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ABSTRACT This paper reports a general model that describes the supply and demand of electricity in
a national market based on the system dynamics (SD) approach. From the resulting SD model, it derives
piecewise smooth (non-smooth) differential equations from the nonlinear functions and feedback cycles of
the corresponding stock-flow structure. Subsequently, the stability of the equilibrium points and non-smooth
dynamics of the SD model are investigated using the dynamical systems theory. Filippov systems are found
in the proposed SD model and non-smooth vector fields associated with generators investment decisions
are accumulated. Under this combining methodology, the non-smooth dynamics of energy markets that
are governed by the supply and demand laws are uncovered mathematically and deeply described. In fact,
we extend our investigation results to any energy market model attached to various investment decisions,
confirming the generalizability of our research.

INDEX TERMS Complexity, dynamic systems, energy markets, energy policy, Fillipov systems, modeling,
non-smooth dynamic, power markets, simulations, system dynamics.

I. INTRODUCTION
The modeling and simulation of electricity markets is a topic
of great interest to the scientific community and to society
in general. Since the 1990s, the liberalization and prolifera-
tion of energy markets has increased the complexity of their
dynamics. Gary and Larsen in [1] shows that the complex
dynamics of modern electricity markets cannot be captured
by traditional econometric models. For this reason, many
post-1990 studies have focused on deregularization (see for
example [2]–[4]), which analyzes the impact of different
policies associated with investment decisions in electricity
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markets. However, piecewise smooth methodologies (i.e.,
dynamical systems methodologies designed for analyzing
discontinuous or non-smooth systems [5]) were not yet con-
sidered as solutions to these complex systems, even though it
has been demonstrated that these methodologies are the most
suitable approach for a deep system understanding [5].

Electricity markets have been broadly investigated world-
wide using a variety of modeling techniques. The strate-
gies and methodologies for modeling electricity markets
are comprehensively described in several reviews [6]–[9].
Power-market dynamics have been mainly described by
econometric, probabilistic and agent-based models, and by
techniques such as neural networks, genetic algorithms,
stochastic optimization methods, and control theory [9]–[12].
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The literature shows three well-developed trends in
electricity-market modeling: optimization, simulation, and
forecasting. The second trend, which focuses on the gen-
eral behavior of the system, has gradually gained accep-
tance by energy specialists as it provides a holistic overview.
The complex phenomena of modern energy markets are
well captured by systems-thinking tools; accordingly, system
dynamics (SD) studies have become ubiquitous in the energy
field [9], [13], [14].

The SD approach successfully captures the behavior of the
feedbacks from a series of causal relationships that define a
given fact based on its main decision-making processes [15].
Classical policy and scenario analyses have proven useful for
explaining the different feedback loops in electricity markets
[2], [16]. The SD approach combines mathematical modeling
with numerical simulation methods. A SDmodel is generally
represented by a set of differential equations that allows an
analytic study or a dynamic systems (DS) analysis [17].

On the other hand, piecewise smooth (i.e., discrete- or
continuous-time dynamical system whose phase space is
partitioned in different regions, each associated to a different
functional form of the system vector field [5]) and hybrid
dynamical systems (i.e., systems involving both continuous
and discrete behaviors [18]) are increasingly used in engi-
neering and applied sciences to model a wide variety of
physical systems and technological devices. Examples are
mechanical systems with friction and impacts [19], walk-
ing robots [20], genetic regulatory networks [21], power
electronic converters [22]–[24], hybrid control systems [25],
systems with backlash [26], and saturation phenomena.
Piecewise smooth dynamics have also appeared in economics
and social science, mainly in sustainability development [27],
bio-economics [28], and electricity markets [29]–[31]. More
generally, any system or device whose dynamics are affected
by discontinuous events occurring onmacroscopic timescales
can be described as a piecewise smooth dynamical system
(e.g., see [32], [33]).

The phase space of a piecewise smooth dynamical sys-
tem is typically divided into several regions associated with
different functional forms of its vector field. Such a system
can be classified by its degree of discontinuity across the
switching manifolds dividing the different regions. Namely,
the state trajectories can be discontinuous across manifolds
(as in impacting systems), or continuous across manifolds
but with discontinuous vector fields (as in so-called Filippov
systems). A system can also be piecewise smooth continuous
(PWSC), meaning that both its states and vector fields are
continuous across the phase space switching manifolds, but
with discontinuities of higher order.

PWSC, Filippov and impacting systems exhibit a wide
range of nonlinear complex phenomena, including bifurca-
tions and chaos [34], [35]. As the parameters are varied,
the phase portrait can lose its structural stability through
classical bifurcations such as Fold and Hopf bifurcations.
In addition, when an invariant set (equilibria, limit cycles,
or other) interacts with a switching manifold in the systems

phase space, very different bifurcation phenomena (mainly
discontinuity-induced or non-smooth bifurcations) are
observed. In this case, the system can exhibit significant
transitions from one attractor to another.

Most of the previous works have focused on analyzing
and classifying non-smooth bifurcations in piecewise smooth
systems. Discontinuity-induced bifurcations of limit cycles
in continuous-time piecewise smooth systems have received
special attention [5], [36]. Complex dynamics in these kinds
of systems are often attributed to grazing bifurcations of the
limit cycles [36] (grazing is said to occur when a limit cycle
tangentially impacts a switchingmanifold in the phase space).

Discontinuity-induced bifurcations of equilibria in piece-
wise smooth flows have also been studied [36]. The structural
stability of boundary equilibria (which lie on the switching
manifold in the phase space) has been investigated only
in specific, low-dimensional PWSC or Filippov systems
[37], [38]. Bernardo and Vasca in [39] show that several
bifurcation scenarios can occur in such systems, including
transitions from equilibria to limit cycles whose amplitude
scales linearly with the parameter variation.

In most of the theoretical studies, a manifold divides the
state space into two regions with different properties. This is
usually justified, as most of the more complicated problems
can be locally reduced to this situation. Systems involving
more than twomanifolds are scarcely reported in the literature
because the number of different regions increases exponen-
tially with manifold number, so the analysis becomes quite
cumbersome.

