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ABSTRACT Mixed Datasets with complex interactions between categorical and numerical attributes are
common in engineering and business applications. For example, production rates in manufacturing systems
are jointly influenced by several categorical and numerical attributes, such as machine and product types
and their numerical attributes. This study aims to improve the prediction performance and transparency of
mixed datasets with complex interactions using machine learning (ML) methods. The proposed method
requires lesser data and computational effort than existing hierarchical or clustering regression methods.
Multiple prediction models can be generated by partitioning a dataset into subsets with different categorical
attribution combinations. One- and two-stage model selection methods are proposed to use the training and
validation datasets in selecting better models among all the predictionmodels. Numerical results demonstrate
the potential of the model selection approach in a mixed dataset from a semiconductor manufacturer.
In comparison with regression models, more than 30% reduction in root mean square error is observed
using the proposed model selection approach. The cross-validation test results also demonstrated a 10%
improvement in accuracy against the properly tuned XGBoost models. Moreover, the proposed model
selection approach is compatible with other regression orML prediction methods and can be used to improve
the model’s transparency of any existing methods on mixed datasets.

INDEX TERMS Hierarchical method, hierarchical clustering, prediction methods, regression analysis,
manufacturing, expert systems.

I. INTRODUCTION
MixedDatasets with complex interactions between categorical
and numerical attributes are common in engineering and
business applications. For example, production rates inmanu-
facturing systems are jointly influenced by several categorical
and numerical attributes, such as machine and product types
and their numerical attributes. This study aims to improve
the prediction performance for mixed datasets with complex
interactions using machine learning (ML) methods.

Prediction quality is crucial for operation efficiency of
manufacturing and service industries. For example, pre-
dicting the throughput rate of a specific machine–product
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combination is a critical task for scheduling, capacity
planning, and other operations management activities in
manufacturing industry. The proposed methodology helps
practitioners improve the overall prediction accuracy and
provide transparency of the prediction models. As indicated
in [1], tool cost consists of 70% of the total costs of semicon-
ductor manufacturing. Underestimation or overestimation of
the throughput rate will lead to surplus or shortage of capac-
ity. In capital intensive industries, such as semiconductor
manufacturing, companies annually invest billions in capac-
ity expansion, and the proposed method can significantly
enhance decision quality.

This study is driven by the need to predict the production
rate of new products among multiple machine types in semi-
conductor testing and assembly facilities. Fig. 1 shows the
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FIGURE 1. Production rates of two machine types: (A) without and
(B) with the consideration of the interaction between machine types and
x-attributes.

production rates of different products on two machines,
wherein the x- and y-axes represent the numerical attribute
of the products and the production rates, respectively. The
data in Fig. 1 shows the clear interactions between the
machine type and the x-value, which suggests that the red data
from Machine A and the blue data from Machine B behave
differently. In this example, building a single prediction
model for both machines without considering the interactions
between the machine types and x-attributes becomes unsatis-
factory (Fig. 1 [A]). Thus, hierarchical predictionmethods are
necessary in such environments (Fig. 1[B]).

Given that capacity expansions are often applied over time
gradually, different machine types can be procured at various
capacity expansion stages. Thus, machines types can be a
common categorical attribute in manufacturing systems.

Moreover, many products can be produced simultaneously
in low volumes when product life cycles detract and
additional product customizations are adopted. In such
low-volume and high-mix (LVHM) manufacturing systems,
product types and the other categorical product attributes
must also be considered.

While multiple machine types and LVHM products are
simultaneously present in a manufacturing system, produc-
tion rates or yield qualities may be jointly influenced by the
complex interactions between the categorical and numerical
attributes of the machines and products. Thus, modelling the
complex interactions among attributes is crucial for improv-
ing decisions regarding scheduling or dispatching. However,
in LVHM environments with short product life cycle and
multiple machine types, new products and product–machine
combinations that lack historical production rate or qual-

ity data are common and cause difficulties in production
planning.

To overcome the aforementioned challenges in LVHM
production systems, the main contributions of this study are
summarized as follows. Fig. 2 shows the general framework
for using partial combination models to improve prediction
quality and transparency.

– This research is among the first studies to adopt the
model selection approach for prediction.

– The proposed method improves prediction quality.
In comparisonwith the popular XGBoostmodels or other
commercial packages, the overall root mean square
error (RMSE) can be reduced by more than 10%.

– The proposedmethod improves themodel’s transparency.
– The proposed method requires lesser data and
computational effort than hierarchical regression.

– The proposed method is robust in noisy environments,
especially when outliers exist.

The remainder of the work is arranged as follows.
Section II reviews related works. Sections III and IV for-
mally defines the proposed prediction models. Section V
presents the model selection methods. Section VI uses the
empirical dataset from a semiconductor manufacturer to
validate the overall performance of the proposed method.
Section VII summarizes the findings and provides insights
into the general mixed dataset prediction problems.

II. LITERATURE REVIEW
In literature, machine learningmethods are commonly used to
predict a numerical response variable inmixed datasets. In the
semiconductor manufacturing domain, [2] compared four
machine learning methods that can handle mixed datasets
to estimate factory cycle time, and found that decision
tree regression method has the best prediction performance.
Reference [3] developed a tree-based piecewise linear
regression model to estimate the flow-time of a manufac-
turing system. Reference [4] used different machine learn-
ing approaches to improve the lead time prediction for
a mixed dataset from a manufacturing execution system.
Tree-based ensemble methods have the lowest root mean
square error (RMSE) and mean absolute error (MAE).
References [5] and [6] used XGBoost tree-based classifier
for the mixed datasets from the Kaggle competition, ‘‘Bosch
Production Line Performance’’. Reference [7] used XGBoost

FIGURE 2. The general framework for using partial combination models.
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method to improve prediction accuracy in intrusion detection
for mixed datasets. Among the relevant research, XGBoost
and decision tree regression are commonly recognized as the
best performing prediction methods for mixed datasets. Thus,
these two methods are used as benchmarks for our numerical
study to show the superiority of the proposed algorithm.

Further literature review includes four machine learning
approaches and concepts, namely, hierarchical regres-
sion/clustering methods, feature selection, ensemble meth-
ods, and model transparency. These approaches are widely
used and discussed for prediction problems in mixed datasets.

