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ABSTRACT Gender recognition has been among the most investigated problems in the last years; although
several contributions have been proposed, gender recognition in unconstrained environments is still a
challenging problem and a definitive solution has not been found yet. Furthermore, Deep Convolutional
Neural Networks (DCNNs) achieve very interesting performance, but they typically require a huge amount
of computational resources (CPU, GPU, RAM, storage), that are not always available in real systems,
due to their cost or to specific application constraints (when the application needs to be installed directly
on board of low-power smart cameras, e.g. for digital signage). In the latest years the Machine Learning
community developed an interest towards optimizing the efficiency of Deep Learning solutions, in order to
make them portable and widespread. In this work we propose a compact DCNN architecture for Gender
Recognition from face images that achieves approximately state of the art accuracy at a highly reduced
computational cost (almost five times). We also perform a sensitivity analysis in order to show how some
changes in the architecture of the network can influence the tradeoff between accuracy and speed. In addition,
we compare our optimized architecture with popular efficient CNNs on various common benchmark dataset,
widely adopted in the scientific community, namely LFW, MIVIA-Gender, IMDB-WIKI and Adience,
demonstrating the effectiveness of the proposed solution.

INDEX TERMS Convolutional neural network, deep learning, face analysis, gender recognition, efficiency,
accuracy-speed tradeoff.

I. INTRODUCTION
Gender recognition from faces is one of the basic capabilities
of the human beings. Extending this capability to machines
is of great interest in many application areas. One example
is the intelligent social robotics, where the perception of soft
biometric traits is used to personalize the conversation and
increase the feel of intelligence perceived by the human inter-
locutor. Digital signage is another application where gender
recognition can be profitably used, since it allows to boost the
effectiveness of the advertisement campaigns; indeed, in this
scenario it is possible to replace the static contents shown on
the monitor with some dynamic advertisements, customized
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depending on the gender of the person looking at the monitor
itself.

In both the examples provided above, the systems need to
be capable to reliably work even ‘‘in the wild’’, where there
are challenging conditions of illumination, uncontrolled pose
variations, random occlusions, and even more variability of
age, ethnicity, expression. Furthermore, the algorithm must
be executed in real time, and often it is not possible to exploit
cloud services, due to latency or the absence of a reliable
connection to the internet, and a powerful server is rarely
available due to its cost. Therefore, the gender recognition
algorithm must run in real time on the processing units
embedded in the robot, in the surveillance camera or in the
digital billboard. However, the most accurate methods may
need gigabytes of RAM and storage, and billions of floating
point operations for a single prediction, while the available
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processing units, even being quite powerful, with 32 bit paral-
lelism, vector co-processors and capabilities of floating point
computation, are typically equipped with ARM processors
and only low resources in terms of memory and storage.
This is particularly true in applications like digital signage,
in which a small smart camera, with around 512 MB of RAM
and 16 MB for storing the whole application, including the
model of the network, needs to perform the classification of
several faces in real-time to quickly customize the promo-
tional content.

From these considerations, it emerges a clear need for a
gender recognition method which is both accurate in the wild
and able to run in real time on embedded devices. If those two
constraints are met, such a method would be applicable in the
most common real-world applications.

Within this context, we explicitly address both the above
mentioned issues.We propose an optimal DCNN architecture
specifically tuned for gender recognition. Similar challenges
are nowadays faced in akin interactive, human-centered
fields, such as autonomous driving [1], that require careful
design of a real-time capable network architecture [2], [3].

In this work, we first select a known architecture that
leverages the latest devices from the state of the art of
deep learning; we then show different variants of the chosen
architecture to study the effect of the variation on both
classification accuracy and prediction latency. To this aim,
we choose MobileNets v2 as reference architecture, since it
demonstrated remarkable accuracy in image classification,
of which gender recognition is clearly a subdomain. The
specific application to gender classification, though, gives us
the possibility to explicitly rearrange the building blocks in
a way that yields the best tradeoff for the problem at hand.
In particular, starting from the consideration that the extrac-
tion of soft biometrics from faces does not rely on image
resolution like the general problem of image classification
does, we hypothesize that a reduction of the input size of the
network does not significantly affect the accuracy. In addi-
tion, since the classification is limited to a single domain,
namely the faces, we can reduce the number of feature maps
and the number of layers to realize networks that are not so
deep, but still achieving excellent performance, comparable
to the state of the art, and a better tradeoff with respect to
the naive application of the original versions of MobileNets.
We find that, as opposed to the general trend in deep learning,
a smaller network is able to achieve a notable gender recog-
nition performance without loosing in terms of accuracy.

