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ABSTRACT Autonomous driving scenarios face the need for millisecond real-time response, which has led
to the study ofmobile networks with high speed and ultra-low latency. Software-defined networking (SDN) is
recognized as a key technology for next-generation networks because it contains advanced functions such as
centralized control, software-based traffic analysis, and forwarding rules for dynamic updates. In this paper,
an SDN with flexible architecture is considered and a transport component is proposed. The component
based on mesh topology is an example of joint route prediction and forwarding. First, different from existing
transport protocols, the component can adopt a software-defined stream access control strategy that includes
an extended forwarding mechanism (retransmission) to improve the short-term response performance.
Second, we evaluate the impact of route prediction on transport network performance by using offline
training and prediction. The key challenge here is that a suitable model needs to be trained from a limited
training sample dataset, which will dynamically update the forwarding rules based on current and historical
facts (network data). By introducing a parallel neural network classifier, an intelligent route arrangement
is implemented in this work. Experimental results over different traffic patterns verify the advantages of
the design. Not only does it enhance the flexibility of SDN, but it also significantly reduces the signaling
overhead of the transport network without reducing the network throughput.

INDEX TERMS SDN, traffic control, routing, machine learning, prediction.

I. INTRODUCTION
Since 2018 autonomous driving technology has developed
rapidly in China and the United States. Most of the lead-
ing companies adopt the intelligent way of single vehicle,
that is, the vehicle’s perception of the environment and
decision-making on driving are completed by on-board sen-
sors and calculation processing units. Single vehicle intelli-
gence is difficult to complete the perception and real-time
decision of complex road environment. The application and
breakthrough of 5G in the field of autonomous driving
and connected vehicles will break the limitation of the
vehicle intelligence. 5G Ultra-Reliable and Low Latency
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Communications (URLLC) application scenarios such as
autonomous driving, telemedicine, and industrial control
have brought higher requirements for transmission delay, and
this scenario is becoming one of the topics in the most pop-
ular frontier. At the same time, industry and academia have
discussed the benefits of introducing software-defined net-
working (SDN) and network function virtualization (NFV)
to 5G network architectures. SDN is a new type of network
architectures and an implementation of network virtualiza-
tion. The SDN processing function belongs to the 2-3 lay-
ers in the Open System Interconnection Reference Model
(OSI), namely the data link layer and the network layer. This
process involves switches and routers, and also lead to a
5G network architecture based on SDN/NFV. Therefore, this
paper will discuss carrying-like networks (called transport
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networks hereafter) and its intelligent routing in a new gener-
ation of mobile networks under the SDN concept. Subsequent
sections A and B will describe the context design.

A. SOFTWARE DEFINED NETWORK
Compared with the existing mobile network, the next-
generationmobile network that gradually introduces the SDN
architecture needs to solve a variety of challenges in order to
achieve flexible control of network traffic [1], [2]. The chal-
lenges faced can be summarized as the use of heterogeneous
network environments (wired and wireless), the complexity
of network management, increasing mobile traffic demand
and diversified service demand, etc. Generally, network activ-
ities related SDNmay be divided into several main categories,
such as network operations and maintenance, configuration
management, service orchestration, and policy management.
Instead of letting intermediate network nodes manage traffic,
SDN guides network traffic from the outside device in a soft-
ware way. Building intelligent SDN should be a major task
for next-generation mobile networks. This task facilitates the
integration of artificial intelligence (AI) and machine learn-
ing into one SDN platform to replace manually completed
network automation operations and significantly reduce the
labor costs of network management [3].

In this work we try a combination of machine learning
on mobile networks from the two aspects. First, we study a
transport network based on a flexible SDN network archi-
tecture, which boosts the need for low time delay on the
network side [4]. Secondly, we propose a routing orches-
tration method embedded in machine learning, which can
enhance the agility of traffic engineering [5]. Route predic-
tion (Here interchangeable with routing orchestration) is a
basic task of traffic engineering and should be considered
as a complex multivariate and multidimensional estimation
problem. Machine learning has the ability to use algorithms
to parse data, that is, to generate models through operations
on the data. The input to the algorithm may even be limited
historical data. Therefore, machine learning facilitates the
SDN central controller to track seemingly random trends,
and make effective decisions to complete intelligent config-
uration management and service orchestration in a network
programmable process, which is the subject of this work.

B. MOTIVATIONS FOR THE TRANSPORT COMPONENT
The goal of this design is intelligent routing related to packet
forwarding. By using the output from the predictors in the
SDN central controller, a series of actions on various nodes
within the transport component is periodically triggered. This
series of actions ensures that the delay in the transport net-
work is within a controllable range. Aiming for this goal,
we summarize what we want to achieve into a comprehensive
traffic control problem, which involves routing and flow rules
in the control plane (CP). For example, multiple entities of
SDN can successively collect various kinds of network data
and complete path judgment under different time granularity.
In addition, we need to consider flow rules in each node of

the component, wheremultipath should stimulate the splitting
of packets into the links of its next hop, to obtain a flow
control with low congestion at times of high traffic. Path
orchestration with small time granularity facilitates support
for ultra-low latency service scenarios but requires a large
overhead of controlled information and high computational
complexity for online analysis [6]. Here we propose a wire-
oriented, short-to-medium (such as 200 milliseconds) routing
decision that uses an offline machine learning algorithm to
learn the network state samples from a previous time window.
The result of route prediction in the CP of SDN is then used
as the sequence of path indexes on the next time window.
In addition, the number of retransmissions within each trigger
time slot defined by the software can ensure, as far as possi-
ble, a sub-millisecond transmission delay.