A. HIERARCHICAL REGRESSION/CLUSTERING METHODS
Performing data clustering followed by the application of
regression methods on each cluster are often suggested
when conducting regression analysis on a dataset with com-
plex interaction among variables. In polynomial regression,
the dependent variable y is modeled as an n-th degree poly-
nomial of independent variable x [13]. Segmented regres-
sion is a classical statistical analysis method that uses this
philosophy [8]. The method constructs piecewise linear
(or nonlinear) functions for the different portions of a dataset.
Despite the restriction in cluster shape, other clustering meth-
ods, including agglomerative, density based spatial clustering
of applications with noise (DBSCAN), Gaussian mixtures,
and k-means clustering, are designed for purely numeri-
cal datasets because the use of binary categorical variables
(e.g., 1 and 0) can distort distance computation even if the
data is normalized. Gaussian mixtures, which assume that the
dataset forms amixture of a finite number of small distributed
Gaussian datasets, may not be scalable to large datasets.
Agglomerative clustering, which belongs in the family of
hierarchical clustering methods, builds clusters by pairing
up clusters according to similarity. Agglomerative clustering
uses a bottom–up approach that begins from individual data
points to a certain threshold [14]. DBSCAN is a density based
algorithm used for discovering clusters. This algorithm can
capture uneven-shaped clusters, but its computation perfor-
mance deteriorates with the dimensionality of the feature
space [15].

Clustering methods require large computational effort for
Mixed Datasets that contain numerous features. In addition,
categorical variables severely affect the determination of
the similarity among data points even after pre-processing
(e.g., scaling and normalization). Moreover, when using clus-
tering for regression, considering the regression performance
(e.g., R2, mean square error) instead of only the common
clustering performance evaluation metrics (e.g., similarity
measures) remains a major challenge.

Clustering methods are useful on datasets with mixed
categorical and numerical variables. Reference [9] adopted
the clustering concept into the clustered linear regression,
which improved the performance of the classical linear
regression by determining the partitions that enhanced the
accuracy of local linear regressions. Similarly, multilevel or
hierarchical regression allows different regression parameters

for each portion/cluster of the dataset by inputting the
relationships among different variables (i.e., hierarchies)
[10]. Hierarchical linear regression is another widely used
method for mixed data sets. By adding or deleting variables,
hierarchical linear regression finds independent variables that
have significant influence on the response variable [16].
Hierarchical linear modeling (HLM) is a useful regres-
sion method for mixed dataset with hierarchical relationship
among predictive variables [17]. However, complex mathe-
matical calculations and statistical techniques are required
in establishing HLM models. In such models, the num-
ber of model parameters exponentially increases with the
number of levels or attributes; thus, HLM has an unsat-
isfactory performance in datasets with large number of
attributes/levels.

Although the early clustering methods fail to perform
well in modern applications with large number of features,
the clustering concept is widely adopted in contemporaryML
and hierarchical regression models, especially in the unsuper-
vised learning paradigm. In predicting a numerical response
variable, a method that guides clustering through regression
functions can still be beneficial. Spath’s regression exchange
algorithm improves the regression performance of clusters by
exchanging data points between clusters [18]. [11] provided
the term regression clustering for the family of cluster-wise
regression methods by adopting the regression exchange
algorithm. In regression clustering, the dataset is partitioned
into clusters using a center-based clustering algorithm (e.g.,
k-means clustering) through the help of regression optimiza-
tion algorithms. In these methods, clustering is applied iter-
atively, and the objective function and stopping criterion
are based on regression performance. Reference [12] devel-
oped algorithms for generalized cluster-wise linear regression
problems. TABLE 1 summarizes different hierarchical and
clustering methods and their corresponding limitations.

B. FEATURE SELECTION
A common limitation of hierarchical or clustering methods
is the exponential growth of model parameters along with
categorical attributes. To overcome this limitation, feature
selection is used in traditional statistical analyses for dimen-
sion reduction. Feature selection selects available features
by eliminating irrelevant ones. Some works have proposed
methods for dimension reduction when dealing with large
data [19], [20]. A new feature selection method for crisp and
low-quality data was proposed in [21].

Although feature selection methods are commonly used,
they are not beneficial when all features or attributes are
relevant. For instance, in Fig. 1, categorical and numerical
attributes are relevant, and feature selection methods will not
reduce the dimension of the regression problem. Moreover,
in some large prediction problems, the dimension of the
regression problem remains excessively high for efficient
computation. Many studies used ML methods to improve the
prediction performance for overcoming the aforementioned
disadvantages of traditional statistical methods.
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TABLE 1. Hierarchical and clustering-based regression methods.

C. ENSEMBLE METHODS
For manufacturing applications, many researchers have
constructed prediction models using ensemble meth-
ods [22]–[24]. Decision tree regression is an ensemble
method using tree structures to handle numerical and categor-
ical data. Decision tree regression needs complex calculation
and more time to train models than other ML methods
[13]. References [25] and [26] apply ensemble methods to
analyze semiconductor process data. Some works utilized
ensemble approaches for intrusion detection [27]. Compared
with traditional statistical methods, ensemble methods can
transform the complex and non-linear characteristics of data
effectively and train models to improve the efficiency of
classification and prediction. Gradient boosting is a prac-
tical and popular ensemble method. As an open-source
implementation of gradient boosting methods, XGBoost
became prominent in ML competitions and data mining
challenges (e.g., ML competitions held by Kaggle). For
example, in the KDDCup 2015 and ICDN challenge 2015,
XGBoost demonstrated a remarkable performance over a
wide range of data classification problems. Reference [28]
detailed XGBoost, which was a scalable tree boosting sys-
tem that was favored by many ML competition winning
teams because of its high performance and computational
speed. This system performed model adaptation with high
flexibility and produced state-of-the-art model results. Many
studies applied extreme gradient boosting methods to dif-
ferent ML regions. The system yielded a comparatively
better performance than the original one by constructing an
XGBoost-based prediction model for short-term load predic-
tion [29]. Reference [30] developed an XGBoost framework
for biomedical fields to predict essential proteins. In addition,
[31] used the XGBoost algorithm to classify patients with
focal epilepsy. However, ensemble methods, such as the
XGBoost framework, still suffer from model transparency
issues. To overcome such issues, this study improves pre-
diction quality based on the satisfactory performance of
modern ML packages. The proposed method initially con-
structs a large number of models under different combina-
tions of categorical attributes and then develops a model
selectionmethod that will select among the predictionmodels

to improve the overall prediction quality and the model’s
transparency.

D. MODEL TRANSPARENCY
The increasingly complex prediction models and machine
learning methods have led to the concerns of model trans-
parency. The correlation and logic between models are estab-
lished by proposing interpretable classifiers on the bases of
statistical probability [32]. Reference [33] develops inter-
pretable decision sets and uses independent if-then rules
to build interpretable models. A novel tree model split-
ting criterion is proposed to enhance model interpretability
[34]. Other model transparency related research is summa-
rized in the survey of [35]. However, despite the increas-
ing attention on model transparency, the hidden correlation
between attributes cannot be sufficiently explained through
existing ML methods, and most machine learning methods
still focus on model accuracy improvement. In this research,
the use of the partial combination data set improves model
transparency through providing insights into the hidden
correlation between categorical attributes.

