v∗m
)

= N0,m − 2−min
(
degV0,m

(
vRm
)
, degV0,m

(
v∗m
))

+

N−2(M1−1)−N0,m∑
i=1

[At ]li. (16)

Obviously, the graph feature F6,m can measure the prob-
ability behavior of local part of the observed graph Gt ,
which corresponds to the connectivity within the mth block
and between-blocks specified by v∗m and V\

{
V0,m ∪ V ∗

}
.

More specifically, F6,m can be used to assess the proba-
bilistic behavior change of the corresponding subgraph of
Gt . It is worth pointing out that the stochastic block graphs
have inhomogeneous property, in other words, the probability
parameters of within blocks and between blocks, including
the connectivity probabilities and block dimensions, can be
different. Therefore, one or several graph features in F6,m,
m ∈ {1, 2, · · · ,M1}, can dominate these features under the
null hypothesis, which is disadvantageous for detecting the
change. In order to prevent this, we must next perform vertex
pair normalization for standardizing the scales of the graph
feature F6,m, m ∈ {1, 2, · · · ,M1}, namely,

F̄6,m =
F6,m − µF6,m

σF6,m
. (17)

where µF6,m and σF6,m represent the mean value and the
standard deviation of the graph feature F6,m, respectively.
For overcoming the inhomogeneous property, some typical
algorithms, such as [25], also define the similar normalized
operators. However, the corresponding means and standard
deviations of the statistics are estimated using the recent past
observations, which may be improper for the change-point
detection on the streaming data scenario because of the mem-
ory and real-time restrictions. In order to provide a simpler
way for normalizing graph features, we derive the probability
distribution of F6,m in this paper, and thenµF6,m and σF6,m can

be pre-computed. The analytical expressions for µF6,m and
σF6,m will be presented in the next section.

Based on the standardized graph features, we can construct
the detection statistic Ft at each time t for change-point
detection, given by

Ft = max
m∈{1,2,··· ,M1}

F̄6,m. (18)

where the maximum is over all graph features related to the
vertex pairs

(
vRm, v

∗
m
)
, m ∈ {1, 2, · · · ,M1}. In this paper,

we call the constructed statistic Ft as local statistic because
Ft is one kind of local graph features, which can be used to
capture the probabilistic change arising from a small amount
of vertex set of V . Note that the observation Gt arrives in
a streaming style, we shall use the local statistic constantly
test whether Gt belongs to the null hypothesis H0 or the
alternative hypothesisH1, and determine the stopping time T ,
which declares an alarm that a change-point comes. Namely,
given a pre-specified threshold λ, if

Ft ≥ λ, (19)

we will have a stopping time

T = t, (20)

and fire an alarm, where the parameter λ is specified to meet
the ARL requirement, which is the expected value of T under
the null hypothesis. Otherwise, we need to continually test
the coming observations until find a change-point. Based on
the analysis mentioned above, the procedure of change-point
detection is summarized in Algorithm 1.

Algorithm 1 Change-Point Detection
1: Input: Observed graph Gt on a streaming fashion.
2: Output: Stopping time (change-point) T .
3: Initialize: Detection threshold λ with a given ARL;
µF6,m and σF6,m for m = 1, · · · ,M1.

4: for each observed graph Gt , t = 1, · · · , do
5: for m = 1, · · · ,M1, do
6: Compute local feature F1,m by using (8);
7: Compute local feature F3,m by using (12);
8: Compute local feature F4,m within the mth

block by using (13);
9: Compute graph feature F6,m related to the vertex

pair
(
vRm, v

∗
m
)
by using (16);

10: Normalize the scale of F6,m by using (17) and
obtain the standardized graph feature F̄6,m;

11: end for
12: Construct local statistic Ft with (18);
13: if Ft ≥ λ, then
14: Load stopping time T with time t;
15: Break;
16: end if
17: end for

Remark 1: Similar to some typical algorithms of
change-point detection, the proposed algorithm also utilize
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the corresponding graph features to construct detection statis-
tic. In order to reduce the computational complexity and
improve the detection performance, the considerations of
developing the presented local statistic, which are the main
difference of the traditional methods from our proposed
detection statistic, are multifold: first, through the imple-
mentation of dynamic vertex selection scheme, the proposed
method just chooses M1 pairs of vertices, where 2M1 � N ,
to develop the detection statistic. Hence, compared with the
classic work, the presented method has lower computational
burden, which is especially in favor of real-time requirement
of change-point detection on the sequential observations. Fur-
thermore, each pair of vertices chosen by the dynamic vertex
selection scheme is used to build the corresponding graph
feature, which can capture the local behavior of the observed
data efficiently. Additionally, because both the subset of
vertices related to the anomalous pattern and the change time
are unknown, we takes the maximum of these graph features
to form the detection statistic for characterizing the time
series of random graphs adequately. Therefore, the proposed
method can minimize the detection delay with a given ARL.
Remark 2: In order to control false alarm rate, we need