To analyze the many applications facing the multi-
manifold situation [40], [41], one must resort to numerical
simulations. The type of modeling technique and degree of
complexity required to capture the features of the real system
are widely discussed, as they depend on the needs of the
modeler, the phenomena to be represented, and the expected
results [42].

It is worth highlighting that the SD and DS approaches are
complementary tools that further our understanding of qual-
itative system behaviors. A combined SD and DS methodol-
ogy exploits the modern theory of nonlinear DS to describe
complex behaviors [12], [17], [29], [30], [35]. However,
distinguishing between the qualitative and quantitative prop-
erties of complex systems has eluded SD researchers for
several years. The term qualitative has different connotations
in the DS and SD fields [17]. Although the information
contained in time-series data is qualitative in nature, it cannot
be considered merely as qualitative. In SD, qualitative refers
to the various phenomena that a system can exhibit under
uncertainty; that is, the behavioral trends of its dynamic flow
over time when the system is after by disturbances. In a SD
model, one can study not only the qualitative properties of the
system, but also its quantitative results [43], [44].

In this work, the non-smooth properties of a general elec-
tricity market are mathematically uncovered and described.
As previously stated, other researchers have not fully
exploited the DS methodologies in SD models from an
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analytical point of view [12], [17], [29], [30]. As a result,
the non-smooth properties of energy markets have been
barely described and Filippov dynamics have never been
found. Against this background, the present paper mathe-
matically analyzes the set of differential equations in a SD
model of a general electricity market. The complex dynamics
exhibited by such economic models are determined and the
results are generalized to other power markets.

The remainder of the paper is organized as follows.
Section II is devoted to the modeling and explanation of
the system equations describing a general electricity mar-
ket. This section also discusses the stability of the system.
Section III presents the numerical results that motivate the
generalization. Section IV performs the piecewise analysis
and generalizes the proposed model of the electricity market.
Discussions andmain conclusions are presented in Section V.

II. NATIONAL ELECTRICITY MARKET MODEL
A. THE SD APPROACH
The SD modeling is a perspective and set of conceptual tools
that enable us to understand the structure and dynamics of
complex systems as well as to build formal computer sim-
ulations of complex systems and use them to design more
effective policies and organizations [15]. The SD modeling
process has been well documented and readers can find more
detail in the work by [15].

This section explains the main elements comprising the
general energymarket model. First, let us introduce the causal
loop diagram (Fig. 1), which incorporates two feedback loops
associated with the supply-and-demand sides. To capture the
economic nature of energy markets, the loop related to the
demand side is inelastic, while the loop associated with the
supply side can significantly affect the market dynamics.
In this sense, the supply loop is also known as a control
loop [14].

FIGURE 1. Global aspects of the electricity-market model. This causal
diagram represents the dynamic hypothesis based on the
supply-and-demand laws of power markets. The present paper
investigates the interaction between the supply side (loop B1) and the
demand side (loop B2) of the market. Retrieved from [14], [45].

The dynamic hypothesis of Fig. 1 was retrieved from the
work of [14] and [45]. The authors argued that the causal
loop diagram explains the fundamental elements of an elec-
tricity market. Loops B1 and B2 represent the demand and
supply sides of the energy market, respectively. In loop B1,
the power demand inversely depends on the generation price

or market price, which in turn depends on the system reserve
margin. As a measure of the system security, the reserve
margin specifies the available capacity above the capacity
that meets the power demand, so is essentially determined
by the supply-demand relationship. As evident in Fig. 1,
the reserve margin negatively affects the generation price.
As the reserve margin increases, consumers will pay a lower
generation price. Subsequently, the generation price nega-
tively affects the power demand. When the generation price
rises, the power demand reduces and vice-versa. Finally,
if the power demand decreases, the reserve margin increases.
Accordingly, loop B1 becomes a negative (or balance) loop.

Loop B2 in Fig. 1 represents the supply side of the market,
which mainly depends on the available installed capacity.
In other words, loop B2 illustrates the adjustment of the
installed capacity through investment decisions, which in
turn depends on the dynamics of the investment returns.
If the generation price increases, the return on the investment
also increases. The return on investment can be used as a
profit measure involving the generation costs and the ben-
efits received. It also motivates the suppliers to build new
capacities; as the investment return increases, the capacity
under construction enlarges. After a certain period, a greater
installed capacity boosts the reserve margin. The dynamics of
the general power market manifests as an interaction between
the supply-and-demand loops, both linked by a bridge formed
by the reserve margin and generation price.

According to SD theory, the attributes that become the
level (stock) variables or state (information-storing) vari-
ables, the valve or flow variables (variables that represent
the rate of information change), the auxiliary variables (vari-
ables used for information transformation or intermediate
calculations), and the parameters can be derived from the
casual loop diagram. In this interpretation, the causal diagram
becomes a Forrester diagram or stock-flow diagram [15]. The
stock-flow diagram derived from Fig. 1 is shown in Fig. 2,
and further explanation of all variables can be found in
[12], [29], [30], [45].

The model in Fig. 2 can be written as a system of dif-
ferential equations with the following state variables (in
megawatts):
Installed Capacity.
Capacity under Construction.
Power Demand .
As shown in Fig. 2, the rate of change of Installed Capacity

depends on the number of finished plants and the decommis-
sion or retirement of old ones. The rate of finished plants is
the ratio of the Capacity under Construction to the average
time of building a new plant, here called the construction
time (in years). Similarly, the retirement rate of old plants is
the ratio of the Installed Capacity to the plant lifetime. The
first differential equation, which drives the Installed Capacity
dynamics, is accordingly written as (1), as shown at the
bottom of the next page.

Meanwhile, as illustrated in Fig. 2, the Capacity under
Construction is determined by the building rate of new plants,
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FIGURE 2. Stock-flow diagram of a general electricity-market model derived from Fig. 1 as in [30], [45]. The stock or state variables are
Power Demand, Capacity under Construction, and Installed Capacity. The red and blue connectors indicate the information fluxes of
the demand and supply sides, respectively. All variables are well explained in [12], [29], [30], [45].

or the capacity to build, and the rate of finishing the plants.
The rate of building new plants is represented by a step
function that depends on the investment decision, which
in turn depends on the return on investment. The return
on investment is an income measure including the benefits
received and costs incurred in generating a given amount of
megawatts. The second differential equation, which drives
the Capacity under Construction dynamics, is accordingly
written as (4), as shown at the bottom of the next page.