In addition, since we want to build a neural network that
is robust in real world conditions, we train it on a very
large dataset that presents significant face variability and we
measure our performance on well known standard bench-
marks for gender recognition; in order to evaluate the perfor-
mance in real environments, we chose some of them acquired
‘‘in the wild’’. We compare our network with other methods
in the state of the art, to show that the proposed system has
comparable or better accuracy but much lower computational
demand. Moreover, we perform a comparison with existing

optimized architectures, namely Xception [4], Squeezenet [5]
and Shufflenet [6], and we measure their prediction latency
on a hardware architecture that is nowadays very common
for middle or high-end embedded system; the experimental
evaluation demonstrates the superiority of our solution, which
is able to run in real time and to achieve high accuracy in real
conditions, with a better trade-off with respect to all the other
architectures.

To summarize, the main contributions of this paper are the
following: 1) we demonstrate with a comprehensive exper-
imental analysis that it is possible to preserve the gender
recognition accuracy by carefully modifying the architecture
of a CNN; 2) we propose a network architecture specifically
devised for gender recognition, optimized by reducing the
input size, the number of feature maps and the number of
layers of an existing network architecture, achieving a per-
formance comparable with state of the art but can be suitably
applied in embedded applications with real-time constraints.

II. RELATED WORK
The typical pipeline for a gender recognition system is
shown in Figure 1 and consists of the following main steps:
(1) face detection; (2) face normalization/alignment; (3) fea-
ture extraction and classification. In the first step, the posi-
tion of the face in the image is identified with model based
approaches, such as [7], [8] and [9]. The face detection
is typically the processing step which requires more time.
In [10] the authors propose an architecture for reducing the
space of the image where looking for faces. They compute
the time for detection by using the well-known Viola Jones
algorithm, with an average time of 428 ms on the target
embedded device. Anyway, for face classification, the time
required for classifying a single face by using deep learning
based approaches may vary from 40 up to 2000 ms for most
accurate methods available in the literature. It is also impor-
tant to specify that the processing time scales linearly with
the number of people, and this factor represents a challenge
for gender recognition in crowded scenarios. It implies that
the classification time needs to be considered as well, since it
may become a very critical part of the face analysis process.

FIGURE 1. Functional processing pipeline of a typical gender recognition
system. Note that some functions may be also absent or aggregated.

In the second step, the facial landmarks are found inside
the face region. The facial landmarks are known points in the
face that are easy to identify for a human: typically the tip of
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the nose and the centers of the eyes are used. Once the facial
landmarks are identified, the image is scaled and rotated to
put the eyes and the nose in fixed locations; the procedure
may vary and more sophisticated methods may exploit more
landmarks to perform different transformations, such as a full
frontalization [11] that tries to compensate for pose varia-
tions. However, suchmethods have significant drawbacks and
are not as popular as plain affine transformation, since they
are extremely slow and introduce a consistent deformation of
the face. Other normalization steps may be also applied, such
as contrast stretching and histogram equalization.

In the third step, the actual classification takes place; the
features are extracted from a pre-processed face image and
a binary decision (male/female) is the output. Three main
strategies have been adopted for classification: (1) hand-
crafted features, (2) trainable features or (3) a combination
of them.

Handcrafted features are carefully designed by humans
explicitly for the problem at hand, while trainable features
are general purpose meta-descriptors that can be learned from
examples. The handcrafted features can take advantage of the
domain-specific knowledge to bemore accurate and efficient.
For gender recognition, it has been shown that color [12],
shape [13], texture [14] and local features [15] are typically
discriminant. It has also been shown that a combination
of those features would lead to significant improvements
in recognition accuracy [16]. SVMs is often used [17] as
classification step. Using a variant of SVM on multiscale
LBP texture features, the authors of [18] achieve 96.6%
performance on the well known LFW benchmark. While
handcrafted-feature based systems often leverage the full
pipeline, sometimes in practical application face alignment
is just skipped. Indeed, the improvement in the accuracy is
paid in a more significant improvement in terms of the com-
putational burden required [19]. Furthermore, any failures
of the alignment algorithm may affect the overall system
performance.