In summary, this paper makes the following contributions.
1)We propose the transport component with virtual control

under a flexible network architecture. That is, the SDN cen-
tral controller regularly arranges the forwarding paths within
each component, instead of real-time path decision for edge
equipment. The central controller uses a parallel deep neural
network classifier to predict the path sequence in the next time
window, to effectively achieve fast inference and reduce the
control information cost.

2) For single constrained path selection, the component uti-
lizes the enhanced stream access control strategy, including
retransmission and splitting. The experimental traffic control
can reduce transmission delay of the transport network.

3)We realize a complete simulation of computing, storage,
and networking. The results of a large number of offline data
analysis experiments show that the proposed schemes have a
better performance than the centralized Open Shortest Path
First (OSPF) based scheme.

The organization of the paper is as follows. Section II
reviews relevant literature. Section III presents the software-
defined network, the component, routing and forwarding
as well as stream access control and data preprocessing.
In Section IV, we introduce the multiple logistic regres-
sion (LR) classifier and the parallel deep neural network
classifier. Section V presents the design in detail. Section VI
presents simulation parameters, the network structure, perfor-
mance evaluation, and discussion. Section VII is the conclu-
sion of this paper.

II. RELATED LITERATURE
With the rise of autonomous driving technology, the demand
for URLLC or event-defined URLLC is receiving atten-
tion, for applications such as self-driving cars, high-speed
trains and drones. The speed of one mobile device can
reach 500 km/h in the autonomous driving scenario [7]. This
type of scenario places higher requirements on the end-to-
end delay of the mobile network, and the delays of the user
plane (UP) and the CP have become important performance
indicators for 5G&Beyond and 6Gwireless access networks.

Advanced network architectures that include wireless
access networks and transport networks can be divided into
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centralized, flexible, and distributed types. Different cloud
computing entities, such as cloud processing centers or
Cloudlets, will be located in different locations of such net-
work architectures. In these three architectures, the types of
nodes and links of the fronthaul (FH) and the backhaul (BH)
are very different. Usually, the part connecting the base sta-
tion to the wireless access network is called FH, and the part
connecting the access network to the core network is called
BH. For the next generation of SDN-based mobile networks,
converged FH and BH should significantly improve the per-
formance and cost-efficiency of wireless access networks [8].
In LTE-like mobile communication systems, a base station
of a small cell needs to be connected to a gateway through
BH, and its delay is an important cause of the typical delay
in LTE systems [9]. The literature in [10] suggests that the
UP and the CP delays of SDN based core networks need to
be less than 5 ms and 50 ms, respectively. For the SDN-based
network, different combinations of FH and BHwill vary end-
to-end delays. By comparison, the typical end-to-end delay
of existing cellular systems (LTE) is near 100 ms, and it is
clearly far away from the transmission delay requirements
of 5G URLLC application scenarios [11], [12]. Inspired by
the convergence of FH and BH, this paper attempts to design
a flexible network. The main improvement is to enhance
wired BH by using a mesh topology, thereby shortening FH
links and reducing the network side delay of the SDN-based
network.

Here, we summarize current transport networks and rout-
ing techniques. The literature in [13] provides a detailed
overview of network layer routing and network layer mul-
tipath solutions that promise increased throughput (through
the use of concurrent multipath) and improved reliability
and fault tolerance. The work in the literature studies two
important design problems, i.e., how the CP calculates and
chooses routing, and how the UP splits the data flow on
the calculated path. Wireless mesh networks and Ad hoc
networks are two kinds of multi-hop networks that adopt a
packet radio communication mode. They adopt OLSR (Opti-
mized Link State Routing Protocol) and AODV (Ad hoc
On-demand Distance Vector Routing) respectively [14], [15].
Earlier literature in [16], [17] and [18] all refer to link-
state based protocols. In these OLSR scenarios, each router
needs to know the entire topology. In the AODV scheme,
each router only needs to know the network status infor-
mation of its surrounding neighbors [19]. In addition, for a
combined system containing a wired network and a wire-
less mesh network, the author of literature in [20] discusses
OSPF and other routing protocols. The literature in [21]
studies the solution for small and medium-sized cellular
BH in 5G networks. This work indicates that the delay tar-
get for 5G requires advanced link scheduling and routing
design for mesh networks. For mmWave connections, the
study also considers routing algorithms for backup paths.
In view of differential services inWDMbroadband networks,
the work in [22] studies priority-based routing and access
control.

Next, we summarize the related network applications of
AI and machine learning into transport networks and rout-
ing. These applications may be considered as techniques for
introducing data analysis into the application layer. For the
mesh topology studied, the redundant link needs to optimize
the path decision, which provides an opportunity for the
introduction of advanced data analysis and automation into
the transport network. The literature in [23] outlines the appli-
cation of deep learning in network traffic control. Its prelimi-
nary results show that compared with traditional shortest path
algorithms, a routing scheme based on deep learning can save
the cost of control information and improve the performance
of network throughput. For a transport network based on a
mesh topology of 9 nodes, the author in [24] proposes an
intelligent traffic control. The experimental results show that
if a traditional routing protocol is adopted to calculate the
optimal path, it may lead to low network congestion perfor-
mance. This is because, in the presence of a high traffic load,
the traditional routing strategy repeats the optimal path with
low efficiency. The active routing mechanism in the literature
can be summarized as follows: deep learning can learn the
experience related to network congestion from data experi-
ence, thus reducing delays and improving packet loss rates.
For both the central router schemes and the distributed router
schemes, the authors of literature [25] propose a load balanc-
ing routing scheme assisted by machine learning, which uses
network state information (NSI) in the form of queue length
to train the neural network and make route predictions. The
results show that under the specific network state data, the
scheme assisted by deep learning is inferior to the machine
learning scheme in terms of delay performance.