Additionally, the demand creation (the demand change
in Fig. 2) defines the rate of change of the state variable
Power Demand, which directly depends on attributes such as
population growth, industrial activity increase, and the annual
increase in demand. All of these attributes are embodied in
the demand growth rate, which is also influenced by the
effect of price on demand. In the model, the price effect
on demand is represented by the generation price over the
Power Demand: when the generation price increases the

power demand reduces, and vice-versa. The effect of price
on demand is also determined by the elasticity of demand
(an economic term that measures the demand variation in
response to a price change) and the average generation price
(a model variable that estimates the weighted average vari-
ation of the generation price with respect to the maximum
generation price). It is also worth mentioning that both the
generation price and return on investment are determined by
parameters commonly used in power markets, such as the
capacity charge, edge price, fixed and variable costs, and load
factor.

The third and last differential equation, which drives the
Power Demand dynamics, is accordingly given in (6) and (7),
as shown at the bottom of the next page.

Finally, the whole electricity market can be modeled by the
set of differential equations as in (8), as shown at the bottom
of the next page. The details of this mathematical model will
be expanded in the following subsection.

d(Installed Capacity)
dt

= Finished plants− Retirement of old plants (1)

where

Finished plants =
Capacity under Construction

Construction time
(2)

and,

Retirement of old plants =
Installed Capacity

Lifetime
(3)
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B. MATHEMATICAL MODEL DESCRIPTION
First, the capacity to build, which determines the Capacity
under Construction in (8), is defined by a piece wise-smooth
function representing the magnitude of the investments (in
MW) associated with the rate of building new plants (9), as
shown at the bottom of the page. As shown below, the capac-
ity to build is a function of the Installed Capacity and Power
Demand, where b0, b1 and b2 are 0, 250 and 750 MW/yr,
respectively. Note that the investments in a new capacity
represent the capacity installation rate per year, so the unit
is MW/yr.

The investment decision, which represents the decided
investment in new capacity in the model, depends directly on
the magnitude of the revenues or the market share of each
utility. As this variable cannot be negative and must meet the
return on investment, it is given by

Investment decision = max (0,Return on investment) (10)

In equation (10), the return on investment evaluates the
efficiency of the capacity investments. This performance
measure strongly depends on the generation price in (11), as
shown at the bottom of the next page.

Note that the return on investment is also influenced by
the fixed and variable costs associated with the generation
price paid to the generators. This equation can also include
incentives associated with various generation technologies,
enabling the evaluation of policies that reduce carbon emis-
sions, improve the supply capacity, or provide other benefits.

The generation price responds to changes in the reserve
margin but is limited by the edge price (A) and the capac-
ity charge (B) (see Fig. 3). The generation price is maxi-
mized (A + B) when the reserve margin is close to zero and

FIGURE 3. Generation price versus reserve margin in an electricity market.

minimized (capacity charge - B) when the reserve margin is
highest. This is mathematically expressed as:

We emphasize that as (12), as shown at the bottom of
the next page, represents the real dynamics of the genera-
tion price, the sum A + B determines the maximum gener-
ation price, while B represents the minimum price (capacity
charge). Both prices are designed to limit the generation price
under extreme conditions of the reserve margin. Moreover,
the values of the generation price and its parameters (A and B)
were derived from the real generation-price dynamics of the
Colombian power market during the last nine years [46].
In these dynamics, the recurring maximum and minimum
prices were approximately 350 and 35 Colombian pesos
(COP)/kWh, respectively.

d(Capacity under Construction)
dt

= Capacity to build − Finished plants (4)

where

Capacity to build = f (Investment decision) (5)
d(Power Demand)

dt
= Demand creation (6)

where

Demand creation = (Effect of price on demand × Growth rate of demand × Power Demand) (7)

d(Installed Capacity)
dt

= −
Installed Capacity

Lifetime
+
Capacity under Construction

Construction Time
d(Capacity under Construction)

dt
= −

Capacity under Construction
Construction Time

+ Capacity to build

d(Power Demand)
dt

= Effect of price on demand × Growth rate of demand × Power Demand

(8)

Capacity to build =


b0 if Investment decision ≤ 0
b1 if 0 < Investment decision ≤ 0.1
b2 if Investment decision > 0.1

(9)
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The reserve margin is synonymous with the reserve capac-
ity, which measures the available capacity above the capacity
that meets the normal peak demand levels. In energy produc-
tion, the reserve margin is the producer’s capacity to generate
more energy than the system typically requires. Furthermore,
to satisfy the regulatory bodies, the producers must usually
maintain a constant reserve margin (between 10 and 20%)
as capacity insurance against breakdowns in the electricity
system or sudden increases in energy demand. The reserve
margin is accordingly defined in (13), as shown at the bottom
of the page, for Installed Capacity 6= Power Demand .

As explained above, the reserve margin includes a reli-
ability threshold parameter. Below the reliability threshold,
the systemmust establish restrictions to avoid power outages.
In Colombia, the reliability threshold is 0.1 (10%). On the
other hand, when the power demand is zero, 100% of the
power in the system is available. In a real power market,
if Power Demand < Installed Capacity, the system operates
under the desired conditions; conversely, if Power Demand>
Installed Capacity, the system must restrict its connection
services to meet the limited power availability.

Finally, the effect of price on demand in (8) is calculated
by (14), as shown at the bottom of the page. The price-
and-demand dynamics are further explained in [47], where
the generation price is a nonlinear function of the reservemar-
gin. In general, Generation price

Average generation price
∼= 1, as shown in (15),

as shown at the bottom of the page.

C. QUALITATIVE ANALYSIS: THE DS APPROACH
The DS modeling process, mainly applied in physical sys-
tems, involves obtaining the ordinary differential equations
of a system and then using them to describe its behav-
ior. Many methodologies have been developed to study
dynamic systems, especially from a mathematical perspec-
tive [5], [48]. Here, from the SD model it is derived a set
of differential equations to transform the SD model into a
DS model.