Although numerous research studies mixed datasets for
prediction, entire datasets are used to build a single
prediction model that may not consider the complex inter-
actions between categorical variables. In addition, model
transparency is commonly neglected. Thus, our proposed
method splits datasets for building models and selects the
best prediction models to improve the prediction accuracy
and model transparency.

III. PROBLEM DESCRIPTION AND DATA PREPROCESSING
We assume a mixed data set (0) consisting of k categor-
ical explanatory variables (X i, i = 1 . . .k), m numerical
explanatory variables (Xl, l = k+1 . . .k + m), and one
numerical response variable (Y ). Each categorical variable
(X i, i = 1 . . . k) has (Ni, i = 1 . . . k) distinct values. Let
�i = {1, 2, 3 . . . . . .Ni} , i = 1 . . . k denote the sample space
for the values of the ith categorical attribute; xi ∈ �i is a
specific value for the ith categorical explanatory variables
(X i, i = 1 . . . k). The complex interaction effects occur when
the categorical and/or numerical variables interact with each
other.
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TABLE 2. Mixed dataset (0) considered in this research.

In summary, in TABLE 2, we assume that a dataset
(0) contains p independent observations, each with k cat-
egorical features, m numerical features, and a numeri-
cal outcome. Let

(
xp1 , x

p
2 , x

p
3 , . . . , x

p
k , x

p
k+1, . . . , x

p
k+m, yp

)
,

p = 1 . . .P be the p-th observation of 0, then 0 can be
defined as a [P] × [k + m + 1] matrix (e.g.,

(
x2,y2

)
=(

x21 , x
2
2 , x

2
3 , . . . , x

2
k , x

2
k+1, . . . , x

2
k+m, y2

)
which is the second

observation in the dataset).
In the Mixed Dataset 0, subsets are defined according to

the categorical attribute values of each observation, beginning
from the fundamental dataset, which contains only the obser-
vations with identical categorical attributes. Then, partial and
full combination datasets are defined through the union of
fundamental datasets.

A. FUNDAMENTAL COMBINATION (x1,x2, . . . . . .xk) OF
CATEGORICAL ATTRIBUTES AND DATASETS
1) FUNDAMENTAL COMBINATION (x1, x2, . . . . . . xk)

Let (x1, x2, . . . . . .xk) be a specific combination of the
categorical attributes, where (x1, x2, . . . . . .xk) is the funda-
mental combination of the categorical attributes or simply the
fundamental combination. Given that the categorical attribute
Xi hasNi possible values,

∏k
i=1 Ni fundamental combinations

can be obtained at most.

2) FUNDAMENTAL COMBINATION DATASET 0x1,x2,...xk

Let 0x1,x2,...xk ⊂ 0 be a set that contains all observations
that satisfy (X1,X2, . . . . . .Xk) = (x1, x2, . . . . . .xk)
(i.e., the categorical attributes are identical to the funda-
mental combination ). Different fundamental combination
datasets are mutually exclusive. The union of all fundamental
combination datasets is the entire dataset 0.

3) THREE MUTUALLY EXCLUSIVE SUBSETS 0Tr
x1,x2,...xk

,
0V
x1,x2,...xk

, AND 0Ts
x1,x2,...xk

OF THE FUNDAMENTAL
COMBINATION DATASETS 0x1,x2,...xk , WHERE
0x1,x2,...xk = 0Tr

x1,x2,...xk
∪ 0V

x1,x2,...xk
∪ 0Ts

x1,x2,...xk

– 0Tr
x1,x2,...xk : Fundamental combination training dataset,

which contains 70% randomly selected data from
0x1,x2,...xk ; 0

Tr
x1,x2,...xk is used for the model training.

– 0V
x1,x2,...xk : Fundamental combination validation

dataset, which contains 15% randomly selected data
from 0x1,x2,...xk ; 0V

x1,x2,...xk is used for model valida-
tion and selection, which will be discussed in the next
section.

– 0Ts
x1,x2,...xk : Fundamental combination testing dataset,

which contains 15% randomly selected data from
0x1,x2,...xk . The testing dataset is used to measure the
performance of the proposed method.

The functions of these subsets will be explained in the
model’s training and selection sections.

B. PARTIAL COMBINATION OF CATEGORICAL ATTRIBUTES
AND PARTIAL COMBINATION DATASETS
Let I be a subset of {1, 2, . . . k}, I 6= ∅ and I 6= {1, 2, . . . k}.

1) PARTIAL COMBINATION (xj , j /∈ I)
Let (xj, j /∈ I ) be a partial combination of the categori-
cal attributes, in which Xj can be an arbitrary value in �j
when j ∈ I , otherwise, Xj should be a specific value xj in
�j. (xj, j /∈ I ) assigns specific values only to a part of the cat-
egorical attributes, hence, (xj, j /∈ I ) is a partial combination
of the categorical attributes or simply partial combination.

2) PARTIAL COMBINATION DATASET 0(xj ,j /∈I)

Let 0(xj,j/∈I ) =
⋃

[xi∈�i,i∈I ] 0x1,x2,...xk be the union of all
fundamental combination datasets that satisfies the partial
combination ( i.e., 0(xj,j/∈I ) is a set that contains all data that
satisfy the partial combination of the categorical attributes
and

(
Xj = xj,j /∈ I

)
). Note that different partial combina-

tion datasets might not be mutually exclusive and might be
identical.

3) THREE MUTUALLY EXCLUSIVE SUBSETS 0Tr
(xj ,j /∈I)

, 0V
(xj ,j /∈I)

,

AND 0Ts
(xj ,j /∈I)

OF THE PARTIAL COMBINATION DATASETS

0(xj ,j /∈I), WHERE 0(xj ,j /∈I) = 0Tr
(xj ,j /∈I)

∪ 0V
(xj ,j /∈I)

∪ 0Ts
(xj ,j /∈I)

– 0Tr
(xj,j/∈I )

=
⋃

[xi∈�i,i∈I ] 0
Tr
x1,x2,...xk : Partial combination

training dataset
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– 0V
(xj,j/∈I )

=
⋃

[xi∈�i,i∈I ] 0
V
x1,x2,...xk : Partial combination

validation dataset
– 0Ts

(xj,j/∈I )
=
⋃

[xi∈�i,i∈I ] 0
Ts
x1,x2,...xk : Partial combination

testing dataset
0Tr
(xj,j/∈I )

, 0V
(xj,j/∈I )

, and 0Ts
(xj,j/∈I )

still contain 70%, 15%, and
15% of the data in the entire partial combination dataset
0(xj,j/∈I ), respectively; and all training, validation, and testing
data in the fundamental datasets assume the respective similar
functions in the partial combination datasets. None of the
testing data will be used for the training of any models in the
next section.

C. FULL COMBINATION OF CATEGORICAL ATTRIBUTES
AND THEIR CORRESPONDING DATASETS
Following the definition of the partial combination, when
I ={1, 2, . . .k}, all categorical attributes (X j) can be arbitrary
values in �j.