The final part of this section provides an overview of how
machine learning can improve SDN performance. Although
telecommunication networks are faced with the demand for
increasing traffic, the resource efficiency of the existing trans-
port network is often not high because of the lack of flexibility
in resource allocation. One of the technical features of SDN
is the use of dynamic resource allocation to track or adapt to
variable traffic in the network. With the steady development
of core network technology in recent years, SDN may be
applied to the last segment of the next generation of mobile
networks. This is due to the heterogeneous nature and com-
plexity of the optical devices that make it up [26]. Moreover,
the software-defined methods bring new control network
solutions to operators, such as medium or short-term traffic
engineering [27]. This new type of traffic engineering further
promotes the application of machine learning in transmission
networks.

The aforementioned literature in [1] reviews how machine
learning algorithms are applied to SDN from the perspectives
of traffic classification, routing optimization, prediction of
quality of service (QoS) /quality of experience (QoE), and
resource management and security. For dynamic routing in
mobile metropolitan core networks, the work in [28] pro-
poses a traffic prediction method based on machine learn-
ing. By taking advantage of programmability and complete
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network visibility, the method can perform network recon-
figuration based on historical and current traffic loads. The
authors of the literature [29] propose a machine-learning
framework for cloud computing assisted resource allocation.
The central network architecture in the literature requires
the BH with a large traffic volume to transfer measurement
data or signaling from BS to the cloud. Reference [30]
summarizes the global, central visualization, and control
features of software-defined networks. The literature also
evaluates the routing framework for path calculation in the
SDN central controller. This improves network QoS per-
formance, such as latency and network capacity. The study
points out that although software-defined routing is still
being explored, SDN and its functions should adapt to the
number of service requests. Aiming at the application of
software-defined frameworks and video streaming services,
the literature in [31] studies the joint access control and
wired routing design. This work points out that SDN can
support the dynamic function of future networks and intel-
ligent applications by using networked operating systems.
In addition, compared with the Q learning-based scheme
and the open shortest path priority scheme, the SDN based
scheme studied in this literature has a better performance.
Furthermore, the literature in [6] proposes a routing strategy
based on unsupervised deep learning running in the SDN
central controller. In this strategy, the controller can collect
network traffic information and regularly train Convolutional
Neural Networks (CNN) to adapt to changing traffic patterns.

III. SOFTWARE DEFINED MOBILE NETWORKS AND
COMPONENTS
This section describes the system studied and specifically
discusses the components.

A. THE MOBILE NETWORKS
Fig. 1(a) shows a scenario that contains the studied com-
ponent and conceptual SDN entities. The component can
not only connect the core network to FHs, but also help to
network multiple edge devices into a mesh topology, thereby
improving the latency performance of the software-defined
networks. Here N is the network size of the mesh topology.
All links in Fig. 1(a) are bidirectional, and the number of
nodes (routers) in the component can be configured according
to the distribution of small base stations (SBSs) and a macro
base station (MBS) in the coverage area. Each node in the
component is configured with a buffer or Cloudlet to ensure
that each node has an infinite queue length. Through FHs,
SBSs are connected to nodes at the edge of the component
and/or to adjacent SBSs or an MBS. By the flexible archi-
tecture of converged components and BHs, the SBS is also
connected to the CP of the SDN. The CP can receive NSI
from components through the uplink. In Fig. 1, UAV, and
RVC are Unmanned Aerial Vehicle and Roadside-to-Vehicle,
respectively.

Fig. 1(b) shows the studied flexible architecture or
enhanced backhaul where a complete transport network

FIGURE 1. (a) The scenario with SDN. (b) The studied flexible architecture
or enhanced backhaul.

consists of components as well as traditional BHs [8]. The
connection between the component and the SDN Core is
called enhanced backhaul. Hence the whole software-defined
mobile network (SDMN) consists of SDN entities (switches,
controllers, cloud processing centers, and applications),
enhanced backhauls, FHs, SBSs, and MBS. Each component
can be represented by a finite graph G =

(
V , Ē

)
. Where

V represents the set of routers as R = {r0, r1, . . . , rN−1},
and Ē represents the set of edges (links). In addition, the
geographically adjacent components form a cluster, and the
components in a cluster are managed by the same SDN
central controller. The design characteristics of the studied
SDN are summarized as follows. 1) The central controller
knows NSI of each component. 2) The controller can allocate
transmission resources according to available resources and
QoS metrics. 3) The controller can perform network config-
urations [4].

To improve the flexibility of the studied architecture,
an IP-based communication mode can be adopted between
different component clusters. This allows the CP of the
SDN to manage multiple clusters. The resulting larger
network-size mobile network can provide greater geographic
coverage. SDMNs deployed alongside the highways will
offer a new generation of networking facilities, which will
undertake a large number of real-time communications oper-
ations involving unmanned vehicles and drones. Compared to
traditional transport networks, components will be a commu-
nity of computing, storage, and networking elements.