to quantify the ARL and set the threshold λ, which is a
challenge of change-point detection. Although the direct
numerical simulations can be utilized to obtain the detection
threshold related to the corresponding ARL, it requires the
huge computational cost, especially in the large networks.
Consequently, an analytical expression of ARL is quite use-
ful to change-point detection. In the next section, we will
present the probabilistic distribution of the local statistic
so that we can compute the theoretical threshold without
resorting to the Monte Carlo method. In addition, the param-
eters µF6,m and σF6,m for standardizing the graph features
F6,m, m ∈ {1, 2, · · · ,M1}, can also be obtained by the
theoretical expression.

C. COMPUTATIONAL COMPLEXITY
The computational complexity of the presented algorithm
mainly depends on computation associated with the dynamic
vertex selection scheme for selectingM1 pairs of vertices, and
computation of local graph features related to the M1 vertex
pairs. Specifically, Consider a time t before the change-
point, the computational cost related to the vertex selection
of v∗m is O

((
N0,m−1

)2
(1− [P0]mm) [P0]mm

)
. In terms of

the computation of the graph feature F1,m, the computational
complexity is O

((
N0,m−1

)
[P0]mm

)
. Similarly, the computa-

tional burden regarding to F3,m is also O
((
N0,m−1

)
[P0]mm

)
.

Additionally, the graph feature which characterizes the
local pattern outside of the mth block related to the ver-

tex pair
(
vRm, v

∗
m
)
costs O

(
M1∑

i=1,i 6=m
[P0]mi

(
N0,m − 2

))
. As a

result, the total complexity of the proposed algorithm is
O
(
M1

(
2
(
N0,m−1

)
[P0]mm +

(
N0,m (1− [P0]mm)− 1

)
N0,m

[P0]mm +
M1∑

i=1,i 6=m
[P0]mi

(
N0,m − 2

)))
. For simplification,

we assume that each block has the same dimension
N0,1 = · · · = N0,M1 = N0, and the same connectiv-
ity probabilities [P0]mm = p0, m ∈ {1, 2, · · · ,M1},
[P0]mi = p1, m 6= i, m, i ∈ {1, 2, · · · ,M1}.
So, the total complexity at time t can be rewritten as
O
(
M2

1

(
N 2
0+1

) (
p0 − p20

)
+2M1N0p20 +M1 (M1 − 1) (N0−

2) p1). It is worth noting that no matter that the time t
belongs to pre-change or post-change, the computational cost
of the proposed algorithm almost remains unchanged because
only a small fraction of vertices changes their probability
behavior.

IV. THEORETICAL ANALYSIS
Through the dynamic vertex scheme, the proposed algo-
rithm first obtains M1 pairs of vertices

(
vRm, v

∗
m
)
, m ∈

{1, 2, · · · ,M1}, and then compute the corresponding local
features F6,m, m ∈ {1, 2, · · · ,M1}. Finally, the detection
statistic can be achieved by taking the maximum of the local
features. Note that at the null hypothesis, the local behav-
ior associated with each vertex pair, including block size,
the connectivity probabilities within the block and between-
blocks, may be different. Naturally, the local graph features
F6,m, m ∈ {1, 2, · · · ,M1}, are always unequal, and we need
to standardize these local features. Otherwise, at the alterna-
tive hypothesis, the maximum of F6,m, m ∈ {1, 2, · · · ,M1},
may not uncover the anomalous pattern caused by the proba-
bilistic behavior change of a small subset of vertices because
one certain F6,m no involved in anomalous behavior probably
dominates all graph features.

In this section, we derive the probability distributions of
the developed graph features F4,m and F6,m so that we can
compute the means and standard deviations efficiently. Fur-
thermore, in order to decide the detection threshold λ, we also
achieve theARL expressionwith respect to the corresponding
λ, which is also a key challenge in change-point detection
problem. Therefore, we can set the detection threshold the-
oretically rather than through the simulation fashion, which
requires expensive computation. In addition, we investigate
the probabilistic behavior of the dynamic vertex scheme, and
then demonstrate the detection performance of the proposed
local statistic.