1) FULL COMBINATION (�1, �2, . . . �k)

Let (�1, �2, . . .�k) be the full combination of the categorical
attributes, where such attributes can all be arbitrary.

2) FULL COMBINATION DATASET
0�1,�2,...�k =

⋃
[xi∈�i ,i∈I] 0x1,x2,...xk

Let 0�1,�2,...�k =
⋃

[xi∈�i,i∈I ] 0x1,x2,...xk be the union of all
fundamental combination datasets. Thus, 0�1,�2,...�k is also
the entire dataset, and 0�1,�2,...�k = 0.

3) THREE MUTUALLY EXCLUSIVE SUBSETS 0Tr
�1,�2,...�k

,
0V

�1,�2,...�k
, AND 0Ts

�1,�2,...�k
OF THE FULL

COMBINATION DATASET 0�1,�2,...�k

Let 0�1,�2,...�k = 0Tr
�1,�2,...�k

∪å0V
�1,�2,...�k

∪å0Ts
�1,�2,...�k

,
where 0�1,�2,...�k represents the entire dataset 0 because
0�1,�2,...�k includes the observations of arbitrary categor-
ical variable values. For simplicity, 0Tr

= 0Tr
�1,�2,...�k

,
0V
= 0V

�1,�2,...�k
, and 0Ts

= 0Ts
�1,�2,...�k

are respectively
defined as the full training, validation, and testing datasets.

– 0Tr
= 0Tr

�1,�2,...�k
=

⋃
[xi∈�i,i∈I ] 0

Tr
x1,x2,...xk : Full

combination training dataset
– 0V

= 0V
�1,�2,...�k

=
⋃

[xi∈�i,i∈I ] 0
V
x1,x2,...xk : Full

combination validation dataset
– 0Ts

= 0Ts
�1,�2,...�k

=
⋃

[xi∈�i,i∈I ] 0
Ts
x1,x2,...xk :

Full combination testing dataset
0Tr

�1,�2,...�k
, 0V

�1,�2,...�k
, and 0Ts

�1,�2,...�k
contain 70%,

15%, and 15% of the data in the entire dataset 0�1,�2,...�k ,
respectively; and all training, validation, and testing data
in the fundamental datasets maintain the same functions in
0�1,�2,...�k . None of the testing data will be used for the
training of any models in the next section.

IV. FUNDAMENTAL, PARTIAL, AND FULL COMBINATION
PREDICTION MODELS USING THE CORRESPONDING
DATASETS
A distinct prediction model will be trained for every distinct
fundamental, partial, and full combination training dataset

0Tr
x1,x2,...xk , 0

Tr
(xj,j /∈I), and 0Tr

�1,�2,...�k
. Model training can

be conducted using any statistical or ML methods. In the
numerical study of this research, one-hot encoding is applied
to the categorical attributes and XGBoost is used for the
model training in the numerical analysis.

A. FUNDAMENTAL COMBINATION PREDICTION
MODEL (Mx1,x2,...xk)

Let Mx1,x2,...xk be the prediction model trained by the
fundamental training dataset 0Tr

x1,x2,...xk ;Mx1,x2,...xk is the
fundamental combination prediction model or simply
the fundamental model.

B. PARTIAL COMBINATION PREDICTION
MODEL (M(xj ,j /∈I))

Let M(xj,j/∈I ) be the prediction model trained by the partial
combination training dataset 0Tr

(xj,j/∈I )
, when I 6= ∅ and

I 6= {1, 2 . . . k};M(xj,j/∈I ) is the partial combination prediction
model or the partial model.

C. FULL COMBINATION PREDICTION
MODEL (M�1,�2,...,�k

)

Let M�1,�2,...,�k be the prediction model trained by the full
combination training dataset 0Tr

�1,�2,...�k
;M�1,�2,...,�k is the

full combination prediction model or the full model.
Note that none of the validation and testing data is used for

the model training in all fundamental, partial, and full predic-
tion models because 0Tr

�1,�2,...�k
and 0Tr

(xj,j/∈I )
are generated

from the union of the fundamental training dataset 0Tr
x1,x2,...xk ;

all the fundamental datasets are mutually exclusive. This
condition ensures the quality of the validation and testing
processes, whichwill be introduced in the subsequent section.

V. MODEL TRAINING PROCESS
For the training process adopted in the proposed algorithm,
Table 3 summarizes attributes used for training differ-
ent models. Each fundamental dataset (0x1,x2,...xk ) has
the same specific values for all categorical attributes
(X1,X2, . . . ,Xk) = (x1, x2, . . . ,xk). Thus, given that the
same values of categorical attributes do not offer any useful
information for predicting the response, only the numerical
attributes are used to train fundamental models Mx1,x2,...xk .
Then, combining different fundamental datasets with simi-
lar prediction models allows more observations to be used
for better estimation of model parameters of the common
prediction model and improve its accuracy. For the partial
combination model, we calculate the union of corresponding
fundamental datasets to obtain each partial dataset0(xj,j/∈I) =⋃

[xi∈�i,i∈I ] 0x1,x2,...xk , I 6= ∅ and I 6= {1, 2, . . .k}, in which
all of the data in 0(xj,j/∈I |I 6=∅ and I 6={1,2...k}) have the same spe-
cific values for categorical attributes i/∈I .(i.e., Xi = xj, i /∈ I .)
Again, given that the same values of categorical attributes do
not offer any useful information for predicting the response,
only categorical attributes Xi, i ∈ I with different values are
used to train the corresponding partial combination model
M(xj,j/∈I |I 6=∅ and I 6={1,2...k}). In addition, given that the full
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TABLE 3. Attributes used for training different models.

dataset (0�1,�2,...�k =
⋃

[xi∈�i,i∈I ] 0x1,x2,...xk ) represents the
union of all fundamental datasets and includes all combi-
nations of categorical variables, all categorical and numer-
ical attributes are used to train the full combination model
M�1,�2,...,�k .
Using the corresponding datasets with all numerical

attributes and the above chosen categorical attributes,
we train all fundamental models (Mx1,x2,...xk ), partial models
(M(xj,j/∈I |I 6=∅ and I 6={1,2...k})) and full models (M�1,�2,...,�k )
using XGBoost. Grid search in [36] is used for finding
the best values of hyper-parameters (general, booster, and
learning task parameters) in the training. In summary, all
features are still used in the full combination model and in
several partial combination models. Thus, none of the fea-
tures are completely removed throughout the model selection
approach unlike most feature selection methods.

More precisely, the model selection finds similarities
between different fundamental datasets and then selects the
best prediction model for each fundamental combination.
Consider the semiconductor dataset [37] used in our numer-
ical study, all the attributes are important to predict the
response variable and none can be completely removed from
the prediction models. However, several categorical variable
combinations may have similar regression models and pool-
ing those fundamental datasets enhances the estimation of
the prediction model parameters. Without using the proposed
model selection prediction approach, pooling together fun-
damental or partial combination datasets without similarities
hampers themodel parameter estimations, leading to negative
impacts on the overall prediction accuracy.

