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ABSTRACT In Semantic Web, modeling knowledge graph based on RDF becomes more and more
popular. There is quite a lot of spatiotemporal information in Semantic Web, and recent works focus on
not only general data but also spatiotemporal data. Existing efforts are mainly to add spatiotemporal labels
to RDF, which expand RDF triple into quad or quintuple. However, extra labels often cause additional
overhead for the system and lead to inefficient information organization management. In order to overcome
this limitation, we propose an stRDFS model by labeling properties with spatiotemporal features and
the corresponding determination methods of topological relations among different spatiotemporal entities.
stRDFS considers spatiotemporal attribute as a part of the RDF model, which can record spatiotemporal
information without changing the current RDF standard. Our approach improves the ability of recording
and linking spatiotemporal data. More importantly, depending on formatting of spatiotemporal attributes in
stRDFS, it will improve the semantic inferring ability, and the users are not required to be familiar with the
underlying representations of spatiotemporal data.

INDEX TERMS Knowledge graph, spatiotemporal data, stRDFS.

I. INTRODUCTION
With the prompt development of the Internet, knowledge
graph is rapidly emerging, which contributes a lot to the
knowledge organization and intelligent application on the
Internet [39], [40], and has significant meanings for artificial
intelligence. Knowledge graph [56] is a knowledge base that
represents objective concepts/entities and their relationships
in the form of graph. It constitutes a huge semantic net-
work diagramwhere nodes represent entities or concepts, and
edges are composed of attributes or relationships.

In Semantic Web, entities can be mainly divided into
general entities and spatiotemporal entities. As for general
data, the knowledge graph can be expressed as RDF [10],
[19], [29]. RDF (Resource Description Framework), a lan-
guage proposed by the World Wide Web Consortium (W3C),
which can express the semantics of knowledge graph for-
mally. RDF is inclusive, exchangeable and easy to extend,
control and integrate in data processing, so Tong [43] maps
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object-oriented database models into RDF and Takama and
Hattori [41] study the mining association rules for adaptive
search engine based on RDF. For spatiotemporal data, there
have been some achievements in representing spatiotemporal
entities, such as temporal data model, spatial data model and
spatiotemporal data model.

In the representation of temporal data, some researchers
try to take temporal data as linked data and establish the
corresponding temporal models [14], [21], [24], [34], [37].
For example, Lutz et al. [34] study the TDL (Temporal
Description Logic) model representing temporal entities and
temporal description logics. However, TDL model is not
compatible well with the current mainstream Semantic Web
editing tools, which leads to the inability to be widely
used in the representation of large-scale temporal informa-
tion. Batsakis and Petrakis [5] establish standards of the
Semantic Web and the 4D-fluents approach for representing
the evolution of temporal information in entities. Based on
the 4D-fluents approach, the 4-Fluents Plug-In (a tool for
handling temporal ontology in Protégé) has been proposed.
But the complexity and inflexibility of the 4-Fluents plug-in
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bring great challenges to temporal semantics and data self-
updating. Peng et al. [37] explore a general relation extraction
framework based on graph LSTMs (graph long short-term
memory networks). It can be easily extended to cross-
sentence n-ary temporal relation extraction. Unfortunately,
the complexity of temporal relations makes this model weak,
so the model is unsuitable for recording large-scale temporal
data. There are also some unstructured models of temporal
information. For instance, SWRL [20] (The Semantic Web
Rule Language) provides a standard method for representing
temporal data. Watkins and Nicole [52] demonstrate the use
of named graphs. In [42], Tappolet et al. present a syntax
and storage format based on named graphs to express tem-
poral RDF. However, researchers seldom pay attention to the
extension of RDF model to represent temporal entities. Since
all entities and relations can link to each other by labels,
Hernández et al. [23] add temporal qualifiers and values to
the RDF model representation in the form of labels. Then
RDF triples are expanded into a quintuple (s, p, o, q, v),
where (s, p, o) refers to the primary relation, q is the temporal
qualifier property, and v is the temporal qualifier value.
Besides, there are some models that label properties with the
time interval [22], [38].

In addition to temporal data, prior works also focus on the
representation of spatial data [1], [15], [26]. Spatial infor-
mation in the RDF data model is usually represented as
serializations of geometries accompanied with a Coordinate
Reference System (CRS). In CRS, it defines how to relate
these serializations to real geometries on the surface of Earth.
W3C GEO [32], an RDF vocabulary, can represent simple
location information in RDF. W3C GEO provides the basic
terminology for serializing point geometries. It represents lat-
itude, longitude and other information about spatially-located
things by a namespace. GeoRDF [8], [9], [13] is an RDF
compatible profile for geometric information (points, lines,
and polygons) and can be used for representing any point on
the earth. GeoMetadataOverSvg is a geographic information
notation for GeoRDF, which plays a significant role in the
spatial data connection in the Semantic Web. Unfortunately,
GeoMetadataOverSvg can only represent three-dimensional
geospatial metadata and it fails to link to temporal data. Then,
Batsakis and Petrakis [6], [7] put forward SOWL, which
Builds upon well established standards of the semantic Web
and the 4D-fluents approach for representing the evolution
of temporal information in ontologies. SOWL illustrates how
spatial and spatiotemporal information and evolution in space
and time can be efficiently represented in OWL.

With the development of spatial models and tempo-
ral models, some researchers try to combine spatial data
with temporal data to form spatiotemporal data, and estab-
lish the corresponding models [25], [28], [31], [33], [50],
[54]. Among them, the researchers take fuzziness [33] into
account, and also focus on cloud detection [54] and practical
application [31]. The most mature spatiotemporal models are
the YAGO2 [25], gst-Store [50] and stRDF [28], the first
two expand RDF triple into quintuple and the last one is

quad. In fact, both quintuple and quad method may bring
additional overhead to the system, leading to inefficient
connection of large amounts of spatiotemporal data. This
paper focuses on stRDF model, a structured spatiotemporal
RDF developed from the spatial model GeoRDF, which is
proposed by Koubarakis et al. [28] and extended on the
RDF. However, stRDF model is inflexible that it is weak in
recording dynamically changing multistate data. When the
knowledge graph is updating, the changes of spatiotemporal
attribute values cannot be captured in time. Even worse,
it is also not good at dealing with flexible relations among
spatiotemporal entities. Thus, it is important to improve the
model to record changing data and relations, and capture
changes of massive dynamic spatiotemporal attribute values.
Motivated by such an observation, this paper aims to provide
a spatiotemporal knowledge graphmodel on the basis of RDF
without changing current RDF standard. Our solution relies
on the effort of the RDF triple to record spatiotemporal data.
In this case, we can divide the entities into spatiotemporal
entities and non-spatiotemporal entities according to attribute
names. Spatiotemporal entities describe the evolution of
relations and objects in spatiotemporal dimensions, and non-
spatiotemporal entities describe static relations and objects
without temporal attributes, spatial attributes or spatiotempo-
ral attributes. In order to describe the relations between dif-
ferent spatiotemporal entities, we construct the determination
methods of topological relations in stRDFS.

To summarize, the contributions of this paper are the fol-
lowing:

• We propose a spatiotemporal RDF model, called
stRDFS, which can record spatiotemporal data with-
out changing the current RDF standard. In the mean
time, it solves the problem of synchronous updates
successfully.

• We explore the determination methods of topological
relations between different spatiotemporal entities.

The rest of the paper is organized as follows. We introduce
the related work in Section 2. The modeling approach is
proposed in Section 3. Section 4 is dedicated to the deter-
mination methods of topological relations, Section 5 makes a
comparison and Section 6 concludes the paper.

II. RELATED WORK
The recent research results presented in this section mainly
include spatiotemporal data models based on RDF, such as
temporal data model, spatial data model and spatiotemporal
data model.