In order to obtain µF6,m and σF6,m for standardizing the
graph feature F6,m, we first achieve the the cumulative dis-
tribution function (cdf) G4,m(K ) of the graph feature F4,m
demonstrated in the following lemma, which is the basis of
the mean and variance expressions of F6,m.
Lemma 1: Let Gt = (V ,Et) denote the random graph

drawn from stochastic blockmodel concernedwith aM1×M1
connectivity probability matrix P0 and N vertices. Assume
that the mth block has N0,m vertices, and the connectivity
probability in the mth block is p= [P0]mm, then the cdf
G4,m(K ) of graph feature F4,m can be given by

G4,m(K ) = pr
(
F4,m < K

)
= 1− Ḡ4,m

(
N0,m − 1− K

)
, (21)
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where

Ḡ4,m (K )=
N0,m−1∑
n=0

Cn
N0,m−1p

n(1− p)LḠ4,m,n(K ), (22)

L = N0,m − 1− n, (23)

Ḡ4,m,n(K )=

{
G2,m,n(K ), K ≤ n
1 , K > n,

(24)

G2,m,n(K )=

{
1−

(
1− Ḡ2,m,n(K )

)L
, 1≤n≤N0,m−2

1 , n = 0 or n = N0,m − 1 ,
(25)

Ḡ2,m,n(K )=
K∑
k=0

Ck
n p

k(1− p)n−k , (26)

and Cn
N0,m−1

and Ck
n denote combination operator.

Proof: See Appendix A. �
In order to normalize the graph feature F6,m related to the

vertex pair
(
vRm, v

∗
m
)
, we shall further obtain the cdf G5,m(K )

of the graph feature F5,m characterizing the connectivity fea-
ture between blocks. Note that F5,m is the sum of the indepen-
dent Bernoulli random variables, which is a Poisson Binomial
distribution, and its cdf G5,m(K ) can be given by [31]

G5,m(K ) = pr
(
F5,m < K

)
=

K−1∑
k=0

∑
A∈0k

∏
i∈A

pi
∏
i∈Ac

(1− pi)

, (27)

where K ∈
{
0, 1, · · · , N̄m

}
, N̄m = N − 2 (M1 − 1) − N0,m,

and pi ∈
{
[P0]m1, [P0]m2, · · · , [P0]mM1

}
represents the con-

nectivity probability between the mth block and the other
block. 0k denotes the set of all subsets of k integers chosen
from

{
0, 1, · · · , N̄m

}
, and Ac represents the complementary

set of A. pr (.) represents the probability notation. It is worth
pointing out that the formula (27) is just a cdf expression of
Poisson binomial distribution, and a more efficiently compu-
tational method can be found in [31].

Based on the Lemma 1 and the cdf G5,m(K ), we obtain the
analytical expressions µF6,m and σ 2

F6,m
, shown in Theorem 1.

Theorem 1: Consider a stochastic block random graph
Gt = (V ,Et) with N vertices and a M1 × M1 connectivity
probability matrix P0. Let Ñm = N0,m − 2, and N0,m denotes
the vertex number of the mth block, then the mean µF6,m and
the variance σF6,m of the graph feature F6,m are given by

µF6,m =

N̄m+Ñm∑
K=0

Kpr
(
F6,m = K

)
, (28)

σ 2
F6,m
=

N̄m+Ñm∑
K=0

(
K − µF6,m

)2pr (F6,m = K
)
, (29)

where

pr
(
F6,m = K

)
=

∑
1≤i≤Ñm,1≤j≤N̄m,i+j=K+1

p̄ip̃j, (30)

p̄i = G4,m(i+ 1)− G4,m(i), (31)

p̃j = G5,m(j+ 1)− G5,m(j), (32)

and K ∈
{
0, 1, · · · , N̄m + Ñm

}
, i ∈

{
0, 1, · · · , Ñm

}
, j ∈{

0, 1, · · · , N̄m
}
.

Proof: See Appendix B. �
As mentioned in section IV, F6,m must be normalized as

F̄6,m =
F6,m−µF6,m

σF6,m
to avoid that a ceratin graph feature in

F6,m, m ∈ {0, 1, · · · ,M1} dominates the behavior of the
random network. The probability mass function (pmf) of F̄6,m
is given by

pr
(
F̄6,m =

K − µF6,m
σF6,m

)
= pr

(
F̄6,m = x

)
= pr

(
F6,m = K

)
, (33)

where

x∈

{
0− µF6,m
σF6,m

,
1−µF6,m
σF6,m

, · · · ,
N̄m + Ñm−µF6,m

σF6,m

}
. (34)

Therefore, the cdf Ḡ6,m(x) of F̄6,m can be obtained, given by

Ḡ6,m(x) = pr
(
F̄6,m < x

)
= pr

(
F6,m < xσF6,m + µF6,m

)
= pr

(
F6,m < K

)
=

K−1∑
k=0

pr
(
F6,m = K

)
, (35)

where K = xσF6,m + µF6,m .
To derive detection threshold of local statistic Ft under the

constraint of ARL, we need to obtain the cdf of Ft . Based on
the definition of Ft , which is the biggest value of F̄6,m, m ∈
{0, 1, · · · ,M1}, the cdf Gt (x) of Ft is given by

Gt (x) = pr (Ft < x)

=

M1∏
m=1

Ḡ6,m(x), (36)

where x is discrete and takes value from x =
K−µF6,m
σF6,m

,

K ∈
{
0, 1, · · · , N̄m + Ñm

}
,m ∈ {0, 1, · · · ,M1}, and the sec-

ond equality follows from the fact that the random variables
F̄6,m, m ∈ {0, 1, · · · ,M1} are mutual independent, which
can be inferred from the formulas (16) and (17).