Each fundamental dataset is included in exactly 2k pre-
diction models, including one fundamental prediction model,
2k -2 partial combination prediction models, and one full
combination model. Given that each categorical attribute
can either be specific or arbitrary in the partial datasets, 2k

datasets are associated with each fundamental combination.
Excluding the fundamental and full datasets, 2k -2 partial
prediction models are available. Moreover, a single full pre-
diction model is shared by all fundamental combinations.

For every prediction model M∈ {Mx1,x2,...xk ,
M(xj,j/∈I |I 6=∅ and I 6={1,2...k}),M�1,�2,...,�k associated with a
fundamental combination (x1, x2, . . .xk ), the prediction
value ỹpM can be generated for the p-th observation(
xp1 , x

p
2 , x

p
3 , . . . ,x

p
k , x

p
k+1, . . . ,x

p
k+m, yp

)
∈ 0x1,x2,...xk using

the prediction modelM .
The training, validation, and testing RMSEM0∗x1,x2,...xk

, ∗ ∈

{Tr,V ,Ts of fundamental datasets 0Tr
�1,�2,...�k

, 0V
�1,�2,...�k

,

0Ts
�1,�2,...�k

under model M can then be defined as

RMSEM0∗x1,x2,...xk
=

√√√√ ∑
p∈0∗x1,x2,...xk

(yp − ỹpM )2

number of observations in0∗x1,x2,...xk
,

∗ ∈ {Tr,V ,Ts} and M∈ {Mx1,x2,...xk ,

M(xj,j/∈I |I 6=∅ and I 6={1,2...k}),M�1,�2,...,�k ,

where RMSEM
0Tsx1,x2,...xk

is the RMSE of model M for the

fundamental testing dataset 0Ts
x1,x2,...xk .

In practice, the numbers of distinct partial combination
datasets and prediction models are less than 2k − 2 because
many fundamental combinations are infeasible due to the
incompatibility among categorical values (e.g., mismatch of
the machine type and the materials/products). Infeasible fun-
damental combinations lead to empty fundamental combi-
nation datasets. When an empty dataset is in union with
another fundamental/partial dataset, the new dataset remains
unchanged, and the new models for the new dataset do not
need to be trained. Thus, the number of distinct datasets and
prediction models are less than what is theoretically allowed.

Whenmultiplemodels are associatedwith each fundamental
combination, different prediction models might exhibit
various performance. For example, in the semiconductor
manufacturing dataset used for the numerical analysis in
this research, different fundamental/partial/full combination
models are used to predict the production rates of a product.
The training and validation RMSEs (RMSEM

0Trx1,x2,...xk
and

RMSEM
0Vx1,x2,...xk

) of the 13 distinct prediction models asso-

ciated with a specific fundamental combination are plotted
in Fig. 3, where the models are arranged according to the
number of observations in the dataset used for model training
from left to right (i.e., the full dataset contains all training
data and is listed on the left, whereas the fundamental dataset
is the smallest training dataset and the fundamental model is
listed on the right).

In Fig. 3, one of the partial combination models possesses
the lowest validation RMSE (RMSEM

0Vx1,x2,...xk
), which indi-

cates better prediction performance than those with higher
validation RMSEs. Moreover, in the semiconductor dataset,
the rightmost fundamental model demonstrates overfitting,
and low training RMSE (RMSE

Mx1,x2,...xk
0Trx1,x2,...xk

) and high vali-

dation RMSE (RMSE
Mx1,x2,...xk
0Vx1,x2,...xk

) are observed. In addition,

the full combination model M�1,�2,...,�k does not perform
satisfactorily because of the different interactions between the
categorical and numerical attributes in the different datasets.
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FIGURE 3. RMSEM
0∗x1,x2,...xk

of the different models in the semiconductor manufacturing example.

Categorical attributes might have complex interaction with
one another, as well as with other numerical attributes
(Fig. 1 and Fig. 3); thus, a fundamental, partial, or full model
can be appropriate or inappropriate for a specific fundamental
combination of categorical attribute values. When some of
the categorical attribute levels show similar influence on the
response variable, combining datasets with such categorical
attribute levels might create a large dataset that effectively
estimates themodel parameters. However, when the influence
of the categorical attribute on the response variable vary, pool-
ing the datasets together might mislead the model training
processes and hamper the overall performance. In conclusion,
estimating the response variable using the existing methods
is difficult when complex interaction is possible in a mixed
dataset.

VI. SELECTION OF THE PREDICTION MODELS
This section proposes a method that utilizes the training and
validation datasets in selecting the appropriate prediction
methods to overcome the weakness of the existing methods
in mixed datasets with complex interaction. For each funda-
mental combination, the model selection method can select
the appropriate prediction models among all models.

A. MODEL SELECTION INDEXES
First, we define the model selection indexes. For every
record in the training and validation data in the fun-
damental training and validation datasets (0Tr

x1,x2,...xk and
0V
x1,x2,...xk , respectively), each prediction model associated

with the fundamental combination (x1, x2, . . .xk ) can be
used to generate the prediction values. However, errors are
present between the predicted and observed values. Using
the prediction error of each dataset in each associated
model, the RMSE and the 90th quantile (90QT) of errors
for each possible pairs of an associated prediction model

M∈ {Mx1,x2,...xk ,M(xj,j/∈I |I 6=∅ and I 6={1,2...k}),M�1,�2,...,�k and
a dataset 0Tr

x1,x2,...xk or 0V
x1,x2,...xk can be determined.

The performance measures of a prediction model to a
dataset are listed in TABLE 4.

– Note 1: The 90 percent quantile (90 QT) of the
prediction error is used for model selection because
RMSE can amplify the influence or an outlier or glitch in
the data collection processes. Thus, when outliers exist,
90 QT could serve as a robust model selection index.

– Note 2: The training dataset 0Tr
x1,x2,...xk , which contains

70% of the data, is a relatively stable measure of a
model’s prediction quality. However, using 0Tr

x1,x2,...xk
might fail to detect the overfitting of a model. Thus,
the validation dataset 0V

x1,x2,...xk , which contains 15% of
the data, is also used to measure the performance of a
prediction model in a specific fundamental combination
(x1, x2, . . .xk ).

B. ONE-STAGE AND TWO-STAGE MODEL
SELECTION METHODS
The model fitness indexes (TABLE 4) for every distinct
prediction model M associated with a fundamental combi-
nation are calculated and ranked from the best to the worst.
The ranking is then used to define the one-stage and two-stage
model selection methods.

