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ABSTRACT Spontaneous rupture of ovarian endometriomas (OEs) may cause serious injury to patients.
However, in traditional clinical diagnosis, it is vulnerable to be ignored or misdiagnosed for the symptoms of
the acute abdomen caused by it are quite similar to those of some common gynecological emergencies, which
leads to serious complications to patients. In view of this, this study investigates the AI-enabled, early and
accurate diagnosis of spontaneous rupture of OEs. Although artificial intelligence (AI) has been proved to be
a powerful tool to help tomake accurate clinical diagnosis, however, as far as we know, there is so far no report
onAI-enabled diagnosis of spontaneous rupture of OEs yet. Specifically, this study proposes a particle swarm
optimization (PSO) enhanced random forest (RF) classification model, called PSO-RF, to make diagnosis,
where RF is used to rank feature importance and make diagnosis considering that an OE is ruptured or not
is a typical 0-1 classification problem, and PSO is leveraged to fine-tune the essential parameters of RF. The
performance of the proposed PSO-RF model is evaluated with practical data collected from a local hospital
and fully benchmarked by comparing with eight other machine learning models whose key parameters are
sufficiently optimized aswell by grid search or PSO, for the sake of fairness. The experiment results show that
the proposed PSO-RF model outperforms all the other models, with the accuracy of 97.47%, the area under
the ROC curve (AUC) of 0.996, the sensitivity of 94.12% and the specificity of 98.39%. It can be concluded
that the PSO-RF model is a highly effective AI-enabled tool for preoperatively diagnosing spontaneous
rupture of OEs.

INDEX TERMS Ovarian endometrioma, spontaneous rupture, random forest, particle swarm optimization,
machine learning.

I. INTRODUCTION
Ovarian endometrioma is a kind of endometriosis, patients
of which have ectopic endometrial tissues in ovary [1] and
suffer from various clinical symptoms including pelvic pain,
irregular menstrual bleeding, dysmenorrheal, dyspareunia
and infertility [2]. It is one of the most common diseases in
reproductive women aging from 25 to 45 years old, with a
high incidence of 10%-15% [3]. Although ovarian endometri-
oma is a common benign disease, the size of the cyst typically
increases gradually, andwith a small probability, spontaneous
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rupture of cyst may occur during or after menstruation [4],
[5]. If the rupture can not be diagnosed and treated correctly
in time, the severe cases may cause massive hemorrhage
in the abdominal cavity, leading to hemorrhagic shock [6].
However, the symptoms of the acute abdomen caused by
spontaneous rupture of ovarian endometrioma are similar
to those of ectopic pregnancy, rupture and hemorrhage of
corpus luteum, torsion of ovarian cyst pedicle and appendici-
tis [7], [8]. Consequently, it is vulnerable to be ignored or
misdiagnosed clinically which causes serious complications
to patients. Early and accurate diagnosis the spontaneous
rupture of ovarian endometrioma could significantly help to
avoid serious injury.
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Considering the high misdiagnosis of spontaneous rupture
of ovarian endometrimas, researches on it has been widely
carried out. Some of them have tried to find suitable biomark-
ers to assist diagnosis of rupture of ovarian endometrimas
preoperatively and have reported that spontaneous rupture
of ovarian endometrimas are typically accompanied by high
levels of serum CA125 and CA19-9 [1], [7], [9]–[12]. In
particular, Xinyu Dai et al. have evaluated the clinical sig-
nificance of serum CA125 and CA19-9 in the patients with
spontaneous rupture of ovarian endometromas by statisti-
cal methods [2]. The results have shown that the levels of
CA125 and CA19-9 in patients with spontaneous rupture
of ovarian endometromas increased significantly. Currently,
it is believed that the combined biomarkers of CA125 and
CA19-9 is helpful for the early diagnosis of spontaneous
rupture of ovarian endometriomas.

In the other hand, artificial intelligence (AI), especially
machine learning (ML), has been widely used in medi-
cal diagnosis [13]. The innovative AI-enabled methods are
important assistances in precision medicine, which may help
to make accurate clinical diagnosis at low cost and early.
It has been frequently reported recently that the innova-
tive AI-enabled approaches are important tools in precision
medicine, whichmay help tomake accurate clinical diagnosis
at low cost and early.