A. TEMPORAL DATA MODEL ON RDF
When the temporal concept is not included in many Semantic
Web tools and techniques, the most important step is to iden-
tify models that can introduce time. These temporal models
can be roughly divided into two categories. The first category
is an ontology method which obtains no temporal data from
the users. Temporal concept and temporal relations are later
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added to the ontology and these operations are transparent
to the users, for example, Wangni [51] adopts this model.
The second category is that the users create temporal entities
rather than adding them later. This approach is adopted in
most models and will be discussed in detail in the following.

TDL (Temporal Description Logic) model [34] combines
standard DLs with temporal data. It is a relatively primitive
model whose main operators are ‘since’, ‘until’, ‘always in
the past’, ‘sometime in the future’ and ‘in the next moment in
future’. Ho et al. [24] study how to represent fuzzy temporal
data based on this model. Unfortunately, TDL is not compat-
ible well with the current mainstream Semantic Web editing
tools. Within a time interval, the entities of 4D-Fluents [5],
[17], [30] are represented by the temporal part of the entity.
However, in practical applications, the model is not only
complicated but also inflexible. The N-ary relation [21], [35],
[37] suggests properties of two object and a new object which
occurs during time intervals. Compared to other methods, this
method results in the smallest time unit being useless and the
structure is complicated. Named graph [14] is a subgraph of
the ontology RDF attributes graph, which can be specified by
distinct names. However, many platforms do not support this
model. In [16], the SWRLprovides a standardmethod for rep-
resenting temporal data. ThenWlodarczyk et al. [53] develop
SWRL-F based on the above rules to describe fuzzy temporal
data and relations. Besides, Treur [45] proposes an approach
on the basis of Reification. Reification can represent the
N-element temporal relationship, but its semantic express
ability is limited and scalability is not strong. There are also
some other models that use temporal tags to extend RDF. For
example, Gutierrez et al. [22] and Pugliese et al. [38] intro-
duce time into RDF. In [23], temporal qualifiers and values
are added to the RDF model. The RDF triple is expanded
into a quintuple (s, p, o, q, v), where s denotes the subject,
p represents the predicate, o expresses the objects, q depicts
a temporal qualifier property, and v is a temporal qualifier
value. Yet the quintuple or quad representation method may
bring additional overhead to the system, leading to inefficient
connection of large amounts of temporal data.

With improvement of theory and advancement of tech-
nology, temporal RDF models are still developing. The
spatiotemporal model proposed in this paper absorbs the
advantages of above models in temporal data representation,
improves scalability and self-renewal ability of the model,
and contributes to correlate a large amount of temporal data.

B. SPATIAL DATA MODEL ON RDF
In order to represent the spatial information (e.g. longitude,
latitude and altitude) of the entities, several models improved
on traditional RDF are proposed. Among spatial models,
one of the most mature developments is GeoRDF. Therefore,
we will focus on GeoRDF [8], [9], [13] in this section.

RDFIG defines a simple vocabulary for expressing points
on the earth in WGS84 form. Based on the spatial vocabu-
lary, a more mature model GeoRDF is established. GeoRDF
defines three main classes: geo: SpatialObject, geo: Feature

and geo: Geometry. At present, the GeoRDF model has
been applied to the project and has corresponding process-
ing platforms and tools. For example, the project Linked-
GeoData1 focuses on publishing OpenStreetMap2 data as
linked data. Besides, Sparqlify3 has taken advantage of the
GeoRDF. Toward the geospatial information resides in a
spatially enabled relational database, Geometry2RDF4 is the
first tool to allow users to convert geospatial data into an RDF
graph. In addition to above tools, TripleGeo5 is developed
in the GeoKnow.6 The GeoRDF model achieves remarkable
results in the representation of spatial data and can record
various points on the earth. At the same time, the tools that
support GeoRDF can absorb different forms of data sets and
have been widely used.

C. SPATIOTEMPORAL DATA MODEL ON RDF
An ever-increasing number of real-life applications pro-
duce spatiotemporal data that record the position of moving
objects. So some researchers are focusing on spatiotempo-
ral data modeling. For example, Chang et al. [11] propose
a temporo-spatial model on the basis of MML and soft-
ware framework, which encourages reusability, sharing and
storage.

At present, spatiotemporal data are usually provided as
relational tables [27] or XML documents [4], which can
be mapped into the RDF data model using R2RML [46].
R2RML is a standard language that allows defining cus-
tomized mappings from relational databases to RDF datasets.
In [46], data are spatiotemporal in nature and R2RML can
produce spatiotemporal Linked Open Data. Data generated
in this way are used to populate a SPARQL endpoint. This
endpoint is implemented using Strabon, a spatiotemporal
RDF triple store built by extending the RDF store Sesame.
Di et al. [18] combine spatiotemporal information with RDF
and present a novel representation model of spatiotemporal
RDF. Besides, in order to study the efficient spatiotemporal
RDF query processing, Vlachou et al. [48] represent spa-
tiotemporal data in RDF and store it in knowledge bases with
the following notable features: (a) the data is dynamic, since
new spatiotemporal data objects are recorded every second,
and (b) the size of the data is vast and can easily lead to
scalability issues. As a result, this raises the need for efficient
management of large-scale, dynamic, spatiotemporal RDF
data. There are also some studies on modeling uncertain
spatiotemporal data based on RDF [49].

D. ALGEBRA OF RDF GRAPHS
In order to represent the spatiotemporal information of
the entities such as longitude, latitude and altitude, several
extended models of traditional RDF are proposed [2], [3],

1http://linkedgeodata.org
2https://www.openstreetmap.org
3http://aksw.org/Projects/Sparqlify.html
4https://github.com/boricles/geometry2rdf/tree/master/Geometry2RDF
5https://github.com/GeoKnow/TripleGeo
6https://web.imsi.athenarc.gr/redmine/projects/geoknow_public
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[13]. stRDF [3], [28], [36] is the most mature development
among this works and we will introduce it in this section.

Although theGeoRDFmodel is widely used for the expres-
sion of geographic information, since the GeoRDF dataset
does not have temporal properties, it cannot represent spa-
tiotemporal data. Now, there are some studies on querying
temporal RDF [55]. Therefore, the link of spatiotemporal data
has attracted the attention of many scholars. For example,
Cheng and Ma [12] propose a kind of fuzzy spatiotemporal
description logic. Nikitopoulos et al. [36] explore distributed
spatiotemporal RDF queries on Spark. Besides, the stRDF
model [28], [44], [47] has been proposed and established.
stRDF model is an extension of the W3C standard RDF.
It can represent geospatial data that changes over time. The
stRDF model has been recognized by most scholars in the
representation of spatiotemporal data. Although the stRDF
model seems to be perfect, there are still many problems. For
example, stRDF uses spatiotemporal datasets to record enti-
ties whose spatiotemporal attributes are changing with time
and space. However, there is no one-to-one correspondence
between spatiotemporal data and spatiotemporal attributes,
which may result in a large number of spatiotemporal rela-
tionships expressing ambiguity. Due to the above features,
the stRDF model can only link a small amount of spatiotem-
poral data and cannot record changing data accurately.

In this paper, we propose an stRDFS model that solves the
above two problems: The first point is to establish the cor-
respondence between attributes and spatiotemporal entities.
The second point is that the stRDFS model can capture vary-
ing spatiotemporal attribute values. In particular, we establish
a class set that describes spatiotemporal attributes for the
stRDFS model.

III. DATA MODEL
In this section, we will propose a spatiotemporal model
based on RDF. In order to distinguish it with stRDF model,
we will propose stRDFS data model which is good at record-
ing dynamically changing data and flexible relations of spa-
tiotemporal data at first. Then, we will define the main classes
of stRDFS and describe them.