1) ONE-STAGE MODEL SELECTION METHOD (A, B, N)
Let A ∈ {RMSE, 90QT be a performance measure,
B ∈

{
0Tr
x1,x2,...xk , 0

V
x1,x2,...xk

}
be a dataset, and n be a

positive integer within 1 ≤ n ≤ 2k . A one-stage
model selection method identifies the best n models
under performance index A using dataset B. For example,
a one-stage (A, B, n) model selection method (RMSE,
0Tr
x1,x2,...xk , 3) ranks the top three models using RMSE and

dataset 0Tr
x1,x2,...xk (i.e., the top three models under
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TABLE 4. Performance measure of a prediction model to a dataset.

RMSEM
0Trx1,x2,...xk

are selected). ABn is the set of the n models

selected using the model selection method (A, B, n).

2) TWO-STAGE MODEL SELECTION METHODS (A, B, N, C, M)
Let A ∈ {RMSE, 90QT } be a performance measure,
B ∈

{
0Tr
x1,x2,...xk , 0

V
x1,x2,...xk

}
be a dataset and n be a positive

integer within 1 ≤ n ≤ 2k , C ∈
{
0Tr
x1,x2,...xk , 0

V
x1,x2,...xk

}
,

where C 6= B, and m be another positive integer within
m < n ≤ 2k .A two-stage model selection method can be
defined as follows.

– Step 1: The best n models under performance index A
are identified using dataset B (same as in the one-stage
model selection method), and ABn is defined as the set
of n models selected from the first stage.

– Step 2: The best m models in set ABn under performance
index A are selected using dataset C, and ABnCm is
defined as the set of models selected in this second stage.

For example, the two-stage model (RMSE, 0Tr
x1,x2,...xk ,

10, 0V
x1,x2,...xk , 3) identifies the top 10 models using

RMSEM
0Trx1,x2,...xk

, which uses the dataset 0Tr
x1,x2,...xk to calculate

the RMSE. In Step 2, the top 3 models are selected among the
10 selected models using 0V

x1,x2,...xk and RMSE.
The equality C = B will degenerate a two-stage method

into an equivalent one-stage method, hence, only the case
C 6= B is considered in the two-stage methods.
Let the set of selected predictionmodels from the one-stage

model selection methods be ABn . The average prediction ỹ
p
ABn

generated by ABn can then be expressed as

ỹpABn =

∑
M∈ABn

ỹpM
n

.

Then, let the set of selected prediction models from the
two-stage model be ABnCm . The average prediction ỹpABnCm
generated by ABnCm can be expressed as

ỹpABnCm=

∑
M∈ABnCm ỹ

p
M

m
.

C. PREDICTION QUALITY INDEXES FOR THE ONE-STAGE
AND TWO-STAGE MODEL SELECTION METHODS
The corresponding testing RMSE, mean absolute percentage
error (MAPE), 90QT, mean absolute error (MAE), mean arc-
tangent absolute percentage error (MAAPE), and R-squared

(R2) of the model selection method # are determined, where
# ∈{ABn ,ABnCm} is the selected selection method. For a
fundamental combination (x1, x2, . . . xk ),the abovementioned
performance indexes are defined as follows.

1)

RMSE#
0Tsx1,x2,...xk

=

√√√√ ∑
p∈0Tsx1,x2,...xk

(yp − ỹp#)
2

number of observations in 0Ts
x1,x2,...xk

2)

MAPE#
0Tsx1,x2,...xk

=

∑
p∈0Tsx1,x2,...xk

∣∣∣∣ yp−ỹp#yp

∣∣∣∣
number of observations in 0Ts

x1,x2,...xk
× 100%

3)

90QT #
0Tsx1,x2,...xk

= the 90% quantile of prediction errors

|yp − ỹp#|

4)

MAE#
0Tsx1,x2,...xk

=

∑
p∈0Tsx1,x2,...xk

∣∣yp − ỹp#∣∣
number of observations in 0Ts

x1,x2,...xk

5)

MAAPE#
0Tsx1,x2,...xk

=

∑
p∈0Tsx1,x2,...xk

arctan

∣∣∣∣ yp−ỹp#yp

∣∣∣∣
number of observations in 0Ts

x1,x2,...xk

6)

R2
#

0Tsx1,x2,...xk
= 1−

∑
p∈0Tsx1,x2,...xk

(yp − ỹp#)
2∑

p∈0Tsx1,x2,...xk
(yp − ȳ)2

Then, the overall testing RMSE, MAPE, 90QT, MAE, and
MAAPE are determined.
7)

RMSE#
0Ts
=

√√√√√ ∑
(x1,x2,......xk )

∑
p∈0Tsx1,x2,...xk

(yp − ỹp#)
2

number of observations in 0Ts
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FIGURE 4. The throughput rate distribution within different fundamental datasets.

8)

MAPE#
0Ts
=

∑
(x1,x2,......xk )

∑
p∈0Tsx1,x2,...xk

∣∣∣∣ yp−ỹp#yp

∣∣∣∣
number of observations in 0Ts × 100%

9)

90QT #
0Ts
= the 90% quantile of errors |yp − ỹp#|

10)

MAE#
0Ts
=

∑
(x1,x2,......xk )

∑
p∈0Tsx1,x2,...xk

∣∣yp − ỹp#∣∣
number of observations in 0Ts

11)

MAAPE#
0Ts
=

∑
(x1,x2,......xk )

∑
p∈0Tsx1,x2,...xk

arctan

∣∣∣∣ yp−ỹp#yp

∣∣∣∣
number of observations in 0Ts

12)

R2
#

0Ts
= 1−

∑
(x1,x2,......xk )

∑
p∈0Tsx1,x2,...xk

(yp − ỹp#)
2

∑
(x1,x2,......xk )

∑
p∈0Tsx1,x2,...xk

(yp − ȳ)2

VII. NUMERICAL STUDY AND ANALYSIS
In this section, two datasets, Semiconductor Backend
Production Rate [37] and Diamonds [38], are used to evaluate
the proposed model selection prediction method.

A. SEMICONDUCTOR BACKEND PRODUCTION
RATE DATASET
Semiconductor Backend Production Rate dataset [37] was
collected between Oct. 2018 and Mar. 2019 from a
world-leading semiconductor assembly and testing factory
in Taiwan. This dataset includes five categorical attributes
(X i, i = 1 . . . 5), 11 numerical attributes (Xl, l = 6 . . . 16),
and one response variable. The five categorical attributes
represent the machine, product, material, package, and recipe

types that are key factors affecting the production rates as
recorded by the Manufacturing Execution System (MES)
during the production. The 11 numerical attributes repre-
sent the geometric and physical characteristics of a semi-
conductor chip, such as the grinding thickness, number of
wires, wire width and length, number of dies in a substrate,
lead count, 2D die size, and the 3D package size. The
response variable refers to the throughput rate of a specific
machine–product combination during production. The five
categorical variables X1, X2, X3, X4, X5 have 2, 3, 4, 7 and
22 categorical attribute values, respectively (i.e.,�1 = {1, 2},
�2 = {1, 2, 3}, �3 = {1, 2, 3, 4}, �4 = {1, 2, . . . , 7},
and �5 = {1, 2, . . . , 22}). In addition, the dataset con-
tains 13,186 observations. Fig. 4 shows the throughput rate
distribution within different fundamental datasets. Given
the difference between fundamental datasets, estimating the
throughput rate values by using existing prediction methods
is difficult.