Trainable features, on the contrary, do not leverage
domain-specific information when they are chosen and
designed, but they can themselves learn particular patterns
that are not immediately evident to human designers. The
approach based on trainable features includes all the tech-
niques related to deep convolutional neural networks that
learn the filters directly from the data. These techniques were
proved in recent years to be very effective on all the computer
vision tasks, and in particular on those related to face analysis,
such as face recognition and re-identification [20], soft bio-
metrics such as gender [21], age [22], and so on. It is worth
noting that this approach was not born with deep learning, but
it has been already applied to gender recognition from still
images in different forms. In [23], for example, the authors
use a weighted combination of shifted Gabor filters, inspired
by the structure of the visual cortex: the parameters of those
filters are chosen with an automatic pseudo-random training
procedure in which the images from the application domain
are fed into the filters.

Among the trainable-feature based methods, the authors
of [24] propose an ensemble of CNN models: with reference
to the VGG architectural principles, they specifically address
the problem of reducing the computational load; they find
an optimal architecture in terms of depth, number of feature
maps and input size, then they train the best architecture three
times and combine them in an ensamble to reach 97.31%
performance on the LFW dataset. VGG architecture has been
also used in [25], where the authors compare MobileNet and
VGG in the field of social robotic. In a successive work [26]
they train the very deep an powerful ResNet-50 CNN and
obtain the state of art accuracy of 99.3% on the LFW bench-
mark; the network is pretrained on the problem of face recog-
nition and then it is fine tuned on the IMDB-WIKI-cleaned
dataset.

Some recent methods even perform all the three steps
together (detection, aligment and classification): for instance,
in [27] the authors achieve 94% accuracy on the LFWdataset,
training a CNN jointly for face landmarks, pose estimation
and gender recognition.

III. PROPOSED METHOD
Our method is based on a multi-purpose neural network
architecture named MobileNets [28], [29]. The main reason
behind this choice is that the architecture is very suited for
applications which require a trade off between accuracy and
processing speed on mobile or embedded platforms. Indeed,
the authors discovered that a convolutional layer can be split
in a ‘‘depthwise’’ operation followed by a ‘‘pointwise’’ oper-
ation while still retaining much of the representative power of
the network. This trick allows 3 × 3 convolutions to require
8 to 9 times less operations, with a consequent reduction in the
number of parameters [28]. In [29], the linear bottleneck lay-
ers are built out of the separable ones: when such layers are
stacked, a separable convolution is forerun by an additional
pointwise layer with linear activation, to form a ‘‘bottleneck’’,
where the number of feature maps is increased (expansion)
and then decreased (projection): the data are scattered in
a higher-dimensional space so that the non-linear power of
ReLU activation can be exploited without information loss.
In addition, the residual connection from [30] are added to
ease backpropagation, but they are also useful to improve
the automatic optimization of the computation graph when
executed: the presence of skip connections forces a particular
order of execution where the memory requirement is dom-
inated by the size of the input and of the output tensors of
each residual block (much smaller than the expanded tensors
that are treated between the bottlenecks).

According to [31] the biggest variant of MobileNets
achieves a high accuracy on the problem of object recogni-
tion while keeping a low latency. The architecture has been
tested in different variants to trade latency for accuracy. This
network was experimented to be quantized to obtain further
improvement in time andmemory consumption on low power
devices with negligible performance loss [32].
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FIGURE 2. The original MobileNets v2 architecture (width multiplier = 0.5, input size = 128).

A. MINIMIZATION
We will experiment different variants of that architecture to
find out how the performance is affected. The variants that we
will consider, as reported in Table 1, are the input resolution,
the width multiplier, namely the ratio of the number of feature
maps will be in each convolutional layer with respect to the
original network, and the number of layers that compose the
architecture.

TABLE 1. Different changes of the architecture experimented in this work.

Starting from the assumption that the gender recognition
from faces does not require a huge resolution in most of
the cases, the first variant we consider is the input size.
Since smaller tensors will save preciousmemory and improve
caching, also requiring less computation, we reduce the input
size until we find that further reduction harms the recogni-
tion accuracy. We will test various input resolutions (from
224 × 224 to 32 × 32) for each width multiplier to find
the optimal pair of values. The authors of MobileNet do not
use sizes smaller than 96 × 96 since a smaller size is less
convenient when the application concerns object recogni-
tion or detection, because the recognition becomes difficult
even for human eyes. Since our architecture is tailored on
gender recognition, this limit does not apply for us: we can
empirically evaluate that 32 × 32 pixels are enough for a
human to distinguish males from females. We show in our
experiments that this statement is more or less valid also for
neural networks; indeed, a good performance is also achieved
with faces of 64× 64 pixels.

As for the width multiplier, we will experiment the same
values as the original authors of MobileNets, namely 1.0,

0.75, 0.5 and 0.35. Reducing the number of feature maps will
strongly reduce the computational load, since the aggregation
of the different channels is the most costly operation in an
architecture based on separable convolutions [28]. Further-
more, the reduction of the number of feature maps will sig-
nificantly reduce the memory footprint of the network and the
number of parameters.