For the description of spatiotemporal data, there has been
stRDF [28] quad (s, p, o, τ ), where s represents subject, p
represents property name, o represents spatial object with
spatial data, and τ represents temporal data. For example,
the stRDF graph is shown in Figure 1 which represents the
temporal data and spatial data of mobile receivers. In the
graph, the attribute HasGeometry represents geometric coor-
dinates of the receiver position; the attribute TimeSlice rep-
resents temporal data of signal which is propagated by the
receiver. As shows in Figure 1, temporal data of stRDFmodel
is stored together in the form of a set, such as T = {[8t,
15t], 17t}, which causes that temporal data is difficult to
correspond to a certain part of the object. At the same time,
T = {[8t, 15t], 17t} has no correspondence with spa-
tial position, that is, cannot describe temporal data of the
receiver’s signal at a certain location, resulting in the fuzzy

FIGURE 1. The stRDF graph of the mobile receiver.

information indicating time and space. When we use stRDF
model to describe changing relations among spatiotempo-
ral entities, spatial data and temporal data are separated,
which leads to the uncertainty of information representation.
To solve this problem, this paper extends RDFmodel and pro-
poses stRDFSmodel. stRDFSmodel establishes the relations
between spatial data and temporal data of the same object,
and better describes the changing spatiotemporal state in four-
dimensional space.

A. THE stRDFS DATA MODEL
By extending RDF data model (s, p, o), stRDFS model can
be formed. The specific representation of stRDFS is defined
as follows:
Definition 1: Given a URI set R, empty vertex set B, text

description set K , temporal data set I and spatial data set S,
an stRDFS expression is g (s, p: <t, l>, o) where:

• s is a resource name and s ∈ R ∪ B.
• p is a property name and p ∈ R.
• o is a value and o ∈ R ∪ B ∪ K ∪ I ∪ S.
• t ∈ I is temporal data.
• l ∈ S is spatial data.

In Definition 1, stRDFS uses attributes to associate
temporal data with spatial data, linking attributes with spa-
tiotemporal data to form spatiotemporal attributes p. When
spatiotemporal data changes, spatiotemporal attributes asso-
ciated with them will change as well. Therefore, the upper
layer processing mechanism only needs to perceive the
changes of spatiotemporal attributes instead of understanding
the changes of spatiotemporal data accurately.
Definition 2: A mapping from x to y is denoted as fx−y,

where x represents s or p and y represents t , l or o.
For example, fs−o represents themapping relationship from

s to o and fs−t is the mapping relationship from s to t .
Definition 3: Given an stRDFS expression g (s, p: <t,

l>, o), U = {fs−o, fs−t , fs−l , fp−t , fp−l} is a mapping set of g.
In Definition 3, fs−o represents the mapping, whose func-

tion is expressed as attribute name, from s to o. The mapping
fs−t indicates that s has linked with temporal data, and the
formed triple is (s, p, t). In (s, p, t), the property repre-
sents ‘‘temporal information’’ and the attribute value t rep-
resents temporal data. The mapping fs−l indicates that s has
linked with spatial data and the expression is (s, p, l). In the
triple, the attribute represents ‘‘spatial information’’ and the
attribute value l represents spatial data. The fp−t indicates
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that p has linked with temporal data and combines with other
mappings to form an stRDFS tuple. When fp−t is combined
with fs−o, the tuple is formed as (s, p: t , o), indicating that the
temporal data describes the valid time of (s, p, o).When fp−t is
combinedwith fs−t , the formed tuple is (s, p: t2, t1), indicating
that the valid time of s is t1, and the valid time of the tuple (s, p,
t1) is t2. When fp−t is combined with fs−l , a tuple (s, p: t , l) is
formed, indicating that s has linked with spatial data l, and the
valid time of tuple (s, p: t, l) is t . The mapping fp−l represents
that p has linked with spatial data and combines with other
mappings to form an stRDFS tuple. When fp−l is combined
with fs−o, the tuple is formed as (s, p: l, o), indicating that
the spatial data l describes (s, p, o). When fp−l is combined
with fs−t , the formed tuple is (s, p: l, t), indicating that the
valid time of s is t , and the spatial data of (s, p, t) is l. When
fp−l is combined with fs−l , a tuple (s, p: l2, l1) is formed,
indicating that s has linked with spatial data of l1, and spatial
data of (s, p, l1) is l2. The mapping fp−o is illegal. The fo−t
and fo−l logically represent temporal data and spatial data
of o, respectively. In the stRDFS structure, fo−t and fo−l are
converted into fs−t and fs−l , and they can appear as tuple
mappings alone. For instance, (s1, p, o: t) can be converted
into two tuples (s1, p1, o) and (s2, p2, t), where s2 = o and p2
represents ‘‘temporal information’’. Similarly, (s1, p, o: l) can
be converted into two tuples (s1, p1, o) and (s2, p2, l), where
s2 = o and p2 represents ‘‘spatial information’’.

We will give the definition of stRDFS graph in the follow-
ing. Before this, we define the value range at first.
Definition 4: The value range of the mapping fx−y is

denoted as Range (fx−y) where Range (fx−y) = y.
Definition 5: Given an stRDFS expression g (s, p: <t,

l>, o), an stRDFS graph for g is a labeled graph G (V , E ,
F , λ, T , L) where:

• V = s ∪ Range(U ) is the set of vertices.
• E = {(r , r ′)} is the set of edges from r to r ′ where ∀r ,
r ′ ∈ V

• F (r , r ′) = {f | (r , f : <t, l>, r ′) ∈ G} is the mappings
set of E where ∀r , r ′ ∈ V∗.

• λ is the set of labels given by vertices or edges.
• T ∈ Range (fs−t ∪ fp−t ).
• L ∈ Range (fs−l ∪ fp−l).

According to Definition 5, there are two cases: the first
one is that stRDFS graph vertices contain spatiotemporal
information, in this case T ∈ Range(fs−t) and L ∈ Range
(fs−l ), as shown in Figure 2(a), the second is that the stRDFS
graph edges contain spatiotemporal information, in this case
T ∈ Range (fp−t) and L ∈ Range (fp−l ), as shown
in Figure 2. The expression of T and L will be defined in the
following.

FIGURE 2. Representation of spatiotemporal information in stRDFS.

Definition 6: Given an stRDFS expression g (s, <p: <t ,
l>, o) and (vi, fvi−vj, vj) ∈ g, the temporal data of (vi, fvi−vj,
vj) is represents by Ti = f (N , k) where:
• N = [ts(f ), te(f )] is valid time where ts(f ) represents start
time of mapping fvi−vj, and te(f ) represents terminal time
of mapping fvi−vj.

• k = tr(f ) is reference time recorded as now.
In Definition 6, N represents the valid time of the spa-

tiotemporal data. If the valid time is a time point, then ts(f ) =
te(f ). If the valid time is a time period, then ts(f ) < te(f ). The
reference time, which is a measure of the valid time at the
time axis position, is denoted by k . In stRDFS model, k is set
to ‘‘now’’ and temporal states of the model (s, < p:<t , l>, o)
are determined by k. The relationship is as follows:

If there is no spatial data, stRDFSmodel becomes a tRDFS
model (s, p: Ti, o) with only temporal data, where s is a
resource name, p is a property name with temporal data Ti,
and o ∈ R ∪ B ∪ K ∪ I is the value of p. In tRDFS model,
there are three mappings of fs−o, fs−t and fp−t . When only
fs−o exists, that is, when there is no temporal data, the formed
expression is (s, p, o). When only fs−t exists, it indicates that
temporal data of s is Ti and the formed expression is (s, p, Ti)
where the property represents ‘‘temporal information’’ and
the attribute value is the temporal data of s. When fp−t and
fs−o are present at the same time, the resulting tRDFS model
is (s, p: Ti, o), indicating that temporal data of the model is
Ti. When only fp−t and fs−t are formed, the expression is
(s, p: Ti1, Ti2), indicating that temporal data of the model
expression is Ti1, and temporal data of s is Ti2. If given a
tRDFS modelm (s, p: Ti, o), a tRDFS graph form is a labeled
graph M (V ′, E ′, F ′, λ′, T ′) where:
• V ′ = s ∪ Range (fs−o ∪ fs−t ) is the set of vertices.
• E ′ = {(r, r ′)} is the set of edges where ∀r , r ′ ∈ V ′.
• F ′ (r , r ′) = {f |(r, f : Ti, r ′) ∈ M} is the mappings set
of E ′ where ∀r , r ′ ∈ V ′.