This subsection analyzes the above mathematical model in
detail. For this purpose, we rewrite (8) in a compact form

TABLE 1. Description of variables and parameters in the power-market
dynamics model.

using the notation of Bunn, Larsen and Aracil [2], [17]. The
parameter values of (8) are listed in Table 1 and the state
variables were redefined as follows: Installed Capacity = x1,
Capacity under Construction = x2 and Power Demand = x3.
The compact set of dynamic equations is given by (16).

ẋ1 = −rx1 + qx2
ẋ2 = −qx2 + b
ẋ3 = αkx3.

(16)

In this subsection, we compute the local stability charac-
teristics of several equilibrium points arising in the system
dynamics model. This is a necessary first step for a global
qualitative analysis. We then find the critical parameters in
different power-market scenarios. This process is important
for setting the operating range and determining the robustness
of the system, besides being a fundamental part of the model
validation.

Return on investment =
Load factor (Generation price− Variable costs)− Fixed costs

Fixed costs
(11)

Generation price =
Edge price
eReserve margin

+ Capacity charge (12)

Reserve margin =
Installed Capacity− Power Demand

Power Demand
+ Reliability threshold (13)

Effect of price on demand =
(

Generation price
Average generation price

)Elasticity of demand
(14)

for Average generation price 6= 0. Therefore,

Effect of price on demand ∼= (1)Elasticity of demand (15)
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The equilibrium points in the dynamic equations (16) were
obtained as:

x∗ =
(
b
r
,
b
q
, 0
)

for k 6= 0, (17)

x∗ =
(
b
r
,
b
q
, x3

)
for k = 0. (18)

Note that k encompasses three possible scenarios in a real
electricity market. When k > 0 and k < 0, the energy
demand of the electricity market follows an usual expo-
nential growth and an exponential decrease, respectively;
the latter case explains the gradual increases of prosumers,
which reduces the energy demand. Meanwhile, when k = 0,
the electricity market experiences a lack of energy demand,
either because the consumers become prosumers with no
need to connect to the network, or remain connected but
barely source the electricity from the network. The latter
situation has already occurred in California (U.S.), and in
parts of Germany, Sweden, and Australia [49], [50]. This case
is obviously non-trivial and is worthy of future research.

Furthermore, as b is a piecewise smooth function dividing
the state space into three regions, (9) yields up to three
equilibrium points, which can be real or virtual.

Although we are mainly interested in scenarios that
approximate real-life situations, we analyze some trivial sit-
uations for completeness. From a mathematical viewpoint,
wemust analyze all possible scenarios afforded by the system
of equations. As mentioned above, this analysis reveals the
operating range and robustness of the model, and is a fun-
damental part of the model validation. Further information
on the validation methodology and robustness is provided
elsewhere [15], [51], [52].

Now, let us compute the stability of the equilibrium points.
After some straightforward algebra, the Jacobian and its
eigenvalues are determined as follows:

J =

−r q 0
0 −q 0
0 0 k

⇒ λ1 = αk
λ2 = −q
λ3 = −r

It is worth to note that, the stability condition is driven by k
(the growth rate of demand). Therefore, we varied k within a
small (but meaningful in the real world) neighborhood of the
origin, and observed the scenarios arising in the system. The
first results are presented in Fig. 4.
When the growth rate of demand is positive

(Fig. 4(a) - (f)), all the equilibriums are unstable and the
state variables exhibit a transient oscillatory behavior that
strengthens as k approaches zero. Conversely, when k is
negative (Fig. 4(g) - (i)) the equilibriums are stable and their
state variables converge to the fixed point (0, 0, 0), previously
obtained as (17).

The local stability of the equilibrium points depends on the
parameter k . In the three cases presented above, the eigen-
value λ1 associated with the power demand is unstable for
positive values of k and stable for negative k . In the case
of negative k , the behavior reaches stable equilibrium at the

origin. Note that when k is very close to zero, the num-
ber of oscillations increases. Oscillatory behaviors in the
power-market system implies that the investment decisions
are rapidly changing. In practical terms, k > 0 indicates that
consumers extract electricity from the network and become
part of the electricity system load. Moreover, when k > 0 and
x3 > x1 (demand exceeds supply) the system faces a rationing
scenario. To avoid blackouts, the decisions in this case must
rapidly reduce the demand. As government and policymakers
cannot wait for this scenario, they usually impose a reliability
threshold (ω) in the electricity markets as an alert indicator,
enabling control actions that maintain the reservemargin (rm)
at or aboveωwell in advance. To accomplish this complicated
task, government and policy makers must discourage the
demand growth through savings policies, planned rationing,
higher electricity tariffs, or other deterrents. In other words,ω
prevents the rm from reaching zero by immediately alerting
the authorities to enact demand reduction policies. Similarly,
our proposed model limits the growth of x3 by imposing a
thresholdω, ensuring that demand never exceeds supply. Also
note that when rm < ω, especially when rm < 0, the SD
model undergoes a structural change into a different dynamic
system. This case is beyond the scope of the present paper.

On the other hand, k < 0 indicates an increasingly off-
the-grid scenario initiated by technological and economic
changes that challenge and transform the electric utility
industry. Such disruptive challenges require a convergence of
two factors: falling costs of distributed power generation, and
the emergence of other distributed energy resources. The sec-
ond factor arises when consumers implement self-generation
technologies that satisfy their own demands. In response to
consumer self-sufficiency, the utility may cease investment
in new generation and disconnect some already installed
plants. The implications of varying the k parameter will be
thoroughly investigated in the next section.

In real cases, the growth rate of demand can switch from
positive to negative even on monthly timescales. This behav-
ior is shown in Fig. 5, which depicts the monthly energy
demand in Colombia. Note that the growth rate of demand
quickly changes from positive to negative as the energy
demand increases or decreases from month to month. These
behaviors can send wrong signals to electricity investors,
in turn affecting the SD model. Such phenomena in power
markets justify investigating the behaviors and stabilities of
the main system variables while varying k .