As a third way to optimize the network we will exploit
that, for gender recognition, it has been shown that a very
deep network may be overkill; the authors in [24] used a
VGG-inspired architecture and showed that very few layers
could achieve a very good result. As shown in that work,
the gender recognition CNNs do not take advantage using a
very deep hierarchy of features, maybe due to the simplicity
of the problem with respect to tasks such as face recognition,
age estimation, object detection, where deeper networks gen-
erally achieve better performance [22]. Following this intu-
ition, we will experiment how the reduction of the number of
layers affects the performance. The rationale is that, starting
with a network with minimal input size, width multiplier and
number of layers, we will obtain an optimized architecture
removing groups of adjacent layers that all have the same
number of feature maps (same number of output channels).
In Section IV-D we will remove one, two or three groups of
layers, showing that the impact on the performance is limited.
The resulting architectures are described in Table 2.

B. TRAINING
All the network architectures are trained from scratch. We
decided to adopt the most widely used parameters initial-
ization technique, namely the Xavier Uniform method [33],
which allows the neural networks to achieve quick conver-
gence and high accuracy in several computer vision tasks; we
did not use different initialization methods, since the aim of
this experimental analysis is to compare the performance of
different gender recognition methods trained with the same
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TABLE 2. Reduction of the depth in successive steps. The leftmost
column shows the number of feature maps (‘‘width’’) for each residual
block in the original network; m represents the width multiplier.
Successive reductions collapse adjacent blocks with the same ‘‘width’’,
starting from 17 of the original neural network architecture.

protocol. We set the batch size to 64 and perform 100 epochs
of 400,000 samples each.

We use data augmentation to improve the training effec-
tiveness: when loading an image, it is randomly modified in
one or more of the following ways:

1) Random crop, to model the effects of imprecise
unaligned face detection

2) Horizontal flip
3) Image resampling, to simulate low resolution
4) Brightness change
5) Addition of gaussian noise, to simulate noisy images
The learning rate is initially set to 0.005 and it is halved

every 20 epochs.We use the Adam optimizer with parameters
b1=0.9, b2=0.999, decay=5e-5. Also, in order to reduce the
overfitting we use a dropout rate; we experimented 9 values
between 0.1 and 0.9 with step 0.1 and noticed that setting it to
0.2 allows tomaximize the accuracy on the validation set. The
dropout is inserted between the last convolutional layer and
the last fully connected layer, as typically done in literature.

C. PREPROCESSING
In this work our focus is on the classification step; anyway,
it is still important for the sake of completeness to describe
the preprocessing steps, both in terms of face detection and
normalization/alignment, that affect the type of images fed
into our classifier and the latency of the overall system.

As for the detection step, we adopt the well-known Viola
Jones face detector [7], which is quite reliable when applied to
frontal faces but it is still very fast when compared to modern
alternatives. We do not use any face alignment: indeed, even
if it can converge faster in the training phase, the performance
improvement is limited since it can only fix in-plane rotation.
Since the common alignment algorithms have a significant

effect on latency, we choose to completely drop the alignment
and to only rely on the discriminant power of the neural
network to deal with all the variations

The detected face is cropped and then resampled with
bilinear interpolation to match the input size of the network.
Nearest-Neighbour resampling would produce significant
artifacts on the imageswith lower resolution, sowe decided to
avoid it. Bicubic resampling would produce visually similar
results in the spatial and frequency domain, so we decided to
go with bilinear, that is simpler.

IV. EXPERIMENTS
We perform a comprehensive experimental analysis on
several public datasets; we describe them in Section IV-A,
while in Section IV-B we give details about our experimen-
tal procedure, to make it reproducible. Then we report the
results of all our experiments in the following Subsections.
In Subsection IV-C we describe, at various input resolutions,
the effect of decreasing the number of feature maps; in
Subsection IV-D we evaluate how the reduction of the num-
ber of layers affects the performance and we show how the
accuracy is traded with speed in the proposed variants of
the basic architecture. In Subsection IV-E we compare our
proposed solution with other architectures on the considered
datasets. Finally, in Subsection IV-F we analyze the results
in real environments and show how our approach is able to
succeed in the target applications while different solutions
fail.