By leveraging various machine learning methods,
Kawakami et al. have developed an ovarian cancer-specific
predictive framework for clinical stage, histotype, residual
tumor burden, and prognosis based on multiple biomarkers
[14]. The results have revealed that AI-enabled models can
provide accurate diagnoses and prognostic predictions for
patients with epithelial ovarian cancer prior to initial inter-
vention. In [15], an optimized random forest (RF) classifier
has been used to detect nodules inside the lungs. In [16],
Y. Shi et. al have proposed a hybrid QPSO-RF (Quantum
particle swarm optimization - RF) model to predict the
disease progression of Idiopathic Pulmonary Fibrosis using
Computed Tomography (CT). Specifically, QPSO algorithm
has been used to search the optimal feature subsets andRF has
been used for classification. In [17], four machine learning
algorithms, namely support vector machine (SVM), partial
least squares discriminant analysis (PLS-DA), RF, and logis-
tic regression (LR), have been applied to develop the model
for identifying metabolomic biomarkers in cervicovaginal
fluid for EC detection. Pergialiotis et al. have investigated
the diagnostic accuracy of three different machine learning
algorithms, i.e. LR, artificial neural networks and classifi-
cation and regression trees (CARTs) for the prediction of
endometrial cancer in postmenopausal women with vagi-
nal bleeding or endometrial thickness ≥ 5 mm, as deter-
mined by ultrasound examination [18]. E. Pashaei et al.
have proposed a binary version of black hole algorithm for
solving feature selection problem in biological data [19].
A novel one-dimensional deep densely connected neural
network (DDNN) has been constructed in [20] to detect
atrial fibrillation in 12-lead electrocardiogram waveforms.

The proposed model has been proved to be sufficiently
effective to be applied to clinical diagnosis of atrial fibril-
lation. In the study of Obrzut et al., the usefulness of six
AI-enabled methods have been evaluated for 5-year overall
survival prediction in patients with cervical cancer treated
by radical hysterectomy [21]. It has demonstrated that the
best model, namely the probabilistic neural network model,
achieves a high prediction accuracy of 0.892 and sensitivity
of 0.975.

Machine learning models have also been used in the
diagnosis of endometrial tumor related diseases. In [22], deci-
sion trees have been used to analyze the effectiveness of treat-
ment of patients with recurrent pelvic cyst who underwent
surgical intervention. The study of Günakan has constructed
a naive Bayes model to make predictions of lymph node
involvement in endometrial cancer [23]. In [24], automated
image analysis and RF models have been used to classify
normal, premalignant, and malignant endometrial tissues.
However, as far as we known, no study on ML-enabled
diagnostics of spontaneous rupture of ovarian endometriomas
has been reported so far.

Inspired by the above observations, this paper proposes
a machine learning model to make accurate diagnosis of
spontaneous rupture of ovarian endometriomas preopera-
tively. Specifically, we first model the problem of cyst rup-
ture as a 0-1 classification problem. Practical physiological
data involving plenty of features are collected from women
with ovarian endometriomas who have treated in the First
Affiliated Hospital of Wenzhou Medical University between
2006 and 2017. Considering the effectiveness of random for-
est algorithm [25] in feature selection and classification and
therefore it has been widely used to make intelligent medical
diagnoses [15]–[17], [26], [27], we design a random forest
model to rank the importance of different features and further
solve the 0-1 classification problem. In order to improve the
performance of random forest model, we further leverage
particle swarm optimization (PSO) algorithm [28] to optimize
the parameters of the random forest model. To the best of our
knowledge, this is the first time to adopt the machine learning
technique in the diagnosis of spontaneous rupture of ovarian
endometriomas.

The proposed PSO enhanced RF model, PSO-RF for
short, is comprehensively benchmarked by comparing
with other fine-tuned machine learning models, including
the gridsearch optimized random forest model (GO-RF),
the naive Bayesian classification model [29] (NBC), the grid-
search optimized k-nearest neighbor [30] model (GO-KNN),
the PSO enhanced KNN (PSO-KNN), the gridsearch opti-
mized lightGBM [31] model (GO-lightGBM), the PSO
enhanced lightGBM model (PSO-lightGBM), the gridsearch
optimized logical regression [32] model (GO-LR), and the
PSO enhanced logical regression model (PSO-LR). The
results show that the PSO-RFmodel outperforms all the other
models, with the accuracy of 95.57%, the area under the
ROC curve (AUC) of 0.996, the sensitivity of 94.12% and
the specificity of 98.39%.
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TABLE 1. Baseline characteristics of endometriosis patients.

The rest of this paper is organized as follows. The
methodology of the proposed PSO-RF is given in detail in
Section II. Section III presents the experimental verification
and analysis. Finally, Section IV concludes the paper and
proposes the future work.