III. NUMERICAL RESULTS
In the following, we present and explain the numerical tools
and results of the proposed electricity-market model. The
analysis is based on the qualitative analysis addressed in
the last section. Before running the computer programs,
we identified the variables and parameters that influence the
SD model by studying the mathematical components of the
proposed model.

Three fundamental sensitivity measures are valuable in
SD models, namely, the numerical, behavioral and policy
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FIGURE 4. Electricity-market dynamics for different k (growth rate of demand). k = 0.03 in (a), (b), (c), k = 0.01 in (d), (e), (f), and k = −0.03 in
(g), (h), (i).

FIGURE 5. Monthly demand dynamics (blue bars) and Colombian growth rate of demand (orange lines).
The data were sourced from the XM web page [53].

sensitivities. A model is numerically sensitive when a change
in the model assumptions (parameters, manifolds or aggrega-
tion) changes the numerical results. For example, changing

the elasticity of the word-of-mouth feedback in a diffusion
model of new technologies altered the growth rate of the new
product. Sterman noted that ‘‘all models exhibit numerical
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sensitivity [15]’’. In a behaviorally sensitive model, modify-
ing the assumptions significantly alters the behavior patterns
of the model. For instance, the model behavior may trans-
form from weak oscillatory behaviors to smoother but radical
behaviors (either increasing or decreasing). Finally, a model
is policy sensitive when a change in the hypothesis reverses
the impacts or convenience of a proposed policy.

Fig. 6 shows the numerical sensitivity results of the model
state variables as the growth rate of demand varies. As previ-
ously stated, this parameter significantly affects the behavior
of our proposed model. During this analysis, some of the
three state variables started declining and oscillating in the

FIGURE 6. Numerical sensitivity result of varying k (growth rate of
demand) in the range(−0.03, 0.03).

beginning stages of the market development, while others
increased rapidly or moderately. Depending on the value of k ,
the power market evolved toward a tipping point or inevitably
collapsed. This information might assist policy developers to
manage their energy projects under changing demands.

The individual traces of the sensitivity analysis reveal
the full range of the model outcomes (the capacity under
construction in Fig. 7) when varying the growth rate of
demand. Note that Figs. 6 and 7 clarify only the confidence
limits of the runs; the local and detailed information cannot
be extracted from this type of sensitivity analysis. Broadly
speaking, the classical sensitivity analysis is simply numeric,
and does not reveal themodes of the system behavior. Instead,
it reveals the behavioral trends of the power market along
the whole simulation window in the hypothetical cases of
different k .
The numerical sensitivity analysis was computed by the

Monte Carlo method incorporated in the VensimPlus simu-
lation package. The simulation window for k ranged from
−0.03 to 0.03. Many iterations (more than 2000) were com-
puted to cover a wide spectrum of feasible and consistent
solutions. A vector distribution was assumed.

A. ASYNCHRONOUS SWITCHING MAPS
The asynchronous switching map (A-Switching Map) is a
tool for studying the complex behaviors of real physical
systems, such as power converters [39], pendulum sys-
tems [54], and spring-mass systems [55]. A-Switching Map
is usually applied to piecewise-smooth DS, and has not
previously been implemented to social systems and SD
theory. In summary, A-Switching Map is suitable for mod-
els represented by a set of ordinary differential equations
with discontinuous functions since discontinuities or sudden
changes in the system behavior can be easily detected and
illustrated. Considering that many systems modeled by the
SD approach involve decision-making, and (consequently)
discontinuities, they are expected to be well-handled by
A-Switching Map. Fig. 8 shows the A-Switching Map result
of Capacity under Construction versus k . This map accounts
for the discontinuity-associated phenomena from a different
perspective not previously observed in SD theory or social
systems. By applying the A-SwitchingMap tool, we can eval-
uate different alternatives and extract additional information
from the model. As indicated in Fig. 8, A-Switching Map
samples the state variables at their transitions and steady
states after detecting a change in the capacity to build (b)
signal. Each sampled value is stored and plotted against its
respective k value. Clearly, this methodology can plot either
the transient or steady-state values (see Fig. 9).

As a first step, let us investigate the transient state of the
possible behaviors when the growth rate of demand k varies.
Recall that in our proposed model (see (16)) the capacity
under construction (x2) was dramatically affected by the
discontinuous value of the investments (b). Therefore, how
the investment decisions affect the capacity under construc-
tion is particularly interesting. As shown in Fig. 9(a)-(c),
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FIGURE 7. Individual time-history evolutions of 2000 simulations in the sensitivity analysis
of Capacity under Construction (x2).

FIGURE 8. Application of the A-Switching Map technique to Capacity under Construction versus k .

numerous scattered points cluster around the interval k ≈
(−0.025, 0.01), meaning that in transient state, the capacity
to build (b) varies substantially when the growth rate of the
demand approaches zero. These projections of the system
state variables reveal not only the variable behaviors for spe-
cific k values, but also their expansion along the transient tra-
jectory in the solutions map. In the present case, the transient
trajectories of all three state variables (x1, x2 and x3) formed a
butterfly-wing pattern in the zero-k neighborhood. Note that
the mapping determines not merely the confidence limits of
the transient trajectories but also their complex dynamics. For
instance, the system displays strongly oscillating behavior
around k ≈ 0 and monotonic behavior above 0.015 and

below −0.03. It is worth mentioning that these behaviors
emerge within the k values of real electricity markets.

The A-Switching Maps of the steady-state results of the
growth-rate-of-demand analysis are presented in Fig. 9(d)-(f).
These plots reveal the tendency of the system behavior once
the transient state has elapsed. In other words, we can estab-
lish the equilibrium points of the system state variables over
a broad spectrum of k values. Note that in steady state,
the oscillations become weaker in the (−0.025, 0.01) range
of k , indicating settling to an equilibrium point. Moreover,
comparing the results of the transient and steady-state anal-
yses (Fig. 9) with those of the numerical sensitivity analysis
(Fig. 6), the maximum and minimum values coincide but the

128886 VOLUME 8, 2020



J. Valencia-Calvo et al.: Non-Smooth Dynamics in Energy Market Models

FIGURE 9. A-Switching Map applied to the growth-rate-of-demand analysis in (a), (b), (c) transient state and (d), (e), (f) steady state. k is varied
from −0.03 to 0.03.

exact k value at which deterministic behavior emerges cannot
be discerned in Fig. 6. In contrast, Fig. 9 indicates the points
of accumulation and multiple oscillations. It is worth noting
that this analysis is also available for model calibration.