A. DATASETS
In this section we are going to introduce the datasets used in
our experiments.

1) VGGFACE
The VGGFace dataset [20] was built to train Deep Neural
Networks on the problem of face recognition, where no
existing public dataset were large enough to effectively train
DNNs. The dataset is gathered in an inexpensive way, using
services such as Google Search to obtain a huge quantity of
weakly annotated images. Such images were then filtered and
the annotations fixed and verified manually through a fast
inexact process to achieve a certain dataset purity, less than
100% but vastly sufficient to be used for training purposes.

The second version of the VGGFace [34], namely
VGGFace2, was gathered in a similar way but contains a
larger quantity of subjects (9,131), images (3.31millions) and
variations in pose, age, illumination, ethnicity and context.
This dataset was originally gathered for face recognition, but
it is also annotated with gender, so it is suitable for our aim.
The dataset is already partitioned in training and test set.
From the training set we extracted 2 millions of images for
training and we kept 200.000more images for validation. The
partition was performed on a subject-independent basis, i.e.
no subject identities in the training set are in the validation set.
The validation set is perfectly balanced (100.000 males and
100.000 females) while the training set is slightly unbalanced
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(57% males, 43% females). The test set was used as it is for
testing purposes.

2) LFW DATASET
The LFW dataset [35] is the most popular benchmark for
gender recognition, even though it was originally created for
unconstrained face recognition. It contains 13,233 images
of 5749 unique subjects, with a significant imbalance
between males (77%) and females (23%). Since LFW is a
standard for gender recognition, we have used it as reference
for our experimental analysis; for a fair performance compar-
ison, we used the same test set proposed in [18], [24] and [26].

3) MIVIA-GENDER DATASET
The MIVIA-Gender dataset [10] has been acquired in real
scenarios and it is particularly suited for evaluating the perfor-
mance in unconstrained environments. In fact, it contains face
images captured in extreme lighting conditions, with motion
blur, different poses and expressions, low resolution and low
quality. The dataset is composed by almost 6,000 face images
and it is partitioned in three subsets, namely UNISA-1, that
is acquired in more controlled situations, UNISA-2 and SM,
that are very challenging and have been acquired in different
scenarios. We used this dataset for testing the capabilities of
the CNNs to generalize in real environments.

4) IMDB-WIKI DATASET
The IMDB-WIKI dataset [36] consists of images of celebri-
ties collected from the famous IMDB website and from
Wikipedia. The total number of images of the two partitions,
namely IMDB andWIKI, is 523, 051. The faces are automat-
ically annotated with gender and age labels, but the authors
themselves declare that they can not vouch for the accuracy
of the annotations. In fact, they assume that all the images
with a single face belong to the celebrity and automatically
annotate them with the gender declared in the profile; this
assumption results in several errors in the IMDB partition.
Consequently, it is recommended to use the WIKI partition,
that is more accurate, for testing purposes; in spite of this,
we used both the partitions for our experimental analysis,
in order to increase the size of the test set.

5) ADIENCE DATASET
The Adience dataset [19] consists of 26,580 images
of 2,284 different subjects. It is commonly used for gender
recognition and age group classification. It has an extreme
variety in terms of age, including a large quantity of children
and includes a lot of images with very low quality and res-
olution. Therefore, it is a good dataset for testing the gender
recognition capabilities in very challenging conditions.

B. EXPERIMENTAL PROTOCOL
All the architectures were trained with Tensorflow and Keras
on a Titan Xp GPU. The latency is measured on a CPU-only
setup, without any GPU acceleration and on batches of
size 1. The reported latency is computed as an average

of 100 executions, where the neural network is loaded once
and 100 different batches of 1 image each are fed into it
consecutively. The measured time does not include the time
for loading/acquiring the image nor the time for finding the
face into the image (i.e. detection).

Specifically, we used an embedded platform for testing,
namely an ARM Cortex A53 (ARMv8) clocked at 1.2GHz,
on board of a Raspberry Pi 3 Model B, with 1GB ram. The
setup is meant to simulate real use conditions in absence
of dedicated hardware, that is still a common case nowa-
days. Many mid-high end embedded devices such as smart
cameras use ARMv7 or ARMv8 chips, where Cortex-A7
and Cortex-A53 are common choices and achieve similar
performance.

In the first evaluation on the LFW dataset we include two
comparable results from the state of the art: the first (here-
inafter SoA Fast) is the network ensemble presented in [24],
specifically designed to be lightweight and fast; the second is
at the best of our knowledge the most accurate architecture
on the target dataset available in the literature [26] (here-
inafter SoA Best). The experiments in these two papers are
performed on the same set of data, the LFW test set, with the
same experimental protocol: all the evaluation is performed
in a cross-dataset fashion, without fine tuning on the target
dataset. Such experimental protocol allows to obtain a more
reliable, pessimistic, estimate of the network generalization
capabilities when the system is deployed in real scenarios,
that is one of our purposes. Furthermore, we also consid-
ered for comparison purposes other networks widely used
in other image classification tasks: Xception, Shufflenet and
Squeezenet.