Based on the description of Algorithm 1, the detection
statistic Ft of change-point detection declares that a change
point of time series of random graphs occurs when Ft ≥ λ,
and the stopping time T is t . Note that judging Ft ≥ λ or
Ft < λ at time t is a binary detection problem, and can
be viewed as a Bernoulli random variable. Thus, the success
probability pt , which announces Ft ≥ λ, can be given by

pt = 1− Gt (x)

= 1−
M1∏
m=1

Ḡ6,m(x). (37)
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The probability distribution of the stopping time T belongs
to geometric distribution with parameter pt . Consequently,
the ARL of the proposed algorithm related to the detection
threshold λ can be given by

ARL = E (T ) =
1
pF
, (38)

where pF = pt .
Remark 3: The analytical results presented in Theorem 1

and the related analysis mentioned above can provide several
merits for change-point detection. On the one hand, the ana-
lytical expressions in (28) and (29) can be used to standard-
ize the graph features F6,m, m ∈ {0, 1, · · · ,M1}, without
resorting to obtaining sample estimation of µF6,m and σ 2

F6,m
.

As a result, it is helpful to save storing space and operating
time, compared with the traditional way requiring sample
estimation of mean and variance of graph features. On the
other hand, given ARL, we have to set the corresponding
detection threshold to decidewhether anomalous behaviors in
random networks happen or not. In this paper, we obtain the
ARL formula (38) and the cdfGt (x) (36) of detection statistic
so that the detection threshold of the proposed algorithm can
be given in a theoretical fashion rather than Monte Carlo sim-
ulations, which suffer from costly computational complexity.

As described in section III.A, after the membership of
the mth block changes, the vertices

{
vRm, v

∗
m
}
selected by the

proposed scheme can belong to two different memberships
with high probability so that the local statistic can detect
change-point efficiently. In this section, we derive the theo-
retical results to discuss the dynamic vertex selection scheme.
We have the following theorem.
Theorem 2: Assume that the 1st block with V0,1 and N0,1

of Gt breaks into two subblocks with V1,1, V1,2, which are
corresponding to the vertex numbers N1,1. N1,2, respectively.
Let Xij represent [At ]ij. The probability parameters p1, p2, p3
of Xij are corresponding to vi, vj ∈ V1,1, vi, vj ∈ V1,2, vi ∈
V1,1, vj ∈ V1,2 (or vi ∈ V1,2, vj ∈ V1,1), respectively. Let vi ∈

V0,1. When vk ∈ V1,1, define Zik = X1iXki and Zk =
N0,1∑
i=2

Zik .

Then, for ε > 0, we have the probability tail bound of Zk ,
given by

pr (|Zk − E (Zk)| ≥ ε,X1k = 0)

≤ 2 (1− p1) exp

(
−min

{
5ε2

12σ 2
Zk

, 3ε −
9
5
σ 2
Zk

})
, (39)

where σ 2
Zk =

N0,1∑
i=2

σ 2
Zik , σ

2
Zik = p21

(
1− p21

)
when vi ∈ V1,1,

or σ 2
Zik = p23

(
1− p23

)
when vi ∈ V1,2, and E (Zk) =(

N1,1 − 2
)
p21 + N1,2p23.

Proof: See Appendix C. �
pr (|Zk − E (Zk)| ≥ ε,X1k = 0) denotes the probability

behavior of the shortest path number between v1 and vk
(v1, vk ∈ V1,1) with d (v1, vk) = 2. Namely, the bound gives
the probability that the random variables Zk under X1k = 0
and vk ∈ V1,1 are far from their mean valuesE(Zk). Similarly,

let vk ∈ V1,2, Z̄ik = X1iXki and Z̄k =
N0,1∑
i=2

Z̄ik . Then, for ε > 0,

we also have

pr
(∣∣Z̄k − E

(
Z̄k
)∣∣ ≥ ε,X1k = 0

)
≤ 2 (1− p3) exp

(
−min

{
5ε2

12σ 2
Z̄k

, 3ε −
9
5
σ 2
Z̄k

})
, (40)

where σ 2
Z̄k
=

N0,1∑
i=2

σ 2
Z̄ik

, σ 2
Z̄ik
= p2p3 (1− p2p3) when vi ∈

V1,2, σ 2
Z̄ik
= p1p3 (1− p1p3) when vi ∈ V1,1, and E

(
Z̄k
)
=(

N1,1 − 1
)
p1p3 +

(
N1,2 − 1

)
p2p3.