Here, we introduce the design idea of the CP. The cloud
processing center in Fig. 1(a) is responsible for database
processing and partial data analysis, and the application entity
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is responsible for the logic functions of customized network
applications. The cloud processing center needs to receive
NSI from the SDN center switch and perform routing calcula-
tions. The general functions of the central controller are data
collection, decisionmaking, and control. Its decision and con-
trol functions include routing sequence generation and distri-
bution, and retransmission parameter distribution. Through
the center switch, the central controller sends packets contain-
ing control information to the appropriate component. The
router in the component parses the routing information in the
packet to realize fast routing. The primary function of data
analysis is data processing and route sequence prediction.
It can extract historical network data from the database in the
Cloudlet to form the feature vector. The vectors in a specific
time window are stacked as a sample array. With the array
as the input of the classifier, the machine learning algorithm
will output the model. Using this model and the new network
state information, the system can predict the next path index
sequence. Thus, the central controller can use software to
define future network events for both components and their
internal nodes.

Now, we introduce the service of components. The service
of the node within the component is divided into two cate-
gories, service 1 and service 2. The data flow of service 1 is
from the center switch, and the data flow of service 2 is from
the FH, which is connected with an SBS. Without losing
generality, Fig. 1 considers how the CP can carry out route
prediction and forwarding for high-priority service 1, that is,
the path selection problem of a single constraint. The source
node and destination node are r0 and r8, respectively. The
base station connected to r8 can use the LTE band or the new
band for 5G to communicate with autonomous vehicles or
drones [32].

B. ROUTING AND EXTENDED FORWARDING
First, the studied assembly is introduced where dynamic
routing, the stream access control strategy, and extended
forwarding are implemented. This paper proposes a type
of path decision outside component, and store and forward
inside component. In this scheme, each network node does
not directly participate in the routing prediction, and each
node will dynamically select the next hop node according to
the instruction issued by the SDN central controller. A unique
feature of the design is the extended forwarding or retransmis-
sion. Meanwhile, the flexible stream access control strategy
can be adopted within the component. Here retransmission
is seen as an extension of the stream access control strategy
to deal with high traffic network conditions. Detailed stream
access control can be found in subsection C of this section.

Second, we describe the extended forwarding mechanism
in detail. Each node can execute data retransmitting except
for the destination node. Link layer retransmission needs a
simple calculation within the component. Here, node r0 is
assumed to have the role, that is 1) Collect the queue length
information of each node at the end of the basic subslots (see
the definition in subsection C) to determine whether each

FIGURE 2. Input control of data flow.

node retransmits. 2) Pre-process state data of each node at
the end of each time window such as W1. Retransmission
does not depend on the protocol of the existing network layer,
and the maximum retransmission number can be defined
according to the parameters from the SDN application entity.
The retransmission target will be aimed at millisecond-level
return delay requirements. At the end of the basic subslots,
if the queue of an intermediate node is not empty, the node
immediately enters retransmission stage.

C. STREAM ACCESS CONTROL
A trigger time slot is defined as the data flow forwarding
duration of a complete service throughout one component.
Each trigger time slot of length T0 contains a variable number
of subslots of length Tss where the Nf subslot is the basic
subslots to forward a data packet to the next hops. The
remaining Nb subslot of one trigger time slot is used for
retransmission, which is used to transmit the remaining data
packets in the queue of each node. Therefore, the minimum
and maximum lengths of a trigger time slot are T0b = Nf Tss
and T0m = (Nf + Nb)Tss, respectively. In addition to the
above retransmission, the access control strategy is consid-
ered where both input control at certain edge nodes and
splitting of data packets at certain edge and/or intermediate
nodes are implemented within the component, which boosts
support for different priority services.

Assume that in Fig. 1, the input service type for node
r0 is high-priority service 1. The set of nodes containing
service 2 isψ2 = {r1, r3, r5, r7}, the traffic volume of a single
service 2 is assumed to be less than that of service 1, and the
data flow destination of service 2 is r8. At the beginning of
the time slot, the packet of service 1 enters the queue of node
r0. As shown in Fig. 2, at the beginning of the subsequent
subslot, the service 2 data flows are sequentially queued by
the buffer to the nodes belonging to ψ2. In Fig. 2(a), the
routing decision selects the routing path ‘‘r0-r1-r2-r5-r8’’. At
the initial moment of the second subslot of this trigger time
slot, node r1 will be added to the service 2 data units. At the
beginning of subslot 4, node r5 will have an input of service 2.
During the retransmission stage, all nodes have no external
service input. Fig. 2(b) shows the input control or dynamics
of another type of service 2, the path being ‘‘r0-r3-r6-r7-r8’’.
At the output end of the node r3 in Fig. 2(b), the data packets
stored in the node are sent to the next hop of the two links in
accordance with even packets splitting.
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FIGURE 3. Historical data of queue length at node rk .

D. DATA PREPROCESSING
NSI involves various types of network parameters, such as
queue length of nodes, request rate of service packets, number
of retransmission subslots, and queue delay of nodes. Only
three types of network data are considered here, the data
request rate f1 for service 1, the data request rate f2 for
service 2, and the queue length f3 for the node. This data can
directly reflect the congestion of the transport network and
indirectly reflect the influence of the routing decision.

In order to clearly define the design, three time windows
W1, W2 and W3 are defined, and the corresponding dura-
tions are T1, T2, and T3, respectively. W1 contains multiple
variable-length trigger time slots, and T1 is a multiple of T0m,
and T2 = T1∗ M (here T1 and M are positive integers).
In the beginning of each W1, the component updates a path
index, that is, the data flow of the services will be transmitted
according to the same route. Every W2, the proposed scheme
carries out a route sequence prediction in test phase. It is
important to note that the predictor does not predict a single
path index, but rather a sequence of path indexes within
the next W2. W3 represents the change cycle of Poisson
distribution parameters λ of traffic flow.Within the sameW3,
the parameter remains unchanged.