IV. ENERGY MARKET GENERALIZATION
In many research fields, discontinuous dynamical systems
are modeled by continuity equations. However, continuum

models cannot adequately predict or characterize discon-
tinuous dynamics. To better understand and represent a
piecewise-smooth continuous system, one must resort to
non-smooth dynamics methodologies. As the complexity
of a piecewise-smooth continuous system grows exponen-
tially with the degree of discontinuity, a global piecewise-
smooth continuous system should be simplified by dividing
it into several continuous subsystems of different domains,
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each with different dynamic properties governed by individ-
ual rules that link to the adjacent continuous sub-system(s).
The transition laws between the borders or subsystems can
then be determined and studied in more detail.

By this approach, a generalized system representing the
supply-and-demand behavior of a liberalized electricity mar-
ket was constructed as follows:

ẋ1 = −rx1 + qx2
ẋ2 = −qx2 + b
ẋ3 = αkx3.

(19)

with r, q > 0, k ∈ R and

b(inv) =



b0 if inv ≤ d0
b1 if d0 < inv ≤ d1
b2 if d1 < inv ≤ d2
...

...
...

bn−1 if dn−2 < inv ≤ dn−1
bn if inv > dn−1.

(20)

To mimic typical real situations, we set b0 = d0 = 0, and

{bi}ni=1 ; bi > 0 such that b0 < b1 < · · · < bn
{di}

n−1
i=1 ; di > 0 such that d0 < d1 < · · · < dn−1

The other equations defined above remain unchanged.
Recall that our state variables x1, x2 and x3 refer to the

Installed Capacity, Capacity under Construction and Power
Demand, respectively. Recall also the system parameters: k
is the growth rate of demand, the parameters bn and dn are
associated with the investment strategy, and the reliability
threshold ω (see (13)).

Now consider the system governed by (9) and (16) in
Section II under the following parameter settings: n = 2,
b0 = d0 = 0, b1 = 250, b2 = 750, d1 = 0.1, k ∈
[−0.03, 0.03] and ω = 0.1.
Note that due to the discontinuities imposed by the capacity

to build (b), the reserve margin (rm) and the investments
(inv), our dynamical system can be described by a piecewise
smooth set of ordinary differential equations. Therefore, our
system can be classified as a Filippov-type system and can be
studied by Filippov theory [35].

To geometrically define the different regions in the state
space, we first identify the discontinuity types of the
variables:

1. Reserve margin (rm): The rm induces a discontinuity
of the first type (continuous vector field across the
switching manifold {x1 = x3}). This is a non-Filippov
situation.

2. Investments (inv)=max {0, roi} :The inv also induces
a first-type discontinuity.

3. Capacity to build (b): b induces a discontinuity of
the second type (discontinuous vector field across the
switching manifolds inv = 0 and inv = d1). This
system is a Filippov-type system that is able to display
sliding solutions.

In the following, we analyze the system around the switch-
ing manifolds that define the geometrical shapes of the man-
ifolds. In the first non-Fillipov case above, the manifold is
defined by (21) and displayed in Fig. 10.{

6 ≡
{
(x1, x2, x3) ∈ R3

: x1 − x3 = 0
}
. (21)

FIGURE 10. Switching manifold 6 in the state space.

The roi possibilities are then simply verified as:

roi > 0⇔
LF(pgen−VC)−FC

FC
>0

⇔ pgen > VC +
FC
LF

(since FC > 0). (22)

Considering the generation price (pgen) in (12), we have

B+
A
erm

> VC +
FC
LF
⇔

1
erm

>
VC + FC

LF − B

A
,

which is feasible when VC + FC
LF > B.

Thus, if VC + FC
LF ≤ B, the roi is always < 0 and b = 0

with inv = 0. Rewriting (19) as (23):
ẋ1 = −rx1 + qx2
ẋ2 = −qx2
ẋ3 = αkx3.

(23)

We can analyze the equilibrium points and the stability
conditions in each region (labeled S1 and S2 in Fig. 10):
• On S1 (x3 > x1), we have rm = ω and α > 0.
Thus, the equilibrium point is located in x∗ = (0, 0, 0)
and its stability depends on the Jacobian:

J =

 −r q 0
0 −q 0
0 0 αk


This equilibrium point is asymptotically stable if k < 0
or asymptotically unstable if k > 0, with α =

(
Pgen
P

)ε
>

0 when Pgen = B+ A
1+eω .

• On S2 we obtain (x3 < x1), rm = ω +
x1−x3
x3

and we

approximate α =
(
Pgen
P

)ε
≈ 1.
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FIGURE 11. Parameter-dependence on b, for the equilibrium points.

Let us consider the case VC + FC
LF > b. Here roi > 0 and

erm <
A

VC + FC
LF − B

. (24)

Note that when A
VC+ FC

LF −B
> 0, rm is given by

rm < log

(
A

VC + FC
LF − B

)
. (25)

• Subcase x1 ≤ x3: rm = ω. Here we have

ω < log

(
A

VC + FC
LF − B

)
. (26)

In this case b is a constant that depends on the param-
eters. The equilibrium point is then given by x∗ =(
b
r ,

b
q , 0

)
, which is always virtual unless b = 0. Recall

that b is given by (20) with n = 2 (see also Fig. 11).

The stability of the equilibrium point depends on the
following Jacobian:

J =

 −r q 0
0 −q 0
0 0 αk


The equilibrium point is asymptotically stable and unsta-
ble when k < 0 and k > 0, respectively. This is true
because α =

(
Pgen
P

)ε
> 0 when Pgen = B+ A

eω .