• λ′ is the label given by vertices or edges.
• T ′ ∈ Range (fs−t ∪ fp−t ).
In tRDFS graph, there are two cases: the first one is that

vertices contain temporal information, in this case T ′ ∈
Range (fs−t), as shown in Figure 3(a), the second is that
tRDFS graph edges contain temporal information, in this case
T ′ ∈ Range (fp−t), as shown in Figure 3(b).
In order to illustrate the practical application of tRDFS

clearly, we put forward the following examples:
Example 1: When data set A in the database is called by

the program, the time slice is 1t, 4t and [8t, 13t] (current

FIGURE 3. Representation of temporal information in tRDFS graph.
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time is represented by 0t), then tRDFS model is expressed
as: (program, call1: (1t, 0t), A), (program, call2: (4t, 0t), A)
and (program, call3: ([8t, 13t], 0t), A). Without the form of
(program, call, A, [1t, 4t, [8t, 13t]]), tRDFS model links tem-
poral data and attributes to form temporal properties. When
the temporal data changes, the corresponding temporal prop-
erties change. For example, (program, call1: (1t, 0t), A) and
(program, call2: (4t, 0t), A) are different model expressions
and call1, call2 and call3 are different temporal properties.
Next, we use the (s, p, o, t) model to represent temporal data
in Figure 4 and use tRDFS model in Figure 5. By comparing
these two figures, we can conclude that tRDFS model can
show temporal information more clearly and accurately than
the (s, p, o, t) model does.

FIGURE 4. The (s, p, o, t) model graph of Example 1.

FIGURE 5. The tRDFS graph of Example 1.

Definition 7: Given an stRDFS expression g (s, p: <t ,
l>, o) and (vi, fvi−vj, vj) ∈ g, the spatial data of (vi, fvi−vj,
vj) is represented by Si = f (L, D, H ) where:
• L ∈ (0◦, 90◦N) ∪ (0◦, 90◦S) which stands for latitude.
• D ∈ (0◦, 180◦E) ∪ (0◦, 180◦W) which stands for
longitude.

• H is the height above the sea level.
In real life, there may be situations that stRDFS model

describes the spatial data of large areas. Therefore, in stRDFS
model, longitude, latitude, and altitude may be intervals
rather than certain values. In stRDFS model, we use x ∼ C to
describe the range, where x represents L, D orH ,∼ denotes a
set of {<, ≤, ≥,=,>, 6=} and C stands for rational numbers
with unit. For example, AreaA has a latitude range of (30◦N,
40◦N), a longitude range of (116◦E, 118◦E), and its average
elevation is 50m. In stRDFSmodel, Si is expressed as ((30◦N,
40◦N), (116◦E, 118◦E), 50m). The stRDFS description of
spatial data is shown as the following:

ex: areaA
strdfs: hasGeometry
‘‘(30◦N<L< 40◦N) and (116◦E < D < 118◦E) and (H = 50m)’’ ^^
strdfs: SemiLinearPointSet.

Definition 8: Given an stRDFS model g (s, p: <t , l>, o)
and (x, fx−y: <t , l>, y) ∈ g, then for (x, fx−y: <t , l>, y),

t = Ti (fx−y) and l = Si (fx−y) which is represented as
Definition 6 and Definition 7, respectively.

If there is no temporal data in stRDFS model, it turns into
an sRDFS model (s, p: Si, o) where s is a resource name, p is
a property name with spatial data Si, and o ∈ R∪B∪K ∪S is
the value of p. The model sRDFS, which is an stRDFS model
with only spatial data, is based on RDF model and better than
sRDF model (s, p, o, l). In sRDFS model, there are three
types of mappings: fs−o, fs−l and fp−l . When only fs−o exists,
that is, when there is no spatial data in sRDFS, the formed
expression is (s, p, o). When only fs−l exists, it indicates that
the spatial data of s is Si. The formed expression is (s, p, Si)
where the property represents ‘‘spatial information’’ and the
property value is the spatial data of s. When fp−l and fs−o are
present, the resulting sRDFS model is (s, p: Si, o), indicating
that the spatial data of the p is Si. When only fp−l and fs−l are
formed, the formed sRDFS is (s, p: Si1, Si2), indicating that
the spatial data of the property is Si1 and the spatial data of
s is Si2. If given an sRDFS model q (s, p: Si, o), an sRDFS
graph for q is a labeled graph Q (V ′′, E ′′, F ′′, λ′′, L ′) where:
• V ′′ = s ∪ Range (fs−o ∪ fs−l) is the set of vertices.
• E ′′ = {(r, r ′)} is the set of edges where ∀r , r ′ ∈ V ′′.
• F ′′(r, r ′) = {f |(r, f : Si, r ′) ∈ Q} is the mappings set of
E ′′ where ∀r , r ′ ∈ V ′′.

• λ′′ is the label given by vertices or edges.
• L ′ ∈ Range (fs−l ∪ fp−l).
In sRDFS graphs, there are two cases: the first one is that

vertices contain spatial data, L ′ ∈ Range (fs−l ) at this time,
as shown in Figure 6(a); the second is that edges contain
spatial data, as Figure 6(b) shows, L ′ ∈ Range (fp−l) at this
time. Then the following examples verify this model.

FIGURE 6. Representation of spatial information in sRDFS graph.

Example 2: Mary has taken some pictures in many areas:
area1 ([23.7◦N, 24.0◦N], [116.5◦E, 116.8◦E], 50m), area2
([42.5◦N, 43◦N], [51.3◦E, 51.4◦E], 178m), area3 ([35.3◦N,
35.8◦N], [169.4◦E, 169.8◦E], 247m) and area4 ([43.4◦N,
43.5◦N], [74◦W, 74.4◦W], 12m). Described by sRDF model
(s, p, o, l), the expression is: (picture, locate in, [area1, are2,
area3, area4]), the resulting sRDF graph is shown in Figure 7.
Before accessing spatial data through these nodes, we should
search for the ‘‘area’’ node at first. Based on this, it will incur
unnecessary overhead of searching for spatial data. This prob-
lem can be solved with the help of sRDFS model, in which
the information can be described as: (Mary, took1: area1,
picture), (Mary, took2: area2, picture), (Mary, took3: area3,
picture) and (Mary, took4: area4, picture). The sRDFS graph
is shown in Figure 8. The sRDFSmodel uses both spatial data
and the attribute ‘‘took’’ to form spatial attributes. Due to
various spatial locations, the spatial attributes took1, took2,
took3 and took4 are different. When querying spatial data,
we can obtain the data directly by accessing the properties.
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FIGURE 7. The knowledge graph by sRDF model.

FIGURE 8. The knowledge graph by sRDFS model.

Example 3: Figure 1 shows the spatial data and temporal
data of mobile receiver through stRDF model. This example
uses stRDFS model to describe the mobile receiver by the
form of stRDFS graph which is shown in Figure 9.

FIGURE 9. The stRDFS graph of Example 3.

B. CLASSES AND DESCRIPTIONS OF stRDFS
In order to introduce the stRDFS description more clearly,
this section introduces several main classes: strdfs: Spa-
tialObject, strdfs: SpatialGeometry, strdfs: SpatialFeature,
strdfs: TemporalObject, strdfs: TimeSlice, strdfs: Tempo-
ralFeature, strdfs: SpatiotemporalObject, strdfs: Spatiotem-
poralGeo and strdfs: SemiLinearPointSet. Their relations are
shown in Figure 10.

1) SPATIAL CLASSES AND DESCRIPTIONS IN
SPATIOTEMPORAL DOMAIN
This section defines several main stRDFS classes that
describe spatial data in spatiotemporal domain. They are:
strdfs: SpatialObject, strdfs: SpatialGeometry and strdfs:
SpatialFeature.