II. METHODS
A. DATA ACQUISITION AND PREPROCESSING
Physiological data were collected by complete blood counts,
laparoscopic surgery and laparotomy from premenopausal
female patients with ovarian endometriomas. The dataset
includes 193 records where 53 patients have been diag-
nosed with spontaneous ruptured ovarian endometriomas
and 140 patients with unruptured ovarian endometriomas.
Each sample in the dataset includes the age, the leukocyte
count and the physiological features obtained by laparo-
scopic surgery or laparotomy, such as the carcinoembryonic
antigen (CEA) level, the CA125 level, the alpha fetopro-
tein (AFP) level, the CA19-9 level, the position of the ovarian
endometrioma, the endometrioma stage1 and the size of the
ovarian endometrioma, as shown in Table 1. All the data have
been normalized by x∗ = x−min

max−min .
The dataset has been divided into the training set and the

test set by repeated random sampling until the P values with
respect to all the features between the two sets are greater
than 0.2. This results in a division of 114 patients in the
training set (32 patients with ruptured ovarian endometriomas
and 82 patients with unruptured ovarian endometriomas in
the training set) and 79 patients in the test set (21 patients
with ruptured ovarian endometriomas and 58 patients with
unruptured ovarian endometriomas), as listed in Table 1.

1These patients were classified into four stages according to the revised
classification made by the American Society for Reproductive Medicine
(ASRM).

FIGURE 1. Structure of a RF model.

B. RANDOM FOREST MODEL
Random forest (RF) is an ensemble learning model for
classification and regression. RF runs efficiently on large
data bases, seldom overfits, and has the ability of giving
estimates of which features are important in the classification.
In particular, RF is able to achieve a good accuracy rate for
the classification of discrete high-dimensional datasets. With
this in mind, in this work, RF is leveraged to diagnose the
spontaneous rupture of ovarian endometriomas.

The RF model consists of multiple classification and
regression trees (CARTs) [33]. Each CART is a binary deci-
sion tree that is grown by recursively partitioning the data in
a parent node into child nodes. The structure of the RF model
is shown in Fig. 1.

1) SAMPLING AND SPLITTING
The overall samples in the training set are further divided
into two parts. Specifically, 60% of the samples are used
to train the CARTs, the set of which is denoted as D =
{s1, s2, . . . , s|D|} where si, i = 1, 2, . . . , |D| is the ith
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multi-dimensional sample in D. The rest are the pretest sam-
ples used to measure the classification accuracy rate of this
CARTs, the set of which is denoted as D̂ = {ŝ1, ŝ2, . . . , ŝ|D̂|}
where ŝi, i = 1, 2, . . . , |D̂| is the ith multi-dimensional
sample in D̂.

Each CART is grown with a bootstrap sample set which
is taken by randomly sampling with replacement from D.
Concretely, one sample is randomly drawn from D as a train-
ing sample at a time, and then, this sample is put back. This
process of sampling with replacement is repeated m times so
that to generate a new sample set with the same size as D.
The new created sample set is then used as the root, e.g. the
training set of a CART, denoted as Ri, i = 1, . . . ,NT , where
NT is the number of CATRs in RF. Apparently, in this way,
some samples may appear multiple times in the new training
set, while others, namely about 36.8%2 of the samples in the
original dataset, may never appear. Therefore, the samples
that do not appear in the new dataset are taken as the test set.

The training set of each CART will be split as a binary
tree. Let NF be the number of features of each sample. At
each node of the decision tree, randomly select Nf ,Nf � NF
features for splitting. In the other words, at each node,
the splitting feature is selected among a random subset of the
original set of features. This randomness further enhances the
generalization of RF model.

The criteria of splitting in this work is the Gini index
of impurity. Formally, denote the sample set at node t as
St = {st,1, . . . , st,|St |} where st,i = {ft,i,1, . . . , ft,i,NF } is the
ith sample in node t and ft,i,j is the value of the jth feature in
st,i. The class assignment of st,i is denoted as Ct,i ∈ {−1, 1}
where -1 indicates an unruptured ovarian endometrioma and
1 indicates a ruptured ovarian endometrioma. The Gini index
at node t is given by

Gt =
∑

k=−1,1

pk|t (1− pk|t ), (1)

where pk|t is the probability of class k estimated from the
samples in node t , e.g.

pk|t =
1
|St |

∑
st,i∈St

Ct,i = k. (2)

At each step in the algorithm, the node t is split at the
feature j and value ft,j into a pair of child nodes, denoted as
tL = {x ∈ t|xj ≤ ft,j} and tR = {x ∈ t|xj > ft,j}, respectively,
where j and ft,j are determined by

argmax
j,ft,j

1Gt |j,ft,j , (3)

where

1Gt |j,ft,j =
(
Gt − pL|tGL|t − pR|tGR|t

) ∣∣j,ft,j , (4)

2Assuming there are m samples in the original data set, the probability
of each sample being selected is 1/m, and the probability of a sample
not being selected in all of the m sampling is (1 − 1/m)m. Moreover,
limm→∞ (1− 1/m)m = e−1 ≈ 0.368

pL|t and pR|t are the probabilities of assigning a sample to the
left child and right child, respectively.