To the best of our knowledge, our research is among the
first studies to adopt the model selection approach for pre-
diction. The mixed dataset used might be helpful for other
researchers who are interested in studying prediction prob-
lems with complex interaction among categorical attributes.
Therefore, the dataset is provided as an electronic comple-
mentation of this paper to facilitate future research in this
field.

The XGBoost package on R is used for the training
of all fundamental/partial/full models. The following
hyper-parameters are used for the training of all par-
tial combination XGBoost models: general parameters
{booster: gbtree}; booster parameters {eta: 0.03, gamma:
0, max_depth: 6, subsample: 0.85, colsample_bytree:
0.85}; and learning task parameters{objective:reg:linear,
eval_metric:rmse}.

The proposed method using XGBoost package can inter-
nally handle missing values of numerical attributes. For
categorical attribute with missing values, one-hot encoding
allows the missing values to be treated as an additional level
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TABLE 5. Testing performance in semiconductor dataset.

of the attribute. To ensure that reliable results are reported for
different methods, cross-validation is performed by randomly
selecting training, validation, and testing datasets five times
on the semiconductor assembly and testing data.

Let A ∈ {RMSE, 90QT , B∈
{
0Tr
x1,x2,...xk , 0

V
x1,x2,...xk

}
,

and n ∈ {1, 3} in the one-stage methods, and A ∈

{RMSE, 90QT , B ∈
{
0Tr
x1,x2,...xk , 0

V
x1,x2,...xk

}
, n = 10,

C 6= B∈
{
0Tr
x1,x2,...xk , 0

V
x1,x2,...xk

}
, and m ∈ {1, 3} in

the two-stage model selection methods. Eight one-stage
and eight two-stage methods can be generated. The testing
results of these 16 model selection methods are reported in
TABLE 5(A). The best performing one-stage model selection
method is (90QT, 0V

x1,x2,...xk , 3), whereas the best performing
two-stage model selection methods is (90QT, 0V

x1,x2,...xk , 10,
0Tr
x1,x2,...xk , 3). Both model selection methods selected three

prediction models using the 90QT as the performance index.
The findings revealed that this index is less sensitive to out-
liers than RMSE, and thus can serve as a robust index for
model selection.

The best performing one- and two-stage model selection
methods are compared with properly tuned full and funda-
mental combination XGBoost models (TABLE 5 (B)) to ver-
ify the superiority of the proposed model selection prediction
method for mixed datasets. The hyper-parameters of the full
and fundamental combination XGBoost models are tuned
via grid search to ensure that fair comparison is achieved.
We also compared other regression methods for mixed data
sets, such as decision tree regression, polynomial regression,
and hierarchical linear regression.

The results showed that the one-stage and two-stage model
selection methods can effectively reduce prediction error,
while all other models fail to perform satisfactorily in this
numerical study because of the complex interaction among
variables. Because a reliable fundamental combinationmodel
could not be trained using small data sets with less than
100 observations, the full combination model will be used
by default for small data sets. Hence, TABLE 5 summarizes
only results from the fundamental combinations with at least
100 observations. The RMSE improvement is ranging from
8.9% and 10.8% against the properly trained full or fun-
damental combination XGBoost models, which are used in
the proposed method. The model selection approach also
enhanced the prediction model transparency compared with
the original XGBoost method, which is used for the training
of all models. Although XGBoost is an ensemble decision
tree method that provides better transparency than other ML
methods [34], extracting explainable results is difficult when
hundreds of different trees are present. Thus, when several
models are selected, the similarity among these models can
be used to help explain the ML results. For the illustration
of model transparency, the 90QT and RMSE of the differ-
ent models for the fundamental combination (2, 3, 3, 1, 17)
of the semiconductor dataset are summarized (Fig. 5). The
best performing model of the one-stage (90QT, 0V

x1,x2,...xk ,
3) and two-stage selection methods (90QT, 0Tr

x1,x2,...xk , 10,
0V
x1,x2,...xk , 3) identified partial model 11(M(xj,j/∈{2})), partial

model 7(M(xj,j/∈{2,4}) and partial model 2 (M(xj,j/∈{2,3,4}) for the
prediction.
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FIGURE 5. Enhancing the model’s transparency using the model selection methods.

TABLE 6. Testing performance in Diamonds dataset.

Among the three selected models, partial model 11
(M(xj,j/∈{2})) pools together the fundamental datasets with
different categorical attribute (X2) values. Therefore, differ-
ent X2 attributes exert similar influences on the response

variable, and pooling these training datasets improves the
prediction accuracy (i.e., the categorical attribute combi-
nations (x1, x2, . . . x5) = (2, �2, 3, 1, 17) influence the
response variable in the same way). Similarly, for partial
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models 7 and 2, the categorical attribute combinations
(2, �2, 3, �4, 17) and (2, �2, �3, �4, 17) yield similar pre-
diction models. In other words, different X2, X3, and X4
combinations will not affect the prediction model behavior
when x1 = 2 and x5 = 17. Moreover, the model selection
results suggest that the categorical variables’X1 and X5 values
interact or exert different influences on the response variable.
When a partial combination model is selected, the similar-
ity between fundamental combination data sets is revealed.
As shown in Fig. 4, fundamental combinations 1 and 7 have
a similar response variable distribution. The fundamental data
sets are combined to create a large partial combination data
set that would enhance the prediction accuracy and suggest
the hidden correlation between those categorical attributes.
Enhancing model transparency using partial combination of
categorical attributes is among the first in literature.

B. DIAMONDS DATASET
To validate the proposedmethod further, we compare with the
existing approaches using the open data set, Diamonds from
ggplot2 [38]. The data set contains 53,940 observations, and
further details can be found in [39]. This data set includes
3 categorical attributes (X i, i = 1 . . . 3), which reflect the
quality of the cut of the diamonds, diamonds’ color, and a
measurement of the extent of clarity of the diamond, and
six numerical attributes (Xl, l = 4 . . . 9). The response vari-
able refers to the price of diamonds in US dollars. In the
Diamonds data set, the categorical variables X1, X2, X3,
have 5, 7, and 8 categorical attribute values, respectively
(i.e., �1 = {1, 2, 3, 4, 5} , �2 = {1, 2, 3, 4, 5, 6, 7} and
�3 = {1, 2, 3, 4, 5, 6, 7, 8}). The proposed model selec-
tion method is compared with the results in [40] and sev-
eral other methods from the literature. The results are
summarized in TABLE 6. According to the model fitness
indexes shown in TABLE 6, similar performance improve-
ment is observed in this open mixed data set. The perfor-
mance improvement in RMSE ranges from 1.8% and 14.2%
against the properly trained full or fundamental combination
XGBoost model, which is used in the proposed method and
the performance improvement in RMSE is at least 30.2%
against other methods from the literature.