The class strdfs: SpatialObject is equivalent to the RDFS
class geo: SpatialObject. The classes set of RDFS con-
tains geo: SpatialObject and the classes set of stRDFS con-
tains strdfs: SpatialObject. The class strdfs: SpatialObject

FIGURE 10. The relations of main stRDFS classes.

represents a set of all entities with only spatial information
and its description is as follows:

strdfs: SpatialObject a rdfs: Class, owl:Class;
rdfs: label ‘‘Spatial Object’’ @en;
rdfs: comment ‘‘The class SpatialObject represents

everything that can have spatial
information. It is super class of
SpatialFeature and SpatialGeometry’’@en

The class strdfs: SpatialGeometry is a subclass of strdfs:
SpatialObject. It describes Si in stRDFS model (s, p:
<Ti, Si>, o), including the data of latitude, longitude
and altitude. The description of strdfs: SpatialGeometry is
as follows:

strdfs: SpatialGeometry a rdfs: Class, owl: Class;
rdfs: label ‘‘SpatialGeometry’’ @ en;
rdfs:subClassOf strdfs: SpatialObject;
owl:disjointWith strdfs:SpatialGeometry;
rdfs:comment ‘‘This class represents the spatial

geometry characteristics of geographic
locations. This class is equivalent to geo:
Geometry for RDFS model, and it is
superclass of all geometry types.’’ @ en

The class strdfs: SpatialFeature is a subclass of
strdfs: SpatialObject, which contains geographic informa-
tion that is used for describing landform, terrain and
so on. Besides, strdfs: SpatialFeature and strdfs: Spa-
tialGeometry are exclusive mutually. The description is
as follows:

strdfs: SpatialFeature a rdfs: Class, owl: Class;
rdfs: label ‘‘Spatial Feature’’ @en;
rdfs: subClassOf strdfs: SpatialObject;
owl: disjointWith strdfs: SpatialGeometry;
rdfs: comment ‘‘This class represents the spatial characteris-

tics of geographic locations except geomet-
ric information. This class is equivalent to
GFI_Feature defined in ISO 19156 and geo:
Feature for RDFS model, and it is superclass
of all feature types.’’@en

Let us illustrate spatial classes more clearly by Example 4.
Since stRDF model can also describe spatial data, we com-
pare stRDFS model with stRDF model by Example 4.
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Example 4: There is a mobile large sound wave
receiver whose several parts are placed in different places.
By describing their spatial data, we compare stRDF model
with stRDFS model. The description of spatial data in stRDF
model is as follows:

ex: receiver1 rdf: type ex: SoundWaveReceiver
ex: receiver1 ssn: measures ex: sound
ex: receiver1 ssn: hasLocation ex: location
ex: location strdf: hasGeometry ‘‘(20.9◦N < L < 21◦N and

45.8◦E < D <= 46◦E) or
(L = 21◦N and D = 46◦E) or
(29◦N < L < 30◦N and 49◦E
< D <= 51◦E)’’ ^^ strdf:
SemiLinearPointSet

In the description of the above sound wave receiver, ssn
is the namespace of CSIRO/SSN Ontology. The ex: loca-
tion represents spatial location of sound wave receiver, and
‘‘(20.9◦N < L < 21◦N and 45.8◦E < D <= 46◦E) or
(L = 21◦N and D = 46◦E) or (29◦N < L < 30◦N and
49◦E < D <= 51◦E)’’ is the attribute value of ex: loca-
tion. The description of the spatial data in stRDFS model is
as follows:

ex: receiver1 rdf: type ex:
SoundWaveReceiver

ex: receiver1 ssn: measures ex: sound
ex: receiver1 ssn: hasLocation1 ex: location1
ex: receiver1 ssn: hasLocation2 ex: location2
ex: receiver1 ssn: hasLocation3 ex: location3
ssn: hasLocation1 strdfs: SpatialGeometry ‘‘(20.9◦N < L <

21◦N and 45.8◦E <
D <= 46◦E)’’
^^ strdfs:
SemiLinearPointSet

ssn: hasLocation2 strdfs: SpatialGeometry ‘‘(L = 21◦N and
D = 46◦E)’’
^^ strdfs:
SemiLinearPointSet

ssn: hasLocation3 strdfs: SpatialGeometry ‘‘(29◦N < L <
30◦N and 49◦E <

D <=
51◦E)’’ ^^ strdfs:
SemiLinearPointSet

By comparing the descriptions of stRDF and stRDFS,
we can draw a conclusion: strdf: hasGeometry describes
the spatial data of a spatial object; strdfs: SpatialGeometry
describes the spatial data of any parts of spatial object or
partial spatial data of the whole spatial object. On this basis,
it can be concluded that stRDFS model supports fast search
for spatial data and can represent changes of spatial data
either overall or partial.

2) TEMPORAL CLASSES AND DESCRIPTIONS IN
SPATIOTEMPORAL DOMAIN
This section defines several main stRDFS classes that
describe temporal data in spatiotemporal domain. They
are: strdfs: TemporalObject, strdfs: TimeSlice and strdfs:
TemporalFeature.

The class strdfs: TemporalObject is a set of all entities
that contain temporal data. The description of strdfs: Tempo-
ralObject is as follows:

strdfs: TemporalObject a rdfs: Class, owl: Class;
rdfs: label ‘‘Temporal Object’’ @ en;
rdfs: comment ‘‘The class TemporalObject represents

everything that can have temporal
information. It is superclass of
TemporalFeature and TimeSlice’’@en

The class strdfs: TimeSlice is a subclass of strdfs: Tem-
poralObject. It is a set of valid time and reference time of
entities, including time points and time intervals. In stRDFS
model, strdfs: TimeSlice describes parameter Ti. The descrip-
tion is as follows:

strdfs: TimeSlice a rdfs: Class, owl: Class;
rdfs: label ‘‘TimeSlice’’ @ en;
rdfs: subClassOf strdfs: TemporalObject;
owl: disjointWith strdfs: TemporalFeature;
rdfs:comment ‘‘This class represents the time occupied by

everything with temporal information. This class
describes the time point or time interval’’ @ en

The class strdfs: TemporalFeature is a subclass of strdfs:
TemporalObject and it is mutually exclusive in strdfs: TimeS-
lice. It includes other temporal data of temporal entities, such
as time zone, tense, time dimension and the existence time.
The description of strdfs: TemporalFeature is as follows:

strdfs: TemporalFeature a rdfs: Class, owl: Class;
rdfs: label ‘‘Temporal Feature’’ @en;
rdfs: subClassOf strdfs: TemporalObject;
owl: disjointWith strdfs: TimeSlice;
rdfs:comment ‘‘This class represents the temporal

information of everything except the valid
time and reference time.’’ @ en

The temporal classes can be illustrated more clearly with
Example 5. Since stRDF model can also describe temporal
data, we compare stRDFS model with stRDF model by the
description of Example 5.
Example 5: There is a Java program program1, which

is called by the computer at 8t and 18t. There is a python
program program2, which is called by the computer at [9t,
14t]. We set 0t as the reference time, and use this example to
compare stRDF and stRDFS models. stRDF model describes
the above information as follows:

ex: program1 rdf: type ex: JavaProgram
ex: program2 rdf: type ex: PythonProgram
ex: program1 om: procedure ex: CountProgram
ex: program2 om: procedure ex: OutputProgram
ex: program1 om:hasPro1Call ex: TimeSlice1
ex: program2 om: hasPro2Call ex: TimeSlice2
ex: TimeSlice1 strdf: TimeSlice ‘‘(t = 8t and t = 18t)

and k = 0t.’’
^^ strdf: SemiLinearPointSet.

ex: TimeSlice2 strdf: TimeSlice ‘‘9t ≤ t ≤ 14t and k = 0t.’’
^^ strdf: SemiLinearPointSet
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In the description of the above program, om is the names-
pace of O&M-OWL ontology and ex represents an example
ontology. The ex: TimeSlice1 represents the time slice when
program1 was called and ex: TimeSlice2 represents the time
slice when program2 was called. The description of stRDFS
model is as follows:

ex: program1 rdf: type ex: JavaProgram
ex: program2 rdf: type ex: PythonProgram
ex: program1 om: procedure ex: CountProgram
ex: program2 om: procedure ex: OutputProgram
ex: program1 om:hasPro1Call1 ex: TimeSlice1
ex: program1 om: hasPro1Call2 ex: TimeSlice2
ex: program2 om: hasPro2Call1 ex: TimeSlice2
om:hasPro1Call1 strdfs: TimeSlice ‘‘t = 8t and k = 0t.’’ ^^

strdfs:SemiLinearPointSet.
om:hasPro1Call2 strdfs: TimeSlice ‘‘t = 18t and k = 0t.’’^^

strdfs:
SemiLinearPointSet.

om:hasPro2Call1 strdfs: TimeSlice ‘‘9t ≤ t ≤ 14t and
k = 0t.’’^^ strdfs:
SemiLinearPointSet.