The process of splitting repeats until the terminal condition
is satisfied, that is, 1) the depth of the CART reaches the
predefined maximum value dmax, or 2) |St | is less than the
predefined minimum value Ns,min. In this way, a CART
is formed. The set of the CARTs in RF is denoted as
T = {T1, . . . ,TNT }.

2) VOTING
Finally, all the CARTs involved in a RF cast votes for their
inputs, after which RF aggregates their results and determines
the output by majority voting of the CARTs. Taking in con-
sideration the different classification abilities of CARTs in RF
model, in this work, the voting weight of each CART is set
separately according to its classification accuracy. In essence,
after the training, the weight of each CART is estimated by
the pretest samples in D̂ as follows:

wTi =
N correct
i∣∣∣D̂∣∣∣ , i = 1, 2, . . . ,NT , (5)

where N correct
i is the number of samples classified correctly

by Ti.
The voting strategy is to summarize the classification

results of all the CARTs, and then take the weighted mode of
the classifications as the final classification results as follows:

Csi = argmax
k=−1,1

∑
Ti∈T

wTi ·
(
Csi |Ti = k

)
. (6)

where Csi |Ti is the classification result of feature si made by
CART Ti.

In summary, the procedure of random forest model is
shown in Algorithm 1.

3) FEATURE IMPORTANCE
One of the most attractive advantages of RF is that it gives
estimates of what features are important in the classification.
There are many biomarkers and factors associated with the
rupture of ovarian endometriomas among which some may
have very weak correlation with it. So, it will be of great
significance to rank the importance of all the features to elim-
inate irrelevant or weak correlated features, so as to reduce
the complexity of RF model and improve the accuracy of the
model.

RF uses Gini index to evaluate the importance of a feature.
Specifically, the importance of feature j to node t of Ti,
denoted as V im

j,t,i, is evaluated as follows.

V im
j,t,i = max

ft,j
1Gj,t,i|ft,j . (7)

Let Mj,i be the set of nodes where feature j is included in Ti.
The importance of feature j to Ti can be calculated as

V im
j,i =

∑
t∈Mj,i

V im
j,t,i. (8)

Further, the importance of feature j to RF model is

V im
j =

∑
Ti∈T

V im
j,i . (9)
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Algorithm 1 Procedure of Random Forest Model
1: Initialize NT , NF , Nf , dmax, Ns,min

2: Preprocess the data set and obtain D and D̂
3: for i in [1,NT ] do
4: for j in [1, |D|] do
5: Randomly draw sj from D with replacement.
6: Insert sj to Ri
7: end for
8: t ← Ri
9: SPLIT(St ,Nf )

10: end for
11: Aggregates the results by Eq. (6).
12:

13: function split(St ,Nf )
14: if Termination condition is satisfied then return
15: else
16: Randomly select Nf out of NF features at t .
17: Determine the feature among Nf features and the

value for splitting by Eq. (3) and Eq. (4).
18: Split the tagged node into tL and tR.
19: SPLIT(StL ,Nf )
20: SPLIT(StR ,Nf )
21: end if
22: end function

Finally, V im
j is normalized as follows:

Ṽ im
j =

V im
j∑

fi∈F V
im
i

, (10)

where F is the set of features.

C. PARAMETER OPTIMIZATION BASED ON PSO
Generally, in RF, some parameters such as the maximum
depth of a CART (dmax), theminimumnumber of samples in a
node (Ns,min) and the number of CARTs (NT ), etc., need to be
tune for achieving the optimal performance of RF. A feasible
solution is to fine-tune these parameters by an appropriate
optimization algorithm, such as various heuristic algorithms.