According to the same rationale, we perform a more exten-
sive evaluation on all the considered datasets by using the
same cross-dataset evaluation on all the considered datasets,
namely the VGGFace2 test set, LFW, MIVIA-Gender,
IMDB-WIKI and Adience.

C. INPUT SIZE AND NUMBER OF FEATURE MAPS
In the first experiment we evaluate the performance of the
proposed method on the LFW dataset by varying both the
input size and the width multiplier, namely the fraction of
the original feature maps. The results are shown in Figure 3.
For this evaluation, we will adopt the notation x_y, where x
is the input size and y is the width multiplier. The original
MobileNet v2 network architecture is marked with the label
224_1.0; this is the largest, most complex model that we
experiment and compare with the optimized versions. The
most noteworthy consideration is the fact that the original
version does not obtain the best performance. Indeed, the best
accuracy of 98.73% is achieved with the network 160_0.75.
This difference may be interpreted as an effect of overfitting
or by considering that the average size of the face images
available in the VGGFace2 is significantly smaller than
224 × 224. In any case, the performance is quite stable with
respect to the input size and a bit more sensitive according
to the width multiplier, with a reduction of the performance
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FIGURE 3. Classification accuracy vs.input size (224, 160, . . . ) and width
multiplier (1.0, 0.75, . . . ) on the LFW dataset. According to the notation we
used in the paper, the first bar (starting from the left) corresponds to
224_1.0, the second one to 224_0.75 etc. On the chart we also display
two main results of the state of the art for comparison, namely SoA
Fast [24] and SoA Best [26]. More details are reported in Section IV-C.

when this parameter is set to 32. However, even in this case
the performance are never before 96.5%, while being more
stable in the other cases in the range 97.7%− 98.6%.
We also notice that somehow a larger input size can com-

pensate for a lower width multiplier and viceversa: the archi-
tectures 128_1.0, 160_0.75 and 224_0.5 achieve almost the
same accuracy. It means that the variability of the results
among different versions is mainly due to the quantity of
parameters and so to the general representative power of
the network rather than to one specific variation of the
architecture.

The performance is significantly reduced when the input
size drops below 64 × 64. This may be due to the fact that,
even if 32×32 is typically enough for a human to distinguish
gender, the proposed network architecture applies a double
strided convolution in the first hidden layers, and much infor-
mation are discarded from the 32 × 32 image starting from
the second layer.

D. NETWORK DEPTH
In this second experiment we verify how and whether the
reduction of the number of layers affects the performance.
We choose two configurations for the input size and the width
multiplier and use those parameter to train optimized archi-
tectures. We use 96_0.75 and 64_0.5 that are two mid-low
sized configurations that still yield a good accuracy, and
160_0.75 that is a bigger configuration that achieves our best
result on this dataset, as shown in the previous Subsection.

In Figure 4 we compare the full-size network (17 residual
blocks) with some reduced versions (8, 6 and 4 blocks).
Many aspects emerge from these results. We can see that even
if the depth of the network is severely reduced along with
the latency, the classification accuracy is pretty consistent.
In particular, we clearly see that it is much more convenient
to reduce the depth of 96_0.75 to 8 or even to 6 instead
of moving to the 64_0.5 configuration. With respect to the
160_0.75 architecture, it is clear that a great performance

FIGURE 4. Scatter plot of latency versus accuracy on the LFW dataset. For
our proposed architectures (circles), each line represents a different
combination between input size and width multiplier and every point
indicates a different number of blocks. The other points (crosses)
represent variants of different architectures we compare with.

drop occurs reducing the depth. A cause is probably the
overfitting: too many parameters have to be learned, but
the structure of the network is too shallow to construct an
adequate feature hierarchy, so the performance is notice-
ably affected with respect to equivalent architectures with
less parameters (i.e. 96_0.75 and 64_0.5). The adoption of
dropout, as described in Section III-B, is not sufficient to
avoid that. Another cause may be the fact that, having a
larger input resolution, the last convolutional layer produces
larger feature maps, that are less suited for gender classifica-
tion with respect to the smaller ones, where the information
is condensed. Finally, we observe that difference between
shallow and deep network is less pronouced with smaller
resolutions (i.e. 64_0.5).With such a small resolution, the full
size network would have very small feature maps as output of
the last convolutional layer (up to 1×1 if the input is 32×32),
while shallower networks alleviate this problem, providing
the fully connected layer with enough spatial granularity.