The class strdfs: TimeSlice represents the valid time and
reference time of the program. When the valid time is
the time point, stRDFS expresses temporal data by equa-
tion, such as t = 8t and t = 18t. When the valid time
is a time period, an inequation represents the time inter-
val, such as 9t ≤ t ≤ 14t. Compared with stRDF model,
stRDFS makes temporal data link with the attributes: om:
hasPro1Call1, om: hasPro1Call2 and om: hasPro2Call1,
where om: hasPro1Call1 represents the first call of program1,
om: hasPro1Call2 represents the second call of program1 and
om: hasPro2Call1 represents the first call of program2. Based
on this feature, the stRDFS model can represent temporal
data of a temporal entity at any time and record changes of
temporal attributes at any time.

3) SPATIOTEMPORAL CLASSES AND DESCRIPTIONS IN
SPATIOTEMPORAL DOMAIN
In this section, we define several main stRDFS classes to
describe spatiotemporal data in the spatiotemporal domain
which are: strdfs: SpatiotemporalObject, strdfs: Spatiotem-
poralGeo and strdfs: SemiLinearPointSet.
The class strdfs: SpatiotemporalObject is a set of all spa-

tiotemporal entities, which is a superset of strdfs: Tempo-
ralObject and strdfs: SpatialObject. The description is as
follows:

strdfs: SpatiotemporalObject a rdfs: Class, owl: Class;
rdfs: label ‘‘Spatiotemporal Object’’ @ en;
rdfs: comment ‘‘The class: SpatiotemporalObject

represents everything that can have
spatiotemporal information. It is
super class of SpatialObject and
TemporalObject’’ @ en

The class strdfs: SpatiotemporalGeo describes geometric
data of spatiotemporal entities and it is a superset of strdfs:

SpatialGeometry and strdfs: TimeSlice. The description is as
follows:

strdfs: SpatiotemporalGeo a rdfs: Class, owl: Class;
rdfs: label ‘‘Spatiotemporal Geometry’’ @ en;
rdfs: comment ‘‘The class is based on strdf:

hasTrajectory. It is super class of
SpatialGeometry and TimeSlice ’’ @ en

The class strdfs: SemiLinearPointSet is the set of rational
numbers to represent time values, longitude values, latitude
values and altitude values, etc. The description is as follows:

strdfs: SemiLinearPointSet a rdfs: Class, owl: Class;
rdfs: label ‘‘SemiLinearPointSet’’ @ en;
rdfs: comment ‘‘This class is the set of rational

numbers’’ @ en

We illustrate the spatiotemporal classes through Exam-
ple 6, and compare the descriptions of stRDF with stRDFS.
Example 6: There is a large sonic receiver which calls

corresponding programs to analyze the sound waves after
receiving them. We make a comparison between stRDF
model and stRDFSmodel in the description of spatiotemporal
information. stRDFmodel describes the above information as
follows:

ex: program1 rdf: type ex: JavaProgram
ex: program2 rdf: type ex: PythonProgram
ex: program1 om: procedure ex: CountProgram
ex: program2 om: procedure ex: OutputProgram
ex: program1 om: hasPro1Call ex: receiver2
ex: program2 om: hasPro2Call ex: receiver2
ex: receiver2 rdf: type ex: SoundWaveReceiver
ex: receiver2 ssn: measures ex: sound
ex: receiver2 ssn: hasLocation ex: location1
ex: location1 strdf: hasTrajectory ‘‘(t = 6t and t = 16t or

7t ≤ t ≤ 14t) and k = 0t and
((21.8◦N < L < 22.1◦N and
45.9◦E < D <= 46◦E) or
(L = 22.1◦N and
D = 46◦E))’’
^^ strdf: SemiLinearPointSet.

In stRDF model, strdf: hasTrajectory is the attribute value
of strdf: hasTrajectory of location1 which describes the spa-
tiotemporal data. It is noted that only spatiotemporal data
of the whole entities can be recorded in the spatiotemporal
dimension instead of the spatiotemporal data of a certain part
of the object. For instance, stRDF model cannot represent the
spatial data at t = 6t and the temporal data when the object
is at (L = 22.1◦N and D = 46◦E). Even worse, if there is
an attribute value changing at a certain time or in a certain
spatial position, stRDF is inaccurate in recording data for its
weak capability in linking spatiotemporal data. The stRDFS
model solves this problem and the results are as follows:

ex: program1 rdf: type ex: JavaProgram
ex: program2 rdf: type ex: PythonProgram
ex: program1 om: procedure ex: AnalysisProgram
ex: program2 om: procedure ex: AnalysisProgram
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ex: program1 om:hasPro1Call ex: receiver2
ex: program2 om: hasPro2Call ex: receiver2
ex: receiver2 rdf: type ex: SoundWaveReceiver
ex: receiver2 ssn: measures ex: sound
ex: receiver2 ssn: hasLocation1 ex: location1
ex: receiver2 ssn: hasLocation2 ex: location2
om: hasPro1Call strdfs:

SpatiotemporalGeo
‘‘t = 6t and t = 16t
and k = 0t and (21.8◦N
< L < 22.1◦N
and 45.9◦E < D <=

46◦E)’’
^^ strdfs: SemiLinear-
PointSet

om: hasPro2Call strdfs:
SpatiotemporalGeo

‘‘7t ≤ t ≤ 14t and L =
22.1◦N and D = 46◦E
and k = 0t’’ ^^ strdfs:
SemiLinearPointSet

ssn: hasLocation1 strdfs:
SpatialGeometry

‘‘(21.8◦N < L <

22.1◦N and 45.9◦E <

D <= 46◦E)’’ ^^ strdfs:
SemiLinearPointSet

ssn: hasLocation2 strdfs:
SpatialGeometry

‘‘(L = 22.1◦N and
D = 46◦E)’’ ^^ strdfs:
SemiLinearPointSet

The receiver calls program1 to analyze the data at Loca-
tion1 when t = 6t and t = 16t, and calls program2 to ana-
lyze the data at Location2 when t ∈ [7t, 14t]. In stRDFS
model, spatiotemporal data describes om: hasPro1Call and
om: hasPro2Call. Different from stRDF, stRDFS model can
represent spatiotemporal data and record changes of spa-
tiotemporal attributes at any time or in any location because
that facilitates the modification of common attribute values,
such as program names.

4) A CASE OF SPATIOTEMPORAL KNOWLEDGE
GRAPH MODEL
In order to verify the usability of the proposed model, it is
applied in this subsection. We choose the flight of South-
west 1524, from Los Angeles to San Francisco, took off at
5:23 a.m. and landed at 6:14 a.m. on 9 August 2019. Picking
the point in the flight path every two minutes and name it Pi
(i = 1, 2, . . .), the flight information is shown in Table 1.

Taking P2 as an example, as shown in Figure 11, we will
apply the methodology above section proposed to aeronautics
field.

FIGURE 11. The stRDFS graph of Southwest 1524.

TABLE 1. Spatiotemporal data of Southwest 1524.

According to Ti = f (N , k (i = 1, 23 . . .) in Definition 6,
and ‘‘N = 05:24:37 AM, k = 0t’’ in Table 1, whose temporal
data can be represented by T2 = (05:24:37 AM, 0t).
According to Si = f (L, D, H ) (i = 1, 23 . . .) in Def-

inition 7, and ‘‘L = 33.8877, D = −118.4981, H =

4150m’’, whose spatial data can be represented by S2 =
(33.8877,−118.4981, 4150m).