In this study, we leverage particle swarm optimization [34],
which is a metaheuristic algorithm simulating the behavior of
birds catching food, to tune the essential parameters of the RF
model to further improve the accuracy. The essence of PSO
is to use the current position, global extremum and individual
extremum information to guide the next iteration position of
particles, which enables it to approach the optimal solution
with a fast convergence speed, and hence effectively optimize
the parameters of the model [16], [35]. Another significant
advantage of PSO is that it can adjust the maximum step size
at each iteration, making it possible to find an approximate
optimal solution in a wide range of possible parameters
[36]. In addition, PSO has some attractive features, such as
easy to implement, less parameters, computationally cheap
and so on.

PSO searches the optimal solution through agents, or called
particles. A large number of particles form a swarm.

A particle i is characterized by its location vector Li and
velocity vector vi which are updated iteratively by

Li(t + 1) = Li(t)+ vi(t + 1), (11)

and

vi(t + 1) = wivi(t)+ c1r1
(
Li,best − Li(t)

)
+c2r2

(
Lgbest − Li(t)

)
, (12)

where wi is the selected weighting factor for particle i,
Li,best is the location at which particle i previously had the
best fitness measure, Lgbest is the global optimal location
of the whole swarm, c1 and c2 are the cognitive acceler-
ation constant and the social acceleration constant, respec-
tively, generally with the value of 2, and r1 and r2 are two
random parameters within the range [0, 1]. The iteration
terminates if 1) reach the maximum number of iterations,
or 2) convergence is reached based on the fitness measure.

D. PSO-RF
In summary, the procedure of the proposed PSO-RF is as
follows:
S1 Determine the parameters of PSO, including the

maximum number of iterations, the maximum speed of
particles and the search space, i.e., the feasible region of
solutions.

S2 Randomly generate a swarm where each particle is a
three dimensional vector {dmax,Ns,min,NT }. The size of
the swarm is denoted as NPSO.

S3 Start PSO iteration procedure to obtain the optimal dmax,
Ns,min and NT .

S3.1 For each particle in the swarm, perform the RF
algorithm defined in Algorithm 1 to evaluate the
fitness, i.e., the diagnostic accuracy.

S3.2 For each particle i, i ∈ {1, 2, . . . ,NPSO} in the
swarm, compare the particle’s current fitness with
the fitness of Li,best . If the current location fits
better, then replace Li,best with the current location.

S3.3 Update Lgbest if the new global optimal location of
the current swarm fits better.

S3.4 For each particle i, i ∈ {1, 2, . . . ,NPSO} in the
swarm, update vi and Li by Eq.(12) and Eq.(11).

S3.5 Repeat S3.1 - S3.4 until convergence is reached.
S4 Perform the RF algorithm defined in Algorithm 1 with

the optimal dmax, Ns,min and NT obtained in Step S3 to
make diagnosis.

The Pseudo code and the flow diagram of the PSO-RF
procedure are shown in Algorithm 2 and Fig. 2, respectively.

III. RESULTS
All the involved algorithms and models have been imple-
mented using Python 3.8. The computational analyses have
been conducted on a Server running Windows Server
2016 Standard 64 bits operating system with Intel (R) Xeon
(R) CPU E5-2620 v4, 32GB of RAM and Nvidia GeForce
GTX 1080 Ti graphics card. Unless otherwise stated,
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FIGURE 2. PSO-RF flowchart.

Algorithm 2 Procedure of PSO-RF
1: Initialize the parameters for PSO.
2: for each particle i, i ∈ {1, 2, . . . ,NPSO} do
3: Randomly initiate vi and Li.
4: end for
5: repeat
6: for each particle i, i ∈ {1, 2, . . . ,NPSO} do
7: Perform Algorithm 1 to evaluate the fitness.
8: if fitness(particle i) > fitness(Li,best ) then
9: Li,best ← Li
10: end if
11: if fitness(particle i) > fitness(Lgbest ) then
12: Lgbest ← Li
13: end if
14: end for
15: until Termination conditions are satisfied.
16: Perform Algorithm 1 with Lgbest .

the parameter settings of all the involved algorithms and
models are listed in Table 2.

A. PERFORMANCE INDICATORS
1) ACCURACY
Diagnosis of spontaneous rupture of ovarian endometrioma
is a typical binary classification problem, in which the
diagnosis results are labeled either as positive (P), indi-
cating a ruptured ovarian endometrioma, or negative (N),
indicating an unruptured ovarian endometrioma. There are
four possible combinations of the diagnosis results and the
actuality, namely TP, FP, TN and FN which are explained as
follows:
• TP: both the diagnosis result and the actuality are P.
• FP: the diagnosis result is p and the actuality is N.
• TN: both the diagnosis result and the actuality are N.
• FN: the diagnosis result is n and the actuality is P.

TABLE 2. Parameters and settings of algorithms.