Remark 4: Note that pr (|Zk − E (Zk)| ≥ ε,X1k = 0) rep-
resents the probability behavior of the shortest path num-
ber between v1 and vk with d (v1, vk) = 2, where
v1 and vk belong to the same membership. Additionally,
pr
(∣∣Z̄k − E

(
Z̄k
)∣∣ ≥ ε,X1k = 0

)
is corresponding to the sce-

nario that v1 and vk belong to the two different subblocks.
The probability bounds (39) and (40) show that Zk and Z̄k
concentrate theirs mean values because of exponential decay
of tail bounds about ε. Moreover, when N1,1 and N1,2 are
similar or N1,1 > N1,2, E(Zk) is distinctly larger than E

(
Z̄k
)

since the connectivity probabilities p1, p2 within-blocks are
larger than the probability p3 between blocks. Namely, based
on the probability bounds, (9) and (10), it can be seen that the
vertex pair

(
vRm, v

∗
m
)
selected by the dynamic vertex selection

scheme can belong to two different memberships with high
probability so that the detection statistic can capture the
anomalous features efficiently. Consequently, the graph fea-
ture F6,m based on the selected vertex pair can capture graph
behaviors of both memberships and connectivity probability,
which guarantees that Ft can detect change-point timely.

V. SIMULATION RESULTS
In this section, we provide several simulation exam-
ples to illustrate the performance of the proposed algo-
rithm, compared with the typical change-point detection
methods in [25]. For convenience, the two detection
statisticsSτ,l,k (t;8) and Sτ,l,k (t;9) expressed in [25] are
named as compared method 1 and compared method 2,
respectively. The time series of random graph are generated
by stochastic blockmodel.With respect to anomalous pattern,
the anomalous subnetworks have sparser or denser connectiv-
ity than before, while the memberships also change.

A. SIMULATION EXAMPLE 1 FOR LOCAL STATISTIC
UNDER H0
In order to verify the theoretic ARL expression, the compar-
isons between simulations and the derived expression in (38)
are presented. We consider both the stochastic block mode
with same block size (case 1) and the stochastic model with
different block dimension (case 2). Specifically, in the first
case, the total nodes of random networks with M1 = 6 is
N= 240, the vertex number of the M1 block are given by
N0,1 = N0,2 = · · · = N0,6 = 40. The diagonal elements
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FIGURE 1. ARL versus detection threshold λ with respect to case 1 for
simulations and theoretical expression given in (38).

FIGURE 2. ARL versus detection threshold λ with respect to case 2 for
simulations and theoretical expression given in (38).

of the connectivity probability matrix P0 are 0.5, and the
off-diagonal elements of P0 are 0.1. For the second case,
the stochastic block model has same block number M1 and
probability matrix P0 as the first case but with the different
block sizes, i.e., N0,1 = N0,4 = N0,5 = N0,6 = 40, and
N0,2 = N0,3 = 30. The Monte-Carlo times are 200, and the
simulation results are provided in Figs. 1 and 2. It can be seen
from the results that the estimated ARL from simulations fits
very well to the derived theoretic expression of ARL. As a
result, the proposed algorithm can use the theoretic way to
set detection threshold, without resorting to the Monte Carlo
simulations.

B. SIMULATION EXAMPLE 2 FOR DYNAMIC VERTEX
SELECTION
In this subsection, two simulations are provided to illustrate
the performance of dynamic vertex selection for choosing the
vertex pair to capture the anomalous change within block.
In the first simulation, we consider two scenarios, i.e., after
a change point, one block with vertex number N0,1 = 50
breaks into two blocks with N1,1 = N1,2 = 25 in the
scenario 1, while the block is divided into two blocks with
N1,1 = 20 and N1,2 = 30 in the second scenario 2. The

FIGURE 3. Successful probability of dynamic vertex selection versus the
connectivity probability of the first block after change point for two
scenarios.

two scenarios have the same connectivity probabilities where
[P1]22 = 0.5, [P1]12 = [P1]12 = 0.1, and the connectivity
probability [P1]11 in the first block varies from 0.5 to 0.8.
Additionally, assume that the mth block with vertex set V0,m
is partitioned into V ∗1,m and V ∗2,m, we define the successful
probability to characterize the vertex pair