According to stRDFS expression g (s, p: <t , l>, o) in
Definition 8, whose stRDFS model can be represented by
(P2, Locate in2: <T2, S2>, area2).
According to Section 3.2, the description of Figure 11 is as

follows:

ex: flight1 rdf: name ex: Southwest 1524
ex: flight1 rdf: type ex: B737
ex: flight1 om: hasPassedby1 ex: P1
ex: flight1 om: hasPassedby2 ex: P2
ex: flight1 om: hasPassedby3 ex: P3
. . . . . . . . .
ex: flight1 om: hasPassedby26 ex: P26
ex: flight1 om: hasPassedby27 ex: P27
ex: P1 ssn: hasLocation1 ex: area1
ex: P2 ssn: hasLocation2 ex: area2
ex: P3 ssn: hasLocation3 ex: area3
. . . . . . . . .
ex: P26 ssn: hasLocation26 ex: area26
ex: P27 ssn: hasLocation27 ex: area27
om:
hasPassedby1

strdfs:
SpatiotemporalGeo

‘‘t=05:24:37 AM t and
k=0t and (L = 33.9389,
D=−118.3900
and H=150m)’’ ^^ strdfs:
SemiLinearPointSet

om:
hasPassedby2

strdfs:
SpatiotemporalGeo

‘‘t=05:24:37 AM and k=0t
and (L=33.8877,
D=−118.4981 and
H=4150m)’’ ^^ strdfs:
SemiLinearPointSet

129052 VOLUME 8, 2020



L. Zhu et al.: stRDFS: Spatiotemporal Knowledge Graph Modeling

om:
hasPassedby3

strdfs:
SpatiotemporalGeo

‘‘t=05:26:42 AM and k=0t
and (L=33.8086,
D=−118.6459
and H=9550m)’’ ^^ strdfs:
SemiLinearPointSet

. . . . . . . . .
om:
hasPassedby26

strdfs:
SpatiotemporalGeo

‘‘t=06:12:30 AM and k=0t
and (L=37.5886,
D=−122.2975 and
H=1,075m)’’ ^^ strdfs:
SemiLinearPointSet

om:
hasPassedby27

strdfs:
SpatiotemporalGeo

‘‘t=06:14:00 AM and k=0t
and (L=37.6109,
D=−122.3506 and
H=46m)’’ ^^ strdfs:
SemiLinearPointSet

ssn:
hasLocation1

strdfs:
SpatialGeometry

‘‘(L=33.9389,
D=−118.3900 and
H=150m)’’ ^^ strdfs:
SemiLinearPointSet

ssn:
hasLocation2

strdfs:
SpatialGeometry

‘‘(L=33.8877,
D=−118.4981 and
H=4150m)’’ ^^ strdfs:
SemiLinearPointSet

ssn:
hasLocation3

strdfs:
SpatialGeometry

‘‘(L=33.8086,
D=−118.6459 and
H=9550m)’’ ^^ strdfs:
SemiLinearPointSet

. . . . . . . . .
ssn:
hasLocation26

strdfs:
SpatialGeometry

‘‘(L=37.5886,
D=−122.2975 and
H=1,075m)’’ ^^ strdfs:
SemiLinearPointSet

ssn:
hasLocation27

strdfs:
SpatialGeometry

‘‘(L=37.6109,
D=−122.3506 and
H=46m)’’ ^^ strdfs:
SemiLinearPointSet

IV. TOPOLOGICAL RELATIONS OF ENTITIES
In order to describe the relations among spatiotemporal enti-
ties, this section defines eleven kinds of topological rela-
tions, which are: Equal, Disjoint, Meet, Overlap, Cover,
CoveredBy, Inside, Contain, Before, Now and After. The spa-
tial topological relations are Equal, Disjoint, Meet, Overlap,
Cover, CoveredBy, Inside and Contain, so their domains are
strdfs: SpatialObject. The temporal topological relations are
Before, Now andAfter, so their domain is strdfs: TemporalOb-
ject. The relations among relation names, relation URI and
domain are shown in Table 2.

In the following, we define the following determination
methods of topological relations among different spatiotem-
poral entities based on the stRDFS model:
Definition 9: Given two spatiotemporal entities A (sA, pA:

<TiA, SiA>, oA) and B (sB, pB: <TiB, SiB>, oB), Equal (A,
B)⇔ sA = sB∧oA = oB∧pA = pB∧SiA = SiB. (TiA = TiB?)
Definition 10:Given two spatiotemporal entities A (sA, pA:

<TiA, SiA>, oA) and B (sB, pB:<TiB, SiB>, oB), A is disjoint
with B where:
• If o denotes spatial data, Disjoint (A,B) ⇔ Range
(fsA−SisA ∪ fpA−SiA) ∩ Range(fsB−SisB ∪ fpB−SiB) = Ø.

• If o doesn’t denote spatial data, Disjoint (A,B)⇔ Range
(fpA−SiA) ∩ Range (fpB−SiB) = Ø.

By Definition 10, if o represents spatial data, stRDF model
can be expressed as (sA, pA: <TiA, SiA>, SiSA). As shown

TABLE 2. Topological relations of spatiotemporal classes.

in Definition 3, SiSA represents spatial data of sA and SiA
represents spatial data of attributes pA. The same is B. There-
fore, both SiSA and SiA need to be considered, that is, Range
(fsA−SisA ∪ fpA−SiA) ∩ Range (fsB−SisB ∪ fpB−SiB) = Ø. If o
doesn’t represent spatial data, stRDF model can be expressed
as (sA, pA: <TiA, SiA>, oA) where oA is the object without
spatial data. Therefore, only SiA need to be considered.
Definition 12:Given two spatiotemporal entities A (sA, pA:

<TiA, SiA>, oA) and B (sB, pB: <TiB, SiB>, oB), A overlaps
B where:
• If o depicts spatial data, Overlap (A, B) ⇔ Range◦

(fsA−SisA ∪ fpA−SiA) ∩ Range◦ (fsB−SisB ∪ fpB−SiB) 6=
Ø ∧ Range (fsA−SisA ∪ fpA−SiA) ∩ Range (fsB−SisB ∪
fpB−SiB) 6= Range (fsA−SisA∪fpA−SiA)∧Range (fsA−SisA∪
fpA−SiA)∩Range (fsB−SisB∪ fpB−SiB) 6= Range(fsB−SisB∪
fpB−SiB).

• If o doesn’t depict spatial data, Overlap (A, B) ⇔
Range◦ (fpA−SiA) ∩ Range◦ (fpB−SiB) 6= Ø ∧ Range
(fpA−SiA) ∩ Range (fpB−SiB) 6= Range (fpA−SiA) ∧ Range
(fpA−SiA) ∩ Range (fpB−SiB) 6= Range (fpB−SiB).

Definition 13:Given two spatiotemporal entities A (sA, pA:
<TiA, SiA>, oA) and (sB, pB : <TiB, SiB>, oB), A covers B
where:
• If o expresses spatial data, Cover (A, B) ⇔ Range◦

(fsA−SisA∪ fpA−SiA)∩ Range (fsB−SisB∪ fpB−SiB) = Range
(fsB−SisB ∪ fpB−SiB)

• If o doesn’t express spatial data, Cover (A, B)⇔ Range◦

(fpA−SiA)∩ Range (fpB−SiB) = Range (fpB−SiB)
Definition 14:Given two spatiotemporal entities A (sA, pA:

<TiA, SiA>, oA) and B (sB, pB:<TiB, SiB>, oB), A is covered
by B where:
• If o represents spatial data, CoveredBy (A, B)⇔ Range
(fsA−SisA∪fpA−SiA)∩Range◦ (fsB−SisB∪fpB−SiB) = Range
(fsA−SisA ∪ fpA−SiA).