The classification accuracy rate, or called the diagnostic
accuracy rate, of the proposed PSO-RF model is
evaluated by

ACC =
TP+ TN

TP+ TN+ FP+ FN
(13)
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2) SENSITIVITY & SPECIFICITY
Besides accuracy rate, sensitivity and specificity are also used
to measure the effectiveness of PSO-RF model. Sensitivity,
also known as true-positive rate (TPR), is used to measure
the ability of correctly identifying the cases with ruptured
ovarian endometriomas, whereas specificity, also known as
true-negative rate (TNR), is used to measure the ability of the
identifying those without the disease. The higher the sensi-
tivity or the specificity is, the more effective the model is.
Sensitivity (TPR) and specificity (TNR) can be calculated by

TPR =
TP

TP+ FN
=

TP
P

, (14)

and

TNR =
TN

FP+ TN
=

TN
N

, (15)

respectively.

3) ROC AND AUC
Moreover, the receiver operating characteristic curve (ROC)
is used to illustrate the diagnostic ability of the PSO-RF.
ROC is a comprehensive indicator that is capable of evaluat-
ing TPR and false-positive rate (FPR) at various thresholds.
It is a two-dimensional graph in which TPR is plotted on
the Y axis and FPR is plotted on the X axis. FPR can be
calculated by

FPR =
FP

FP+ TN
=

FP
N
= 1− TNR. (16)

The AUC (area under the curve) is a concomitant of ROC
obtained by calculating the area under the ROC. AUC tells
how much the model is capable of distinguishing between
ruptured and unruptured ovarian endometriomas. Higher the
AUC, better the model is at predicting positives as positives
and negatives as negatives.

B. RESULTS
1) FEATURE SELECTION
The ranking of the feature importance for diagnosing the
rupture of ovarian endometriomas derived by PSO-RF is
shown in Fig. 3. The P values and the Pearson correlation
coefficients (PCC) for the features related to the rupture of
OE are listed in Table 3.

It can be observed the ranking obtained by PSO-RF
is on the whole consistent with those obtained by sta-
tistical analyses. The level of CA19-9 and CA125 are
the top two important biomarkers, with the normalized
importance of 0.316 and 0.273, respectively, the P values
of 4.08× 10−11 and 2.47× 10−14, respectively, and the PPC
values of 0.4522 and 0.5128, respectively. This conclusion is
consistent with the clinical experience. Serum CA19-9 and
CA125, tumor associated antigens, have been used clini-
cally to identify the recurrence and severity of endometriosis.
The endometrioma cyst fluid was suspected to be rich of
biomarkers such as CA19-9 and CA125. However, in nor-
mal conditions, the large CA19-9 and CA125 glycoprotein

FIGURE 3. Ranking of the importance of features of ovarian
endometriomas.

TABLE 3. Association of ruptured/unruptured OEs with clinicopathologic
features.

molecules were preventing by the thick wall of endometrioma
cyst from entering the peripheral circulation. The sponta-
neous rupture of the OE may lead the biomarkers into the
blood circulation, resulting the high elevation of the CA19-9
and CA125 in the serum [11]. The level of CEA, with the
normalized importance of 0.231, P value of 7.35×10−11, and
PCC value of -0.4468, is the third important biomarker. The
leukocytes count and AFP level are also significant biomark-
ers, however, are less important than CA19-9, CA125 and
CEA.

In order to investigate the optimal combinations of features
to be input into the PSO-RF model, the effectiveness of any
single feature and various feature combinations on diagnosis
of ruptured ovarian endometriomas is evaluated. Specifically,
Fig. 4 plots the ROC curves and the corresponding AUC
values of the classification results derived from PSO-RF
using a single feature. Not surprisingly, CA19-9, CA125 and
CEA output the most effective results, with the values of
AUC of 0.948, 0.902 and 0.819, respectively. In addition,
although the importance of the Leukocyte level is a bit
higher than that of the AFP level, the AUC value of AFP
level (0.806) is much greater than that of Leukocyte level
(0.725). The ROC Curves, AUC values and accuracy rates
of classifications using various features combinations derived
from PSO-RF are depicted in Fig. 4(b). It can be seen that
the best performance is achieved in the case of inputting
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FIGURE 4. (a) ROCs Curves and values of AUC of all the features derived
from PSO-RF for segregating ruptured ovarian endometriomas from
ovarian endometriomas, (b) ROCs Curves, values of AUC and accuracy of
various features combinations derived from PSO-RF for segregating
ruptured ovarian endometriomas from ovarian endometriomas.

the following four features: CA19-9 level, CA125 level,
leukocyte count and AFP level, with the AUC of 0.996 and
the accuracy of 97.47%. The feature combination of CA19-9
level, CA125 level, leukocyte count, AFP level and CEA level
also results in the same high accuracy of 97.47%, however,
the AUC value is a bit lower, with the value of 0.99.