(
vRm, v

∗
m
)
chosen by

dynamic vertex selection scheme,

p̄m =
MC∑
i=1

I
{
vRm ∈ V

∗

1,m, v
∗
m ∈ V

∗

2,m

}
/MC, (41)

whereMCdenotes theMonte Carlo times, and I {.} represents
indicator function where I {.} = 1 when the condition holds,
otherwise I {.} = 0. Let MC = 500, the simulation for both
scenarios is shown in Fig. 3. The results indicates that the
vertex pair selected by dynamic vertex selection blongs to two
different blocks with high probability.
In the second simulation, two blocks V0,1 and V0,2 cor-

responding to N0,1 = N0,2 = 45 are divided into three
blocks V1,1, V1,2 and V1,3 with N1,1 = 30, N1,2 = 35, and
N1,3 = 25 after a change point. Note that V1,2 includes 15
vertices in V0,1 and 20 vertices in V0,2. Let MC = 500,
[P1]11 = [P1]33 = 0.4, and off-diagonal elements of [P1] is
0.1. [P1]22 varies from 0.4 to 0.7. The successful probabilities
versus [P1]22 are presented in Fig. 4, where scenario 1 and 2
are corresponding to the blocks V0,1 and V0,2, respectively.
The successful probability in scenario 3 is given by

p̃m=

MC∑
i=1

I
{
vR1 ∈ V

∗

1,1, v
∗

1 ∈ V
∗

2,1 or v
R
2 ∈ V

∗

1,2, v
∗

2 ∈ V
∗

2,2

}
MC

.

(42)

The simulation results show that when [P1]22 reaches to 0.5,
scenario 2 have high probability to guarantee that the selected
vertices from V0,1 belongs to V1,2 and V1,3, respectively. The
successful probabilities of scenario 1 slightly decay along
with the growth of [P1]22. The main reason is that in scenario
1 the anomalous pattern related to membership is compen-
sated by the increase of the connectivity probability [P1]22,
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FIGURE 4. Successful probability of dynamic vertex selection versus the
connectivity probability of the second block after change point for three
scenarios.

which results in performance attenuation. However, it can be
seen from scenario 3 that there are at least one vertex pair
with high probability, which can characterize the anomalous
of random networks. In other words, the developed vertex
selection scheme of this paper can efficiently capture the
anomalous features of random networks and guarantee the
detection performance of the change-point detection algo-
rithm. Furthermore, since the proposed algorithm does not
need to construct the detection statistic over the whole ver-
tex set of random graphs, it avoids the high computational
complexity that uses all vertices for constructing detection
statistic.

C. SIMULATION EXAMPLE 3 FOR ALGORITHM 1
In this subsection, we verify the detection performance of the
proposed algorithm with several simulations. In the first sim-
ulation, the stochastic block networks with M1 = 4, N0,1 =

· · · = N0,4 = 60 are divided into the random graphs with
M2 = 5, N1,1 = N1,2 = 30, , N1,3 = · · · = N1,5 = 60
after a change point. Note that in this simulation the block
V0,1 beaks into two blocks V1,1 and V1,2 with the same size.
The off-diagonal elements of P0 and P1 are 0.1, and except
that [P1]22 varies from 0.2 to 0.5, the diagonal elements of P0
and P1 are 0.5. The Fig. 5 provides the results. In the second
simulation, we consider that the stochastic block networks
with M1 = 4, N0,1 = N0,4 = 60, N0,2 = N0,3 = 50 are
partitioned into the random graphs with M2 = 5, N1,1 =

N1,3 = 35, N1,2 = 40, N1,4 = 50, N1,5 = 60,
and the vertex set V1,2 contains 25 vertices in V0,1 and 15
vertices in V0,2. The settings of probability matrix are same
as the first simulation, and the simulation results are given
by Fig. 6. Figs. 5 and 6 show that since the anomalous
feature of connectivity weakens the anomalous pattern related
to memberships, the low detection delay of the proposed
algorithm slightly increase along with the connectivity prob-
ability [P1]22. Even so, the proposed algorithm still achieves
the low detection delay.

In the following simulations, we compare the detection
performance of the proposed algorithmwith the two detection

FIGURE 5. Detection delay of the proposed algorithm versus the
connectivity probability of the second block after change point under
240 vertices.

FIGURE 6. Detection delay of the proposed algorithm versus the
connectivity probability of the second block after change point under
220 vertices.

FIGURE 7. Detection delay versus ARL with [P1]22 = 0.4.

methods in [25], where the parameters of vertex-dependent
normalization, temporal normalization, and distance are
given by 1, 0, 1, respectively. We keep the same settings
of memberships and connectivity probability as the second
simulation, except [P1]22. In the scenario 1, let [P1]22 = 0.4
and the experimental results are provided in Fig. 7. In the
scenario 2, [P1]22 is 0.8, and Fig. 8 gives the detection
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FIGURE 8. Detection delay versus ARL with [P1]22 = 0.8.