• If o doesn’t represent spatial data, CoveredBy (A, B)⇔
Range (fpA−SiA)∩ Range◦ (fpB−SiB) = Range (fpA−SiA)

Definition 15:Given two spatiotemporal entities A (sA, pA:
<TiA, SiA>, oA) and B (sB, pB: <TiB, SiB>, oB), A is inside
B where:
• If o denotes spatial data, Inside (A, B) ⇔ Range
(fsA−SisA∪ fpA−SiB)∩ Range (fsB−SisB∪ fpB−SiB) = Range
(fsA−SisA∪fpA−SiB)∧Range◦ (fsA−SisA∪fpA−SiB)∩Range◦

(fsB−SisB ∪ fpB−SiB) 6= Ø.
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• If o doesn’t denote spatial data, Inside (A, B) ⇔ Range
(fpA−SiA)∩ Range (fpB−SiB) = Range (fpA−SiA)∧ Range◦

(fpA−SiA)∩ Range◦ (fpB−SiB) 6= Ø.
Definition 16:Given two spatiotemporal entities A (sA, pA:

<TiA, SiA>, oA) and B (sB, pB: <TiB, SiB>, oB), A contains
B where:
• If o represents spatial data, Contain (A, B) ⇔ Range
(fsA−SisA ∪ fpA−SiB)∩ Range (fsB−SisB ∪ fpB−SiB) =
Range (fsB−SisB∪fpB−SisB)∧Range◦ (fsA−SisA∪fpA−SiB)∩
Range◦ (fsB−SisB ∪ fpB−SiB) 6= Ø.

• If o doesn’t represent spatial data, Contain (A, B) ⇔
Range (fpA−SiA)∩ Range (fpB−SiB) = Range (fpB−SiB)∧
Range◦ (fpA−SiA)∩ Range◦ (fpB−SiB) 6= Ø.

Definition 17:Given two spatiotemporal entities A (sA, pA:
<TiA, SiA>, oA) and B (sB, pB: <TiB, SiB>, oB), A is earlier
than B where:
• If o depicts temporal data, Before (A, B) ⇔ 5N
Range (fsA−TisA) < 5N Range (fsB−TisB) ∧ 5N Range
(fpA−TiA) < 5N Range (fpB−TiB).

• If o doesn’t depict temporal data, Before (A, B) ⇔ 5N
Range (fpA−TiA) < 5N Range (fpB−TiB).

In Definition 17, 5N (x) represents the projection of x on
N . For example,5N Range (fsA−TisA) represents parameterN
of the temporal data TisA. If o represents temporal data, stRDF
model can be expressed as (sA, pA: <TiA, SiA>, TiSA). TiSA
represents temporal data of sA and TiA represents temporal
data of attributes pA. B is the same. If o doesn’t represent
temporal data, stRDF model can be expressed as (sA, pA:
<TiA, SiA>, oA) where oA is the object without temporal data.
Therefore, only TiA needs to be considered.
Definition 18:Given two spatiotemporal entities A (sA, pA:

<TiA, SiA>, oA) and B (sB, pB: <TiB, SiB>, oB), A is later
than B where:
• If o is temporal data, After (A, B) ⇔ 5N Range
(fsA−TisA) > 5N Range (fsB−TisB) and 5N Range
(fpA−TiA) > 5N Range (fpB−TiB).

• If o isn’t temporal data, After (A, B) ⇔ 5N Range
(fpA−TiA) > 5N Range (fpB−TiB).

Definition 19:Given two spatiotemporal entities A (sA, pA:
<TiA, SiA>, oA) and B (sB, pB: <TiB, SiB>, oB), A and B are
at the same time where:
• If o represents temporal data, Now (A, B) ⇔ 5N
Range (fsA−TisA) = 5N Range (fsB−TisB) and5N Range
(fpA−TiA) = 5N Range (fpB−TiB).

• If o doesn’t represent temporal data, Now (A, B)⇔ 5N
Range (fpA−TiA) = 5N Range (fpB−TiB).

In the following, we will describe the topological relations
of spatiotemporal entities through Example 7.
Example 7: Given the six spatiotemporal entities in Exam-

ple 4: A, B, C , D, E and F , their topological relations are
shown in the Table 3.
Based on stRDFS model, topological relations are trans-

formed into an stRDFS graph, as shown in Figure 12. The
dotted elliptical portion indicates the spatial position range.
In Figure 12, the position of A is equal to B, so subjects of A

TABLE 3. Topological relations in Example 7.

FIGURE 12. The stRDFS graph of Example 7.

and B are expressed as an ellipse A/B, properties are PA/PB
and objects are OA/OB. The position of A/B is disjoint withC ,
D andE , so the dotted ellipse ofA/B is disjoint with the dotted
ellipses of C , D and E . The dotted ellipse of A/B is contained
in the dotted ellipse of F because that the position of A/B is
inside of F . The temporal relation is TA = TB = TF < TE <
TC = TD, and. The position of A/B and F changes into the
position of E at TiE and D at TiD, respectively.

This paper selects a part of David’s circle of friends as
experimental data. By recording their names, relationships,
and locations, Gephi (a cross-platform complex network
analysis software based on JVM and can display knowledge
graphs with spatiotemporal information) can show the rela-
tionship between each person’s spatial locations. The name
of a person is the value of S, the relationship is the value of P,
and the city is the value of O. Since the rest of the parameters
have little effect on the spatial relationships determination of
subjects, it is not necessary to introduce them into the data
table. Figure 13 is a spatiotemporal data set that contains ids
of people, names of people and cities in which people are
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FIGURE 13. Data tables for some names and names of cities in which
they are located.

FIGURE 14. The screen snapshot of running result in Gephi.

TABLE 4. Comparative study on spatiotemporal data modeling.

located. The data in Figure 13 are input in Gephi, and the
stRDFS model of these data is established and Figure 14 is
the running result of the spatial position relationships among
subjects. As shown in Figure 14, if person A meets person
B (two persons are adjacent), they will be represented by the
same color, and if they are disjoint, they will be represented
by different colors.

V. COMPARISONS AND DISSCUSSION
In order to illustrate the novelity of stRDFS proposed in
this paper clearly, we set a comparative study on modeling
spatiotemporal data based on RDF.

As shown in Table 4, Temporal RDF [22], [42], Named
graph [14] and tRDF [38] are focus on temporal data model-
ing; GEO [32] and GeoRDF [8], [9], [13] are the representa-
tion of spatial data; stRDF [28], YAGO2 [25], gst-Store [50]

and stRDFS devote to modeling spatiotemporal data. Among
the spatiotemporal models, stRDF expands RDF triples into
quad, and YAGO2 and gst-Store expand RDF triples into
quintuple. The expansion of triples could easily solve the
express of spatiotemporal features. However, the extra labels
often cause data redundancy and lead to additional overhead
for the system. stRDFS is an extending RDF by labeling
properties with spatiotemporal features without expanding
RDF triples, which meets the needs of the purpose in this
paper.

VI. CONCLUSION AND FUTURE WORK
Incorporation of spatiotemporal information in data model
has been an important topic of database community because
such information extensively exists in real-world applica-
tions, in which spatiotemporal data plays an important role
in nature. Both classical RDF model and previous studies
on RDF extension cannot satisfy the need for modeling and
processing spatiotemporal data. Therefore, we explore the
method to model spatiotemporal knowledge graph based on
RDF. In this paper, we establish the stRDFS data model
and introduce the classes and descriptions in spatiotemporal
domain. This model can correlate temporal data with spatial
data through properties and capture changes of spatiotempo-
ral attribute value in time. Besides, in order to depict relations
among different spatiotemporal entities, we define eleven
kinds of topological relations and the determination methods,
and then we describe them with stRDFS model.

Future work mainly concentrates on the following aspects:
(i) We will try to reduce parameters and improve efficiency
without affecting accuracy. (ii) Exploring semantic implica-
tion, graph algebra and query language. (iii) Our model will
be extended in order to deal with uncertain spatiotemporal
data. (iv) Creating an stRDFS dataset and platform.
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