In order to effectively use the recent data of the network to
predict the sequence of path indexes in the next W2, the pro-
posed scheme needs to collect and preprocess the historical
data immediately adjacent to the previous W2. The historical
data of the destination node is not considered because it is
assumed that the queue length of the destination node is
always zero in each trigger time slot. Fig. 3 shows the NSI
array at node rk , (k = 0, 1,. . . , N -2) where each row of the
array is defined as ‘‘record,’’ and each element in each row
is defined as the processed NSI at the end of the trigger time
slot (such as the queue length of the node). Now to define
the reference time moment t . When a certain type of network
data in the previous W2 is collected at this moment, the CP
of the SDN will output a historical data array with dimension
M × T1. The scheme studied will pre-process M records for
feature vectorization. Consider the simple averaging method,
where each record is averaged to obtain a feature.

This study uses the number of data units arriving in each
trigger time slot to characterize the service request rate in
NSI.

Defining the service input node in Fig. 2 by ϕ =

{r0, r1, r3, r5, r7}, then the request rate at node n, (n ∈ ϕ)
is represented as P (n) = [p1 (n) ,p2 (n) , . . . ,pM (n)]T .
Each element of the array represents a record pi (n) =[
pi,1 (n) , pi,2 (n) , . . . , pi,T1 (n)

]T and here pi,j (n) represents
the number of data units arriving in the j-th, (1≤ j ≤ T1)
trigger time slot in the i-th, (1≤ i ≤ M ) record. After
averaging all recorded data, the corresponding statistics and
features are defined as

p̄i (n) =
1
T1

T1∑
j=1

pi,j (n) (1)

Sp (n) = [p̄1 (n) , p̄2 (n) , . . . , p̄M (n)] (2)

The set of nodes containing the queue is ψ =

{r0, r1, . . . , rN−2}. For the node queue length, the recent
queue length array node m,( m ∈ ψ) can be
described as B (m) = [b1 (m) ,b2 (m) , . . . ,bM (m)]T .
Each element of the array represents a record bi (m) =[
bi,1 (m) , bi,2 (m) , . . . , bi,T1 (m)

]T and bi,j (m) represents
the queue length of node m at the starting point in the i-th,
(1≤ i ≤ M ) record, the j-th, (1≤ j ≤ T1) trigger time slot.
After averaging the data of each record, the corresponding
statistics and features of the queue are defined as

b̄i (m) =
1
T1

T1∑
j=1

bi,j (m) (3)

Sb (m) =
[
b̄1 (m) , b̄2 (m) , . . . , b̄M (m)

]
(4)

Using the request rate of service 1, the request rate of
service 2, and the queue length of a network node, the sample
vector is represented as S = {Sp (n) ,Sb (m) |n ∈ ϕ,m ∈ ψ}.
The number of features of the sample vector is defined as U ,
and the maximum value of each element of the sample vector
is F , which is determined by the maximum request rate.
Assuming that there are z candidate paths in the component

under study, the set of path indexes can be expressed as oi ∈
{V1,V2, . . . ,Vz}. Since the predicted target is a sequence of
path indexes of length M within the next W2, the predicted
sequence can be characterized as O = [o1, o2, . . . , oM ].

IV. CLASSIFIER COMPLEXITY AND MODELS
The computational complexity is important to predict the
achievable performance of the scheme. The routing clas-
sification problem studied uses two widely used super-
vised learning algorithms, LR and Deep Neural Networks
(DNN) [33]. In this paper, multi-class logistic regression is
considered as a baseline solution (Baseline). LR may have
a moderate performance with a small number of training
samples. During the testing process, the sample vector is
mapped into a sequence of path indexes.
Positive integer parameters are defined by U, F, z, M ,

respectively. Therefore, the complexity of searching the entire
sample space isO

(
FU

)
, and the complexity of the search path

sequence space is expressed as O
(
zM
)
[22]. When M takes

a relatively small value, the computational complexity of the
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path search is moderate. Considering the above reasons, the
number of rowsM and the number of featuresU in Fig. 3 may
be set to a positive integer less than 50 and 400, respectively.

After discussing the computational complexity, we will
compare LR with the BP-based DNN algorithm. The predic-
tion results of Baseline are discrete classification values. As a
typical binary classifier, LR can be used to deal with two types
of classification problems. Of course, it can also be used to
deal with multiple types of issues, but it needs to be converted
to One-vs-All. The DNN can learn and store a large number
of input-output mode mapping relationships. Its learning rule
is to use the steepest descent method to continuously adjust
the weights and thresholds of the network through back prop-
agation to minimize the sum of squared errors of the network.
The topological structure of the DNNmodel includes an input
layer, an indefinite number of hidden layers, and an output
layer. Here the DNN corresponds to a representation learning
method, which includes shallow learning and deep learning.
Shallow learning is a model with only one hidden layer,
and deep learning may be a model with multiple layers and
multiple learning mechanisms (such as back propagation).
The DNN usually needs to use a large number of samples to
train the model to obtain excellent performance and complete
very complicated nonlinear classification.

We then briefly describe the classifier with Baseline where
the One-vs-All multi-class logistic regression model is uti-
lized [34],

y = argmax
i

h(i)θ (x) = argmax
i

g
(
θTi x+ bi

)
(5)

where x = [x1, x2, . . . , xk ]T is the sample, y is the label
number of the sample, θ i = [θ1, θ2, . . . , θk ]T is the weight
coefficient, bi is the offset, and g() is the sigmoid function.