FIGURE 9. Detection delay versus the connectivity probability [P1]22 with
a fixed ARL.

performance of three compared algorithms. In the last sim-
ulation, we assume that [P1]22 varies from 0.5 to 0.8, and
the corresponding results are presented in Fig. 9. It is worth
pointing out that the average run length (ARL) is a perfor-
mance metric, which is corresponding to false alarm level.
Therefore, the curves regarding to detection delay versus
ARL in Figs. 7, 8 and 9 can measure the detection perfor-
mance of the change-point detection algorithm. In addition,
since the detection statistics of the proposed algorithm and
the comparedmethods belong to the discrete distributions and
have different statistic behaviors, we cannot achieve the same
ARL for these algorithms. As a result, the number of labelled
points shown in Figs. 7 and 8 is different. Even so, the curves
in Figs. 7 and 8 can provide performance comparison for
these algorithms. It can be seen from Figs. 7, 8 and 9 that
the proposed algorithm can capture the anomalous pattern of
membership and connectivity probability, and provide bet-
ter change-point detection performance than the compared
methods.

VI. CONCLUSION
In this paper, we consider the change-point detection of
stochastic block networks. A dynamic vertex selection
scheme is presented to efficiently capture the anomalous
features of networks related to memberships and connectivity

of subnetworks. Based on the selected vertex pairs, the con-
structed detection statistic achieves lower detection delay
than the typical detection algorithms. Moreover, the theoret-
ical expression of ARL of the local statistic is derived so
that the proposed algorithm can set detection threshold in
theoretical waywithout resorting toMonte Carlo simulations.
In addition, the probability bounds with respect to dynamic
vertex selection are also obtained to illustrate that the pro-
posed scheme can capture the anomalous change with high
probability.

APPENDIX A
PROOF OF LEMMA 1
To prove Lemma 1, we first obtain the cdf pr

(
F0,m = n

)
of

the graph feature F0,m, which is a binomial distribution with
parameter p= [P0]mm. The cdf pr

(
F0,m = n

)
can be given by

pr
(
F0,m,n

)
= pr

(
F0,m = n

)
=

N0,m−1∑
n=0

Cn
N0,m−1p

n(1− p)L , (43)

where L = N0,m − 1 − n, n ∈
{
0, 1, · · · ,N0,m − 1

}
. Let

F0,m = n, then F2,m = F2,m,n. Assume that vi is any one
vertex in V0,m\V n

0,m, then let F̄2,m,n denote the degree of the
vertex vi under F0,m = n. When 1 ≤ n ≤ N0,m − 2, we have

Ḡ2,m,n (K ) = pr
(
F̄2,m,n < K

)
=

K−1∑
k=0

Ck
n p

k(1− p)n−k , (44)

where K ∈
{
0, 1, · · · ,N0,m − 1

}
. When 1 ≤ n ≤ N0,m − 2,

we have

Ḡ2,m,n (K ) = 1, K ∈
{
0, 1, · · · ,N0,m − 1

}
. (45)

Let G2,m,n (K ) = pr
(
F2,m,n < K

)
represent the cdf of the

graph feature F2,m,n. Note that F2,m,n is the smallest value in
regard to F̄2,m,n related to the vertices in V0,m\V n

0,m, which
are independent random variables. Then, Ḡ2,m,n (K ) can be
given by

Ḡ2,m,n (K )=

{
1−

(
1−Ḡ2,m,n (K )

)L
, 1≤n≤N0,m−2

1, n = 0 or n = N0,m − 1,
(46)

where L = N0,m − 1− n. Let F̄4,m,n = min
(
F0,m,n,F2,m,n

)
,

then the cdf Ḡ4,m,n (K ) of F̄4,m,n can be given by

Ḡ4,m,n (K ) = pr
(
F̄4,m,n < K

)
=

{
G2,m,n (K ) , K ≤ n
1, K > n.

(47)

Let F̄4,m = min
(
F0,m,F2,m

)
, and the cdf Ḡ4,m (K ) of F̄4,m

belongs to a compound extreme value distribution associated
with the binomial distribution pr

(
F0,m = n

)
of graph feature

F0,m and the distribution Ḡ4,m,n (K ). Then, we have

Ḡ4,m (K )= pr
(
F̄4,m < K

)
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=

N0,m−1∑
n=0

pr
(
F0,m = n

)
Ḡ4,m,n (K )

=

N0,m−1∑
n=0

Cn
N0,m−1p

n(1−p)N0,m−n−1Ḡ4,m,n (K ). (48)

Since F4,m = N0,m − 2−min
(
F0,m,F2,m

)
, the cdf G4,m (K )

of the graph feature F4,m can be given by

G4,m (K ) = pr
(
F4,m < K

)
= pr

(
F̄4,m > N0,m − 2− K

)
= 1− Ḡ4,m

(
N0,m − 2− K

)
, (49)

where K ∈
{
0, 1, · · · ,N0,m − 2

}
. As a result, we achieve the

desired result.