The box and jitter plots representing the distributions of
the selected four features for PSO-RF-based classification
of ruptured and unruptured OEs are shown in Fig. 5. It can
be observed that the distributions are significantly different
between the ruptured and unruptured OEs. The levels of
CA19-9, CA125, leukocyte count and AFP of the patients
with ruptured OEs are all significantly higher than those of
patients with unruptured OEs.

2) COMPARISONS WITH OTHER ALGORITHMS
The proposed PSO-RF model is comprehensively
benchmarked by comparing with eight fine-tuned machine
learning models, including four gridsearch optimized (GO)
models, namely the GO-RF, GO-lightGBM, GO-LR
and GO-KNN, three PSO enhanced models, namely

FIGURE 5. Box and jitter plots representing distribution of the selected
biomarkers between the ruptured and unruptured ovarian
endometriomas.

PSO-lightGBM, PSO-LR and PSO-KNN, and the NBC
model. The parameters obtained by grid search are shown
in Table 2. NBC model has no parameter tuning for there is
no parameter to be fine-tuned in it.

Table 4 summarizes the performance of all the nine
models, including the classification accuracy rates, the sen-
sitivity and the specificity. Besides the performance results
obtained from the dataset fragmentation shown in Table 1,
Table. 4 also lists the accuracy rates obtained by hold-
out cross-validations (40% holdout samples, 100 times) and
10-fold cross-validations, respectively, to evaluate the per-
formance more comprehensively. The distributions of the
cross-validation results are presented as box plots, as shown
in Fig. 6. For each test in the 40% holdout cross-validations,
the dataset is divided into a training set and a test set by
repeated random sampling until the P values with respect
to all the four features between the two sets are greater
than 0.2 to ensure that there is no significant correlation
between the samples of the two sets. As to the 10-fold
cross-validations, the P values are not guaranteed to be greater
than 0.2.
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TABLE 4. Performance comparisons among PSO-RF and benchmark models.

FIGURE 6. Box plots of cross-validations.

It can be observed that the performances of PSO-RF in
both cross-validations are the highest. Specifically, for 40%
holdout cross-validations, PSO-RF achieves the highest aver-
age accuracy rate of 95.47%, with the minimum standard
deviation (S.D.) of 1.36%. The red box of PSO-RF in Fig. 6
is the highest one, and also the narrowest one, with an
interquartile range (IQR) of 1.27% and a min-max range
of 7.59%. PSO-RF also performs the best in the 10-fold
cross-validations, with the highest average accuracy rate
of 92.84%. The GO-RFmodel and the PSO-lightGBMmodel
also achieve high average accuracy rates, i.e., 93.58% and
93.68% in 40% holdout cross-validations, and 91.26% and
92.54% in 10-fold cross-validations, respectively.

Table 4 also shows that PSO does improve the performance
of these models. It slightly improves the accuracy rates of
the RF model, the lightGBM model, the LR model and the
KNN model by 1.89%, 2.13%, 1.52% and 1.01%, respec-
tively, in the 40% holdout cross-validations, and 1.58%,
0.97%, 2.53% and 0.47%, respectively, in the 10-fold cross-
validations. The reason why the performance improvements
are limited is that the parameters of the original models
have also been optimized by grid search. However, the time
complexity of PSO is O(NiterNPSO logNPSO) where Niter is
the number of iterations and NPSO is the size of the swarm.
Whereas that of the gridsearch approach is O

(∏
i ni
)
where

ni, i = 1, 2, . . . , j is number of potential values of feature i
and j is the number of features to be fine-tuned, which is much
higher than that of PSO.

The superiority of the PSO-RF model is also presented
in Fig. 7 where the ROCs of these models are plotted. It can
be observed intuitively that the curve of PSO-RF is the closest
one to the upper left corner (AUC = 0.996), implying that it
outperforms all the others for its highest the overall accuracy.
The ROCs of the PSO-lightGBM model and the GO-RF
model are also quite closer to the upper left corner, with
slightly lower AUC values, i.e., 0.996 for the PSO-lightGBM
model and 0.995 for GO-RF model, respectively.