In order to improve mapping efficiency, we propose a par-
allel DNN model. By trainingM parallel DNN sub-networks
A = [a1, a2, . . . , aM ], the proposed scheme implements
a classifier with a relatively low network scale. The net-
work structure is shown in Fig. 4. M DNN sub-networks
or branches receive the same samples, but each DNN sub-
network ai,(1≤ i ≤ M ) only targets one index oi,(1≤ i ≤ M )
at the corresponding position on the path index sequence.
Each branch is an independent classifier. Therefore, the par-
allel structure reduces the number of classifications of each
DNN sub-network to z classes.

V. SIMULATION OF TRANSPORT NETWORKS
In order to effectively evaluate the design of a transport
network, we need to build our own network simulator and
use it to generate NSI. The parameter initialization of the
network simulator involves various parameter settings, such
as the request rate of the services, the node’s service rate
(processing capacity), and the maximum number of retrans-
mission subslots.

A flowchart including four phases of the dynamic rout-
ing is shown in Fig. 5. It is divided into Initialization,

FIGURE 4. DNN network structure with M parallel branches.

FIGURE 5. Four phases of the dynamic routing simulation.

Training, Testing, and Transporting. Initialization includes
service traffic generation, NSI collection, routing decisions,
and data packet transmission & retransmission. After this
phase the NSI datasets described in Section III are generated.
The routing decision uses the Dijkstra-based OSPF algo-
rithm [18], and the path sequence output by the algorithm
is used as the label of the training process. As a typical
single-source shortest path algorithm, the central Dijkstra
algorithm finds the shortest path from a starting node to
all other nodes by calculating the link weight matrix of a
finite graph. To favor the description of OSPF, Fig. 5 also
includes the OSPF functional module. Moreover, in order
to describe the number of samples in the datasets, the total
training window, the total learning length, and the total test
length are defined as W4, T4, and T4, respectively.
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During Training, the CP can use the two classifiers, namely
Baseline and parallel DNN models. The NSI dataset is uti-
lized for offline supervised learnings. Testing is located after
Training, and the CP uses the trained model and new samples
to predict the corresponding path sequence. In Testing, the
CP can uses one of the prediction schemes related to the
two classifiers. Every W2, the predictor outputs a sequence
of path indexes. Compared to T2 (interval of the inference
phase), T4 is about four orders of magnitude of T2. In the end,
Transporting includes packet transmission & retransmission,
and the collection of network data.

The steps of Testing are outlined below.
Step 1) At the beginning of each W2, the cloud process-

ing center processes the data in the immediately preceding
W2 and obtains the feature vector. Then, it uses the trained
classifier to obtain the sequence of path indexes;

Step 2) Every W1, the component queries the sequence of
the path index until the elements of the sequence of the path
index are completely traversed;

Step 3) The above steps are performed iteratively until the
total test length.

During Transporting, the component will forward the data
units according to the predicted path index. The processing
capacity of a node is defined as Cr units each subslot (‘‘unit’’
is a traffic unit), and the link weight is inversely proportional
to processing capacity. Assume that in the u-th subslot data
units are stored in the node k , (kεR). In the (u+ 1)-th subslot,
traffic needs to be forwarded from node k to node h, (hεR),
and the link between nodes k and h is represented as lkh. At the
beginning of the u-th subslot, the queue length of node k and
the queue length of node h are Ek (u) and Eh (u) respectively,
and the traffic of adding service 2 on node k is Qk (u). If
node k has no traffic input of service 2, then Qk (u) = 0.
The weight of the link is defined as

Wkh = (Ek (u)+ Qk (u))
/
Ch (6)

Equation (6) reflects the congestion level of the link lkh
owing to the size of the traffic flow, that is, the state or weight
of the link. Updating the length of nodes k and h at the
beginning of the (u+ 1)-th subslot,

Ek (u+ 1) = max (0,Ek (u)+ Qk (u)− Ch) (7)

Eh (u+ 1) = Eh (u)+min (Ek (u)+ Qk (u) ,Ch) (8)

The steps of Transporting are as follows.
(1) The source node receives the data packet from the

center switch and parses out the routing control information;
(2) The first Nf subslots forward the data of the services,

and calculate the weight of the link, and update the queue of
the node, respectively.

(3) At the end of the first Nf subslots, if the node’s queue
still has data units, the retransmission function needs to be
enabled. The node will select the appropriate Nb according
to the queue length, and update the link weight and the node
queue length at the same time.

TABLE 1. Simulation parameter description.

TABLE 2. DNN topology parameters.

VI. PERFORMANCE EVALUATION
A. SYSTEM PARAMETERS AND DNN NETWORK
TOPOLOGY
In the following network simulation, the configuration of
components and services is represented as a single compo-
nent. There is a data flow of a single service 1 and data
flows of multiple services 2, respectively. At each trigger
time slot, the above two types of data flows are added to
the component, as defined in Fig. 2. Each unit of data flow
contains 100 data packets with size of 1500 bytes. The system
simulation parameters are shown in Table 1. In the config-
uration of Tss, the maximum length of the trigger time slot
representing short-term granularity is one millisecond, which
also represents the expected time for the data unit to pass
through the component. The maximum service rate at the
component is Cr ∗ 100 ∗ 1500/Tss/1e9 = 10.8 GBps (Giga-
bytes per second). In addition, T2 represents short-to-medium
time granularity. The uplink signaling overhead is defined
as the amount of signaling from the component to the CP.
Therefore, referring to Table 1, the proposed scheme reduces
the signaling overhead by a factor of M = T2/ T1 = 20.
The parallel DNN algorithm in Training was developed using
Python under the Tensorflow framework [35]. Matlab 2017a
was used for the remaining network simulation. The simula-
tion used a core I7 processor with 16GBRAM.We present the
DNN network structure with M parallel branches or DNNs.
Table 2 shows DNN topology parameters of the branch with
three sub-layers each of which is a fully connected neural
network layer.
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FIGURE 6. (a) Poisson coefficients for Pattern 1. (b) Poisson coefficients
for Pattern 2.