• Subcase x1 > x3: In this rm = ω + x1−x3
x3

case,

ω +
x1 − x3
x3

< log

(
A

VC + FC
LF − B

)
, (27)

x1
x3

< log

(
A

VC + FC
LF − B

)
+ 1− ω ≡

1
h1

⇔
x1
x3
<

1
h1
. (28)

Hence, (29) defines another switching manifold (see
Fig. 12).

61 ≡

{
(x1, x2, x3) ∈ R3

: x1 − h1x3 = 0
}
. (29)

Note that if roi = 0, then inv = 0 and b = 0.
On the other hand, if roi > 0, then inv = roi. From
(11) and (10), we have inv ≡ inv(x1, x3). Consequently,
inv < d1 and inv > d1, define two new sub-regions in S2.
Like the previous subcase ((29)), this subcase yields
a new switching manifold separating the sub-regions
(see (31) and Fig. 13).

x1
x3
> log

(
A

FCd1 + VC + FC
LF − B

− 1

)
+ 1− ω

≡
1
h2
⇔

x1
x3
<

1
h2

(30)

62 ≡

{
(x1, x2, x3) ∈ R3

: x1 − h2x3 = 0
}

(31)

FIGURE 12. Three regions by the switching manifolds 61 and 62.
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FIGURE 13. Switching manifolds 6, 61 and 62, and the equilibrium points (b0 = 0 < b1 < b2) in the state space.

FIGURE 14. General dynamics of the system behavior across the switching manifolds for k < 0.

We emphasize that each region contains a virtual equi-
librium point that can be asymptotically stable or unstable
depending on the stability conditions defined by k . Note also
that h1 < h2, as demonstrated in Appendix.
Moreover, the parameters associated with the slopes of

the switching manifolds are related to the return on invest-
ment (roi). Therefore, through the proposed generalization,
we confirmed that the feedback loop B2 (see Fig. 1) is the
control loop. Specifically, we verified that varying the costs
(FC and VC), load factor (LF) and capacity charge (B) alter
the slopes of the switching manifolds. If the system evolves
within a defined region under specific initial conditions, then
the system behavior can be predicted by understanding the
eventual equilibrium point of the system solution.

Fig. 14 is a three-dimensional representation of the system
behavior through the switching manifolds under a negative
growth rate of the demand k . As the system (black line)
evolves, it crosses the 62 and 61 manifolds, invariably
following their associated virtual equilibrium points. The
evolving system tends to its corresponding equilibrium point,
so after crossing a switching manifold, the trajectory changes
as the system finds another equilibrium point in the region
just entered. This behavior explains the oscillatory dynamics
of the system. At the end of the simulation, the system reaches
the unique feasible equilibrium point (the red point (0, 0, 0))
in the region beneath manifold 61. Under different initial
conditions, the oscillatory dynamics among the manifold can
be strengthened because the system is always attracted to
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FIGURE 15. General dynamics of the system behavior across the switching manifolds for k < 0. The initial conditions
are changed from those of Fig. 14.

the virtual equilibrium in each region, and the manifolds
are close one another (see Fig. 15). Note that the system
in Fig. 15 oscillates while seeking the equilibrium point in
each region it enters. In this case, none of the equilibriums
are reached because the simulation horizon is too short.
However, lengthening the simulation horizon is nonsensical

for practical purposes. A careful examination of Fig. 15
reveals that the system evolves across the switching mani-
folds in a multiple-crossing mode, which is associated with
oscillations in investment decisions. In the next section,
the reasons for this complex phenomena are revealed in a
Filippov analysis.
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FIGURE 16. General dynamics of the system behavior on the subspace
{

x ∈ R3 : x3 = h
}

.

Now consider the case k = 0 (in which users
become prosumers and the generators cease investing in new
capacity). In this case, the installed generation plants may
become obsolete. Setting ẋ3 = 0 in (19), we have x3 =
x3(0) = h, where h is a positive constant (h > 0, h ∈ R).
Under this condition, the system behavior evolves in the plane
x3 = h, as seen in Fig. 16.
According to Fig. 16 and the above statement, (19) can be

rewritten as a planar autonomous system of two differential
equations, in which the equilibrium points lie in the plane
x3 = h (see Fig. 16):{

ẋ1 = −rx1 + qx2
ẋ2 = −qx2 + b.

(32)

At this point, we highlight that qualitative analysis in
national electricity-market models aids the recognition of
parameters or functions that lead the system to certain thresh-
old points. Complementary information can be obtained by
performing a sensitivity analysis. Therefore, we can further
analyze the models, study several scenarios, and evaluate a
broad spectrum of policies.

A. FILIPPOV ANALYSIS
The Filippov method, originally developed for mechanical
systems with stick-slip motion, can predict instabilities in
piecewise-smooth systems with fast dynamics. Especially,
it predicts the parameter range that avoids the first bifurcation
of the fast dynamics, i.e., it estimates the stability margins of
the system and describes the trajectory evolution [56]–[58].
As discussed in the previous sections, electricity markets are
characterized by discontinuous functions leading to complex
behaviors. By studying the system behavior through the dif-
ferent switchingmanifolds, the Filippovmethod describes the

electricity-market dynamics in more detail than conventional
analysis [59]–[61]. To this end, we consider the following
manifolds:

6 ≡
{
x ∈ R3

: x1 = x3
}

61 ≡

{
x ∈ R3

: x1 = h1x3
}

...
...

6n ≡

{
x ∈ R3

: x1 = hnx3
}
.

Now, applying the Filippov method described in
Kuznetsov et al., [58] we define

σ (x) =
〈
∇H (x), f (1) (x)

〉 〈
∇H (x), f (2) (x)

〉
(33)

being

H (x1, x2, x3) = x1 − x3 (⇒ ∇H = (1, 0,−1))

and

f (1) =
(
−rx1 + qx2,−qx2 + b(1), kαx3

)
f (2) =

(
−rx1 + qx2,−qx2 + b(2), kα (x1, x3) x3

)
〈
∇H (x), f (1) (x)

〉
= −rx1 + qx2 − kαx3〈
∇H (x), f (2) (x)

〉
= −rx1 + qx2 − kα (x1, x3) x3 (34)

All along 6, we have α(x1, x3) = α = 1. Using
(33) and (34) we then obtain:

σ (x) > 0 (35)

and thus, we will have sliding dynamics according to [34].
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FIGURE 17. State space portrait showing the system dynamics undergoing crossing behaviors
like a sewing or mend. k > 0.