E. COMPARISON WITH OTHER ARCHITECTURES
In this section we compare our proposed solutions with
other architectures on all the considered datasets. Hereinafter,
we will use the notation x_y_z, where x and y are still the
input size and the width multiplier, while z is the number of
blocks.

In addition to SoA Fast [24] and SoA Best [26], whose
results are available only for the LFW dataset, we include
three more architectures that have been proven effective and
efficient for the generic task of object recognition training
them for gender recognition. In particular we experiment
the architecture named Xception [4] that improves over the
popular Inception architecture using depthwise convolution,
like in our proposed architecture. Then, we experiment the
Squeezenet architecture [5], that is thought for embedded sys-
tems, even though it does not directly optimize the processing
speed with respect to the classification accuracy. Finally we
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TABLE 3. Evaluation of different architectures on different datasets. The table reports the processing time on the target embedded platform as well as
the accuracy on each dataset.

experiment ShufflenetV2 [6], that is a very efficient archi-
tecture optimized with special reference to the hardware that
we target to obtain the best results with the minimum pos-
sible processing time. For each of the considered networks
we considered different input sizes that make sense to the
specific architecture and are comparable to our proposed
network. Since Shufflenet comes in two different versions,
with full featuremaps (ShufflenetV2-1) and half featuremaps
(ShufflenetV2-.5), we experiment both the variants.

Looking at Figure 4 we can note that the accuracy achieved
by the smallest proposed network, namely 64_0.5_4, is still
higher than the one reached by SoA Fast (97.69% vs 97.31%),
even achieving lower latency (38 ms vs 122 ms). Compared
to SoA Best [26], the proposed architecture yields an arguably
similar accuracy (only 0.57% lower) but it is significantly
faster, since all our proposed architectures require between
40 ms and 340 ms while SoA Best is more than 6 times
slower). It is also worth pointing out the differences in the
training procedure with respect to the one applied in SoA
Best [26], in order to explain the performance gap on the
LFW dataset. In our case no pretraining is performed, while
the authors of [26] prove that a face recognition pretrain-
ing significantly improves classification of accuracy of the
final model. Then, we use VGGFace2 as training dataset,
while [26] used the IMDB-WIKI cleaned. Our training
dataset is bigger (2 million images versus 250.000) and and
this is an advantage, but the IMDB-Wiki dataset contains 50%
of the identities contained in the LFW test set. Finally, we use
a different type of data augmentation and a different optimisa-
tion algorithm, that we think is more suitable for our architec-
ture as explained in Section III-B. The difference is confirmed
by the fact that when we train the architectures from [26]
on the VGGFace2 dataset, we obtain 98.75% performance,

even with face recognition pretraining, that is lower than the
one that the original authors obtain (99.30%). We think that
the 0.5% difference is due to the identity overlap: in the
hardest cases, for people whose face does not express their
gender in a clear way, estimating gender is easier when the
classifier has already seen samples for the same person.

As for the other architectures, from the results reported
in Table 3, we can note that Xception obtains the best
performance, but it is significantly slower than the others;
it requires too much processing time (1363 ms), so it is
not suited for our purposes. The second best is Shufflenet,
but the accuracy significantly decreases when we reduce its
input size. With the same input size, our proposed version
64_0.5_8, for example, is 50% faster with comparable or
better accuracy (between 0.05% and 1.50% of improvement
on the considered datasets). Larger versions of the architec-
ture take much more time to process with respect to our
proposed equivalent. The performance of Squeezenet is lower
than the other networks when the full input size is used, but
reducing this parameter the architecture retains most of its
accuracy greatly improving the processing speed. However,
fixed the processing time, our network achieves a compa-
rable (64_0.5_4 vs squeezenet-64) or higher (64_0.5_6 or
64_0.5_8 vs squeezenet-112) accuracy than Squeezenet.