B. EXPERIMENTS
1) TRAFFIC OF THE SERVICES
In order to simulate the actual arrival of data packets (units),
it is assumed that the number of arrivals of data packets fol-
lows a Poisson distributionwithin a certain time, and the Pois-
son coefficient changes every T3 triggering time slots. Fig. 6
shows the Poisson coefficient distributionwhere Fig. 6(a) and
Fig. 6(b) show Pattern 1 and Pattern 2, respectively. Owing to
the burst nature of service 1, the coefficient of this service
in Pattern 1 for part of the time is presented as the shape
of a single-peak triangle wave, and that in Pattern 2 as a
single-peak and/or double-peak triangle wave. Service 2 has a
non-burst nature, so the coefficient fluctuates randomly over
every W3.
Fig. 7(a) and Fig. 7(b) illustrate the request rates for

service 1 of Pattern 1 and Pattern 2, respectively. These fig-
ures also show the sum of the request rates for service 2 over
W3. According to Fig. 7, both in the short-term (T1) and
medium-long-term (T3) time granularity, the data flow under
study has excellent dynamics. In order to show the throughput
of approximately 32 Gbps or 4 GBps, the requested rate is
converted into GBps. Fig. 7(a) and Fig. 7(b), respectively,
represents traffic scenarios with a high service request rate
and a low service request rate.

2) PERFORMANCE IN RETRANSMISSION MODE
After the training of the classifier is completed during Train-
ing, the transport network uses four different routing schemes
for Pattern 1 and Pattern 2, i.e., fixed routing (the path of
all services remains the same), OSPF and two prediction
schemes (Baseline and parallel DNNs). This work utilizes the
following performance evaluation methods of delay, through-

FIGURE 7. (a) Service request rate for Pattern 1. (b) Service request rate
for Pattern 2.

put, and control information (signaling) overhead. Fixed rout-
ing requiresminimum signaling overhead, andOSPF requires
maximum network information feedback and maximum sig-
naling overhead. Both prediction schemes can reduce the
signaling overhead by M times. Both the training samples
and the first test samples are from the data of Pattern 1.
In addition, the model trained on the training samples is used
in the second test for the data of Pattern 2 to further evaluate
the accuracy of the model under different service patterns.

In the N = 9 configuration, there are z = 6 optional paths
from the source node r0 to the destination node r8, that is
{V1,V2, · · · ,Vz}. Fig. 8 (a) and Fig. 8 (b) illustrate the path
distribution in Pattern 1 and Pattern 2, respectively. Parallel
DNNs have the legend ‘‘DNN’’. Pattern 2 has a lower rate
of service requests and less congestion. Since fixed routing
(legend ‘‘Fixed’’) is the selected path V1, i.e., ‘‘r0-r1-r2-r5-
r8’’, so the probability of V1 in Fig. 8 is 100%. Since training
of the classifier requires the output from OSPF, the path dis-
tributions of OSPF, Baseline, and parallel DNNs are similar
in Fig. 8 (a). In Fig. 8 (b), there is a certain deviation between
OSPF and the two prediction schemes. This can be explained
as the accuracy of both kinds of predictor is not high enough
and they have limited generalization ability. Furthermore,
in Pattern 2, OSPF has a low probability of selecting programs
to V2, but both predictors may have a higher probability of
doing so. Therefore, the combined path scheduling and flow
control help transform a non-ergodic process to an ergodic
process, i.e., through all candidate paths.

Fig. 9 (a) and 9 (b) show the number of retransmission
subslots of Pattern 1 and Pattern 2, respectively, which reflect
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FIGURE 8. (a) Path distribution for Pattern 1. (b) Path distribution for
Pattern 2.

FIGURE 9. (a) Subslot distribution for Pattern 1. (b) Subslot distribution
for Pattern 2.

the distribution of the number of retransmission subslots in
each trigger slot. In one hand, OSPF and the two prediction
schemes have a similar distribution. On the other hand, the

FIGURE 10. (a) Averaged throughput in W3 for Pattern 1. (b) Averaged
throughput in W4 for Pattern 1.

FIGURE 11. (a) Averaged throughput in W3 for Pattern 2. (b) Averaged
throughput in W4 for Pattern 2.

number of retransmission subslots of these three schemes
is less than that of fixed routes. This shows that dynamic
routing can reduce network congestion and improve latency
performance to a certain extent.

Fig. 10 and Fig. 11 show the average network throughput
in both patterns. Fig. 10 (a) shows the throughput in W3
(W3TH) under Pattern 1. The network throughput of the fixed
route remains basically constant and is lower than that of
the other three schemes. Fig. 10 (b) shows the performance
within W4(W4TH). It can be seen from Fig. 10 (b) that under
the condition of high service request rate, the other three

VOLUME 8, 2020 128333



Q. Meng et al.: Intelligent Routing Orchestration for Ultra-Low Latency Transport Networks

FIGURE 12. (a) Outage probability in W3 for Pattern 1. (b) Outage
probability in W3 for Pattern 2.

schemes have better W3TH. Fig. 11 (a) shows W3TH within
W3 under Pattern 2. On the one hand, the curve of fixed
routing is dynamic. On the other hand, its performance is
lower than the other three solutions most of the time. It can
be seen from Fig. 11 (b) that the W4TH of the four schemes
under Pattern 2 are basically the same. This can be explained
as the service traffic of Pattern 2 is relatively low. It can
also be observed from Fig. 10 (a) and Fig. 11 (a) that in the
medium-term statistical performance, the other three schemes
are better than fixed routing.