APPENDIX B
PROOF OF THEOREM 1
Since F4,m and F5,m are both discrete random variables, and
take values in

{
0, 1, · · · , N̄m

}
and

{
0, 1, · · · , Ñm

}
, respec-

tively, we can construct an Ñm× N̄m element matrix B related
to the graph feature F6,m = F4,m+F5,m. The (i, j) th element
[B] ij of B can be given by

[B] ij = (i− 1)+ (j− 1) . (50)

The random variable F6,m takes values in the element matrix
B, which has the same values in the anti-diagonal lines.
In order to achieve the probability mass function (pmf) of
F6,m, we further define a probability matrix P, where [P] ij
denotes the probability that F6,m takes value [B] ij. Because
the random variables F4,m and F5,m are mutual independent,
and F6,m meet with Poisson binomial distribution G5,m(K ),
the cdf of F4,m is given by G4,m(K ), we have

[P] ij = p̄ip̃j, (51)

where

p̄i = G4,m(i+ 1)− G4,m(i), (52)

p̃j = G5,m(j+ 1)− G5,m(j). (53)

Note that the elements in the anti-diagonial lines are same,
then the pmf pr

(
F6,m = K

)
of F6,m is obtained by

pr
(
F6,m = K

)
=

∑
1≤i≤Ñm,1≤j≤N̄m,i+j=K+1

[P] ij, (54)

where K ∈
{
0, 1, · · · , N̄m + Ñm

}
. Thus, we achieve the

desired the mean µF6,m and the variance σF6,m associated
with F6,m.

APPENDIX C
PROOF OF THEOREM 2
Based on the definition of zik = x1ixki, zik , i ∈{
2, 3, · · · ,N0,1

}
are independent Bernoulli random variables

with parameter p21 when vi ∈ V1,1 (or p23 when vi ∈ V1,2).
Then, we have the variance and expectation of Zik

σ 2
Zik =

{
p21
(
1− p21

)
, vi ∈ V1,1

p23
(
1− p23

)
, vi ∈ V1,2,

(55)

σ 2
Zk =

N0,1∑
i=2

σ 2
Zik , (56)

E (Zk) =
(
N1,1 − 2

)
p21 + N1,2p23. (57)

For ρ > 0, we have the inequality related to moment gener-
ating function E (exp (ρ (Zik − E (Zik)))), shown as

E (exp (ρ (Zik − E (Zik))))
= E (1+ρ (Zik − E (Zik))
+ ρ2/2E(Zik−E (Zik))2+

∑∞

l=3
1/l!E(Zik−E (Zik))l

)
= 1+ ρ2σ 2

Zik /2+
∑∞

l=3
1/l!E(Zik − E (Zik))l

≤ 1+ ρ2σ 2
Zik /2+

∑∞

l=3
1/l!E(Zik − E (Zik))2

≤ 1+ ρ2σ 2
Zik /2+ ρ

2σ 2
Zik

∑∞

l=1
(ρ/3)l/2

= 1+ 3ρ2σ 2
Zik /5

≤ exp
(
3ρ2σ 2

Zik /5
)
, (58)

where the first equality follows from the tailor expansion, and
the first inequality holds for |Zik − E (Zik)| ≤ 1. The third
equality holds as ρ < 3. As a result, we have

E (exp (ρ (Zk − E (Zk)))) ≤ exp
(
3ρ2

∑N0,1

i=2
σ 2
Zik /5

)
= exp

(
3ρ2σ 2

Zk /5
)

(59)

The upper tail bound can be given by

pr (Zk − (Zk) ≥ ε) ≤ (exp (ρ (Zk − E (Zk)))) / (exp (ρε))
≤ exp

(
3ρ2σ 2

Zk /5− ρε
)

= exp

(
−min

{
5ε2

12σ 2
Zk

, 3ε −
9
5
σ 2
Zk

})
, (60)

where the first inequality holds for Markov’s inequality [26].
The equality holds by taking ρ = min

{
5ε/

(
6σ 2

Zk

)
, 3
}
to

minimize the term in the second inequality. ε is a constant.
Then, we obtain

pr (Zk − E (Zk) ≥ ε,X1k = 0)

= pr (Zk − E (Zk) ≥ ε|X1k = 0) pr (X1k = 0)

= (1− p1) pr (Zk − E (Zk) ≥ ε|X1k = 0)

= (1− p1) pr (Zk − E (Zk) ≥ ε)

≤ (1− p1) exp

(
−min

{
5ε2

12σ 2
Z̄k

, 3ε −
9
5
σ 2
Z̄k

})
, (61)

where the last equality holds for Zk and X1k are indepen-
dent. Based on the above proof, the lower tail bound of
pr (Zk − E (Zk) ≤ ε,X1k = 0) has same form as (61). Con-
sequently, the desired bound is given.
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