The experimental results demonstrate that crafting a spe-
cially tailored network is worthwhile to obtain the best effi-
ciency in a specific problem such as gender recognition.
In fact, our proposed architecture was explicitly tailored for
gender recognition in terms of input size, number of feature
maps and number of layers, while the other architectures are
designed with reference to object classification. Such task
based optimization allows to find the best trade-off between
accuracy and processing time and to achieve our goals.
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Another trend that we can note analyzing the results
reported in Table 3, is that the relative accuracy is consistent
among different datasets, i.e. the architectures that perform
better on the reference LFW benchmark, still perform bet-
ter than others on all the considered datasets. As expected,
we can observe a fluctuation of the performance on the
different datasets, according to their intrinsic challenges:
the results on LFW, VGG-Face DS 2 and WIKI are typ-
ically higher, while UNISA-2+SM is lower and Adience
is the lowest together with IMDB. In fact, UNISA-2 and
SM are very challenging partitions of the MIVIA-Gender
dataset, acquired from surveillance cameras with extreme
lighting conditions, face poses and low quality and resolution.
Adience ismainly used for age estimation and contains a huge
number of newborns, infants and toddler, where even human
performance is near-random trying to guess gender from the
face. IMDB dataset notoriously includes very noisy annota-
tion of identity, due to the presence of images with multiple
people in them, so it is not commonly used as a benchmark
for evaluation, but more often for training. In all the cases,
our proposed architecture is always able to achieve very high
accuracy, even requiring significantly less processing time.

F. PRACTICAL CONSIDERATIONS
To confirm that our proposed models can be effectively used
in real environments we can do some additional measures to
estimate the time constraints more precisely. Cascade detec-
tion algorithms such as the one from Viola and Jones that we
adopt, have different running times depending on how much
face-like configurations are seen in the frame. We measure
that on the target platform, the detection algorithm will take
less than 100ms to run in typical worst case conditions (where
many faces are present). We consider a reasonable worst
case of 3 faces per frame, and we consider acceptable the
whole system to run at 3 fps. This processing speed is to
be considered perfectly acceptable for applications such as
digital signage, automatized social interaction and statistics.

With those constraints a time of 70ms or lower is accept-
able. We can use our optimized models for the target appli-
cation, for example 64_0.5_8, since an accuracy of about
98% can be considered enough in the wild for the target
applications. The accuracy can also be slightly improved
through ensembling classification on successive frames.
Squeezenet also makes a suitable architecture for such an
application, but only if we use a reduced input size. SoA
Best would not be able to run in real time on the considered
platform, having a time of 2 seconds per face that would
be unacceptable for those applications requiring a strict real
time; the same considerations can be done for Xception and
Shufflenet. Furthermore SoA Best and Xception, which use
ResNet-50, have to rely on 1GB additional swap space on
flash memory, since they do not fit in the available RAM.

To finally assess that the 98% accuracy is reasonable for
our model, in Figure 5 we show some of the samples for
which our system gets an error. They are mainly due to
non-evident gender features on the face, or to the variability

FIGURE 5. Samples of misclassifications on the LFW test set. Aside of
faces with poor gender features, most of the few errors concern children,
elders and Asians. Faces in the first row were miclassified as males, while
the ones in the second row were mistaken for females.

in gender and ethnicity: since the training dataset is not bal-
anced with respect to them, we expect that the accuracy drop
classifying children, elders and Asians, since most people in
the training set are caucasian adults. This shows that the net-
work, even in its simplified more efficient form, successfully
learned how to classify gender from faces.

V. CONCLUSION
Even if in the future we expect the presence on the market of
high end embedded platforms equipped with neural network
accelerator chips, in the current market most of the devices,
such as smart cameras or commercial robotic platforms for
social and smart applications, only rely on low power general
purpose CPUs. In this work we have shown how a very
accurate gender recognition system (up to 98.73% in thewild)
can run in real time on an embedded device, without the use
of dedicated hardware such as a GPU or other type of parallel
computation accelerators. We leveraged many features of the
modern deep learning state of the art that include separable
convolution and residual blocks to train a convolutional deep
neural network that would reliably recognize gender from
images. We started from the MobileNet architecture that
is already known and designed to be a fast and efficient
CNN model and we experimented different changes of the
architecture to find a trade off between processing time and
recognition accuracy. The changes regarded the input size,
the number of feature maps and the number of layers. The
rationale behind this choice is that very low resolution images
are still typically sufficient for a human to determine gender.
We found out that even with few feature maps and a reduced
layer hierarchy, there is no significant performance drop (up
to 97.70%).

Future work will include specifically addressing the
problem of accuracy drop when classifying faces of elders,
children and Asians. Furthermore we plan to consider prob-
lems generated by detection errors: these mistakes are just
mentioned in this work, butmay represent a significant source
of error in a real system. We also plan to extend our analysis
to other soft biometrics, such as age, expression, emotion,
ethnicity or facial attributes [37]. Finally, we will investigate
other techniques to further reduce the processing time, such as
pruning, weight quantization and single stage face detection
and gender recognition.
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