Now, we define the outage probability as the proportion
of time slots whose node queue length is greater than 0 at the
end of the trigger time slot. The outage probability reflects the
network congestion at a short time granularity. It can be seen
from Fig. 12 (a) that the outage probability of fixed routing is
always 1 in W3. The congestion conditions of OSPF and the
two prediction schemes change with the size of the service
request rate. It can also be observed from Fig. 12 (b) that
although the outage probability of fixed routing changes with
the change of the service request rate, its value is significantly
greater than these of the other three schemes. Furthermore,
Fig. 12(a) and Fig. 12(b) show that the performance of Base-
line and parallel DNNs is basically the same.

FIGURE 13. (a) Comparison of outages with (re) and without (non)
retransmission for Pattern1. (b) Comparison of outages with (re) and
without (non) retransmission for Pattern2.

3) COMPARISON OF THE NUMBER OF OUTAGES WITH AND
WITHOUT RETRANSMISSION
In order to further compare the impact of the retransmission
on outage performance, Fig. 13 shows a box plot of the
number of outages in W3 with and without retransmission
(OSPF, Baseline, parallel DNNs). Fig. 13 (a) is a simulation
for Pattern 1. In most cases, the number of outages of the
three routing schemes with the retransmission (labeled ‘‘re’’)
is only 15%−40% of the corresponding non-retransmission
(labeled ‘‘non’’). Fig. 13 (b) is a simulation for Pattern 2,
which shows that the routing scheme with the retransmission
can reduce the number of outages and that the performance
of parallel DNNs is somewhat better than for OSPF and
Baseline.

4) DISCUSSION
This paper proposes a method to enhance the flexibility of the
network architecture. Here, the SDN controller periodically
manages the components, instead of controlling each node at
each time window (such asW1). The reasons for the enhance-
ment can be summarized as follows. By providing multiple
redundant links or pipes in the network structure, the mesh
topology helps to resist large traffic volumes and reduces time
delays and congestion. In addition, this method also has the
advantages of supporting the extension of coverage and rele-
vant network configuration. According to the reference [36],
the coverage distance of each small base station supporting
a millimeter-wave connection is about 300 meters or less.
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In order to achieve larger scale coverage (such as 900meters),
deploying components with the configuration of a 9-node
mesh topology may be a promising backhaul solution.

The routing decision goal for a component is to choose a
path from the candidate paths of the source-destination pair.
The window length will affect the performance of this short-
est path problem. The short window length helps real-time
path selection. Its disadvantages are the significant increase in
the amount of feedback and the need for shorter computation
time for the CP of the SDN. A large window length will
cause the network response time to be too long, which is
not conducive to the removal of congestion in the transport
network. In addition, the traditional routing method has a
‘‘non-intelligent’’ problem; that is, it is difficult to record the
routing selection under the same situation in the past [24].
In order to solve this problem, we do not directly use the
current state data for calculation, but use a small sample
of historical NSI to train a classifier to achieve fast routing
decisions under similar network conditions.

Finally, we further discuss the application of machine
learning in routing. In machine learning-based route pre-
diction, the mapping from feature vectors to candidate path
series is a classification process of multi-class labels. The
historical data forming the feature vector is only a subset of
a very large sample space. This classification or sequence
prediction often has multiple descriptions and presentations.
On the one hand, the parallel DNN classifier proposed in this
paper is convenient to output the sequence of paths, thereby
reducing the signaling overhead and improving the inference
efficiency. On the other hand, it may need to be improved in
the following two aspects. Since the offline supervised learn-
ing algorithm cannot output path indexes in real time, it is
necessary to introduce online machine learning algorithms
(for example, reinforcement learning) to adaptively adjust the
model according to any major events. Secondly, we may also
need to apply machine learning methods to dynamically build
resource models under different workloads, that is, upgrade
the mesh components studied to Istio-like service grid [37].
Furthermore, the throughput performance of the transport
network is constrained by the request rate of the service, the
stream access control strategy, the mesh network topology,
and the machine learning models. The influence of these
parameters and models on the path distribution of the studied
routing scheme needs further study.

VII. CONCLUSION
In order to realize the next generation software-defined net-
work with large flow and ultra-low latency, this paper pro-
poses a transport component with a mesh topology. This
small network scale component can be used to enhance the
flexibility of network architectures or backhauls in software-
defined networks. For the path selection of a single constraint,
the component internally uses a link layer retransmission
mechanism as well as tentative input access control, which
causes data packets to pass through the transport network at
sub-millisecond rates. In addition, in order to reduce the net-

work overhead caused by dynamic routing within a short time
granularity, we propose the parallel DNN classifier and the
path selection strategy. The intelligent and knowledge-based
system in short-to-medium timewindow of length 200ms can
quickly predict the path index sequence in the time window
in the future, thereby achieving a regular path orchestration.
A large number of computer simulation results show that the
proposed prediction scheme has better performance than the
central OSPF in terms of the overhead of network control
information. At the same time, in terms of throughput and
outage probability, the proposed prediction schemes have
basically the same performance as OSPF.
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