Let us similarly explore the other switching manifolds. For
general purposes we define 6i ≡

{
x ∈ R3

: x1 = hix3
}
.

Therefore, on manifold 6i, we have

Hi (x1, x2, x3) = x1 − hix3 ⇒ ∇Hi = (1, 0,−hi)

and

f (i) =
(
−rx1 + qx2,−qx2 + b(i), kα (x1, x3) x3

)
f (i+1) =

(
−rx1 + qx2,−qx2 + b(i+1), kα (x1, x3) x3

)
〈
∇Hi (x), f (i) (x)

〉
= −rx1 + qx2 − hikα (x1, x3) x3〈

∇Hi (x), f (i+1) (x)
〉

= −rx1 + qx2 − hikα (x1, x3) x3 (36)

Note that, if x1 = hix3 ⇔ x3 = 1
hi
x1. Hence, (36) can be

rewritten as (37).〈
∇Hi (x), f (i) (x)

〉
=−rx1 + qx2 − hikα

(
x1,

1
hi
x1

)
x3〈

∇Hi (x), f (i+1) (x)
〉
=−rx1+qx2−hikα

(
x1,

1
hi
x1

)
x3 (37)

Again we obtain σ (x) > 0, meaning that the system
crosses the switching manifolds (crossing phenomenon) like
stitches in clothing.

To illustrate this conclusion, Fig. 17 shows a classical
example of the sewing phenomenon. The Filippov analysis
comprehensively and rigorously shows the system behavior
around the switching manifolds.

V. CONCLUSIONS
This paper shows the nonlinear and piecewise-smooth
dynamics exhibited by electricity-market models. It also inte-
grated SD and DS approaches to better understand the onset
of complex dynamics in such systems. Nonlinear analysis
proved a handy tool for characterizing and describing the
different phenomena exhibited by this kind of system. The
asynchronous switching map has not been previously applied
to electricity markets. Overall, the results reveal how a sys-
tematic analysis implementing hybrid techniques can identify
and widely describe the threshold points in the system. This
premise raises new questions on how the parameters influ-
ence the tipping points of the system.

Through a mathematical analysis of our proposed model
and its generalization, we determined, classified, and
described the threshold points of the electricity-market
system in more detail than in previous studies [12], [17],
[29], [30], and for all types of piecewise-smooth invest-
ment decisions. Consequently, we can explain the stable or
unstable behaviors when the system is subjected to param-
eter variations. Through the systematic use of the proposed
methodology, we can reconcile the SD andDS approaches for
modeling, simulating and exploiting any SD-derived model.
To this end, we need only to formulate the simulation model
from a systems thinking or SD perspective. Combining our
formulation with analysis tools that are traditionally used
in DS and nonlinear dynamics theory (such as A-Switching
Map), we can then explore the root of the system behaviors
arising from the resulting differential equations.

The A-Switching Map tool facilitated the sensitivity anal-
ysis and revealed the modes of dynamic behavior for the
determined parameter values. In the literature, we found no
applications of A-Switching Map or similar methodologies

VOLUME 8, 2020 128893



J. Valencia-Calvo et al.: Non-Smooth Dynamics in Energy Market Models

to economic and/or social systems. We also found that vary-
ing the roi changed the slopes of the switching manifold,
implying that the roi and its associated parameters deter-
mine the threshold points of the system, thus influencing the
market dynamics. In other words, the number of oscillations
depends not on the initial conditions, but on how the solution
approaches the switching manifolds.

Using together numerical and analytical tools (both
traditionally and newly applied in this field) facilitated the
supply-and-demand modeling of electricity markets, and the
classification and modeling of non-smooth behaviors in the
markets. Nevertheless, a qualitative analysis of market sys-
tems needs particular care, because the investment decisions
are piecewise-smooth, and strong feedbacks emerge from
the system structure. These systems may exhibit smooth
behaviors, but also develop non-smoothness through the
discontinuities.

The qualitative analysis of electricity-market models
greatly benefited from the SD approach. It was concluded
that both methodologies are complementary and might sim-
ilarly benefit other applications. A mathematical study of
the system equations arising from SD-based mental models
is worthwhile, because the qualitative analysis of differen-
tial equations involves formalizing the individual processes
in the SD. Therefore, such mathematical study can reveal
scenarios and tipping points for decision-making in power
markets. However, when applying the proposed approach
two important issues should be considered: SD modelers
need a mathematical background and generalize their models
(only capture the main structure of the system) to avoid
mathematical complexity.

Nevertheless, although computational effort can increase
as system complexity increases, computational burden is not
a big issue since nowadays we have access not only to
high-performance computers, but also to high performance
cloud computing.

Finally, for future work our proposed methodology will
be applied to a case study to reveal and deeply describe the
non-smooth dynamics of real energy systems and compare
the results with other methodologies. Similar works, from
a numerical point of view, have already demonstrated that
the combination of SD/DS leads to discover counterintuitive
behaviors and better understanding of SD models [12], [29].

APPENDIX
This Appendix proves the accumulation of the switching
manifolds based on the definition of b.

b(inv) =



b0 if Dinv ≤ d0
b1 if d0 < Dinv ≤ d1
b2 if d1 < Dinv ≤ d2
...

...
...

bn−1 if dn−2 < Dinv ≤ dn−1
bn if Dinv > dn−1.

{bi}ni=1 ; bi > 0 with 0 = b0 < b1 < · · · < bn
{di}

n−1
i=1 ; di > 0 with 0 = d0 < d1 < · · · < dn−1

Note that

h1 < h2 ⇔
1
h1
>

1
h2

1− µ+ log
(

a
Cv−I − b

− 1
)

> 1− µ+ log
(

a
Cfvd1 + Cv−I − b

− 1
)

1
Cv−I − b

>
1

Cfvd1 + Cv−I − b

and that

Cfvd1 > 0.
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