The confusion matrices of the PSO-RF model and the
benchmark models are shown in Fig. 8. PSO-RF performs
pretty well. There is only one false positive case and one
false negative case, respectively. By contrast, one false nega-
tive and two false positives are made by the GO-RF model
and the PSO-lightGBM model. The PSO-LR model, the
GO-lightGBM model and the NBC model recognize all the
patients with unruptured ovarian endometriomas, however,
make three, four and five false positives, respectively. In
addition, the PSO-KNNmodel makes two false positives and
two false negatives, the GO-LR makes one false negative
and four false positives, whereas the GO-KNN model makes
four false negatives and two false positives, all of which are
inferior to the proposed PSO-RF model.

In addition to the classification accuracy, the efficiency
of these classifiers is also evaluated. For PSO enhanced
models, the convergence performances are evaluated since
they train the models iteratively to approach the sub-optimal
solutions. Fig. 9 shows the comparisons of the convergence
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FIGURE 7. ROCs of PSO-RF and benchmark models.

FIGURE 8. Confusion matrices of PSO-RF and benchmark models.

performance among PSO enhanced models. The fitness
of all the algorithm is the accuracy rate. It can be
observed that the accuracy rate of the PSO-RF model grad-
ually rises in the beginning (within 80 iterations). Then
it converges to the stable value of 97.47%. The other
three PSO enhanced models, namely the PSO-LR model,
the PSO-KNN model and the PSO-lightGBM model con-
verge after the 120th iteration, moreover, with lower accuracy
rates.

Fig. 9 only presents the convergence performance along
with iterations. However, the time complexities per iteration
of difference models vary greatly. In view of this, next,
we evaluate the per iteration time complexities of these mod-
els. Considering that RF, lightGBM, KNN, NBC and LR are
not iterative algorithms, the CPU time required to train a
model and then to make a classification are measured instead
of the convergence rate. The results averaged from 100 tests
are shown in Fig. 9(b), where it can be observed that the CPU

time needed by RF is the longest. The reason is that the time
complexity of RF is O(NT dmax ·mn), that is, it is determined
not only by the number of samples (m) and the number of
features (n), but also by the number of CARTs (NT ) and the
depth of a CART (dmax). As a contrast, the time complexity
of LR is only O(mn); that of NBC is O(cmn) where c is the
number of classes; that of KNN is O(kmn) where k is the
number of neighbors; and the time complexity of lightGBM
is co-determined by the procedures of gradient-based one-
side sampling and exclusive feature bundling, with the time
complexities of O(lmn) and O(lmnb), respectively, where l
is the number of leaves and nb � n is the number of
bundles. Specifically, in this work, NT = 94, dmax = 2,
c = 2, k = 7 and l = 9, so that NT · dmax � k, l, 2, 1,
results in a much longer CPU time of RF than those of other
models. Nevertheless, about 0.2 second CPU time training
and classification can fully satisfy the requirements of the
classification system.
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FIGURE 9. Evaluations on convergence rates and CPU times.

IV. CONCLUSIONS
Spontaneous rupture of OE is vulnerable to be ignored or
misdiagnosed clinically, which may probably lead to serious
complications to patients. In this work, we proposed a PSO
enhanced RFmodel, namely PSO-RF, to assist in the preoper-
ative diagnosis of spontaneous rupture of ovarian endometri-
omas. As far as we know, it is the first work on ML-enabled
diagnostics of spontaneous rupture of OEs. The data used in
this work were collected by complete blood counts, laparo-
scopic surgery and laparotomy from premenopausal female
patients with ovarian endometriomas who have treated in
the First Affiliated Hospital of Wenzhou Medical University.
We first leveraged the RF model to rank the importance
of the features and select the proper feature combination.
Then, we employed PSO to fine-tune the essential param-
eters of the RF model to further improve the diagnosis
accuracy.

The PSO-RF model was comprehensively benchmarked
by comparing with other machine learning models, including
three PSO enhanced models and five gridsearch-optimized
models. The results showed that the PSO-RF model outper-
forms all the other models in accuracy, with the accuracy
of 97.47%, the AUC value of 0.996, the sensitivity of 94.12%
and the specificity of 98.39%, due to the excellent classi-
fication ability of RF and parameter tuning based on PSO.
Although the PSO-RF model costs the highest time complex-
ity, the overall complexity is totally acceptable practically.
Our work concludes that the PSO-RF model is a highly

effective AI-enabled tool for diagnose spontaneous rupture of
ovarian endometriomas. It is fully qualified to assist surgeons
in diagnosing whether a patient’s ovarian endometrioma is
ruptured preoperatively.
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