VIII. CONCLUSIONS AND FUTURE WORK
In this study, a novel model selection method is proposed
to improve the prediction performance for mixed datasets
with complex interactions and the transparency of the pre-
diction method. The proposed model selection prediction
method is compatible with any existing regression or ML
prediction method. Multiple prediction models can be gen-
erated under different categorical attribution combinations
by partitioning a dataset into subsets with different cate-
gorical attribution combinations. One-stage and two-stage
model selection methods are applied to the training and
validation datasets to select the appropriate models. Results
demonstrated the potential of the proposed model selection
prediction methods in the mixed dataset. The cross-validation

test results indicated a 10% improvement in the prediction
accuracy with respect to the properly tuned XGBoost models.
Moreover, compared with other methods from the literature,
at least 30% reduction in RMSE is observed when the pro-
posed methods are applied. In the future, the relationship of
the model selection parameters (A, B, n, C, m) to the charac-
teristics of the datasets will be explored. The potential of the
model selection method can be further enhanced by properly
tuning such parameters. Moreover, different statistics or ML
methods will also be combined in the model training stages
to further improve the overall prediction accuracy.

ACKNOWLEDGMENT
This study was conducted in part under the research projects,
‘‘Advanced Artificial Intelligence Technologies and Industry
Applications (3/4)’’ with Grant No. 109-EC-17-A-21-1516
and ‘‘III Innovative and Prospective Technologies Project
(1/1)’’ with Grant No. 109-EC-17-A-24-0461, which are sub-
sidized by the Ministry of Economic Affairs in Taiwan. The
work of the corresponding author was supported in part by
the Ministry of Science and Technology, Taiwan under Grant
No. MOST107-2628-E-002-006-MY3.

REFERENCES
[1] N. Geng, Z. Jiang, and F. Chen, ‘‘Stochastic programming based capacity

planning for semiconductor wafer fab with uncertain demand and capac-
ity,’’ Eur. J. Oper. Res., vol. 198, no. 3, pp. 899–908, Nov. 2009.

[2] P. Backus, M. Janakiram, S. Mowzoon, G. C. Runger, and A. Bhargava,
‘‘Factory cycle-time prediction with a data-mining approach,’’ IEEE Trans.
Semicond. Manuf., vol. 19, no. 2, pp. 252–258, May 2006.

[3] D. Y. Sha, R. L. Storch, andC.-H. Liu, ‘‘Development of a regression-based
method with case-based tuning to solve the due date assignment problem,’’
Int. J. Prod. Res., vol. 45, no. 1, pp. 65–82, Jan. 2007.

[4] L. Lingitz, V. Gallina, F. Ansari, D. Gyulai, A. Pfeiffer, W. Sihn, and
L. Monostori, ‘‘Lead time prediction using machine learning algorithms:
A case study by a semiconductor manufacturer,’’ Procedia CIRP, vol. 72,
pp. 1051–1056, 2018.

[5] B. Pavlyshenko, ‘‘Machine learning, linear and Bayesian models for logis-
tic regression in failure detection problems,’’ in Proc. IEEE Int. Conf. Big
Data (Big Data), Dec. 2016, pp. 2046–2050.

[6] A.Mangal and N. Kumar, ‘‘Using big data to enhance the bosch production
line performance: A Kaggle challenge,’’ in Proc. IEEE Int. Conf. Big Data
(Big Data), Dec. 2016, pp. 2029–2035.

[7] P. Su, Y. Liu, and X. Song, ‘‘Research on intrusion detection method based
on improved smote and XGBoost,’’ in Proc. 8th Int. Conf. Commun. Netw.
Secur. (ICCNS), 2018, pp. 37–41.

[8] P.M. Lerman, ‘‘Fitting segmented regressionmodels by grid search,’’Appl.
Statist., vol. 29, no. 1, pp. 77–84, 1980.

[9] B. Ari and H. A. Güvenir, ‘‘Clustered linear regression,’’ Knowl.-Based
Syst., vol. 15, no. 3, pp. 169–175, Mar. 2002.

[10] A. Gelman and J. Hill, Data Analysis Using Regression and Multi-
level/Hierarchical Models. Cambridge, U.K.: Cambridge Univ. Press,
2006.

[11] B. Zhang, ‘‘Regression clustering,’’ in Proc. 3rd IEEE Int. Conf. Data
Mining, Nov. 2003, pp. 451–458.

[12] Y. W. Park, Y. Jiang, D. Klabjan, and L. Williams, ‘‘Algorithms for gener-
alized clusterwise linear regression,’’ INFORMS J. Comput., vol. 29, no. 2,
pp. 301–317, May 2017.

[13] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Sta-
tistical Learning. New York, NY, USA: Springer, 2013, doi: 10.1007/978-
1-4614-7138-7.

[14] S. Salvador and P. Chan, ‘‘Determining the number of clusters/segments in
hierarchical clustering/segmentation algorithms,’’ in Proc. 16th IEEE Int.
Conf. Tools with Artif. Intell., Nov. 2004, pp. 576–584.

132118 VOLUME 8, 2020

http://dx.doi.org/10.1007/978-1-4614-7138-7
http://dx.doi.org/10.1007/978-1-4614-7138-7


Y.-H. Wu et al.: Using Partial Combination Models to Improve Prediction Quality and Transparency

[15] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters in large spatial databases with noise,’’ inProc. Kdd,
Aug. 1996, vol. 96, no. 34, pp. 226–231.

[16] J. V. Petrocelli, ‘‘Hierarchical multiple regression in counseling research:
Common problems and possible remedies,’’ Meas. Eval. Counseling
Develop., vol. 36, no. 1, pp. 9–22, Apr. 2003.

[17] H. Woltman, A. Feldstain, J. C. MacKay, and M. Rocchi, ‘‘An introduction
to hierarchical linear modeling,’’ Tuts. Quant. Methods Psychol., vol. 8,
no. 1, pp. 52–69, 2012.

[18] H. Späth, ‘‘Algorithm 39 clusterwise linear regression,’’ Computing,
vol. 22, no. 4, pp. 367–373, 1979.

[19] B. Chizi and O. Maimon, ‘‘Dimension reduction and feature selection,’’
in Data Mining and Knowledge Discovery Handbook. Boston, MA, USA:
Springer, 2009, pp. 83–100, doi: 10.1007/978-0-387-09823-4_5.

[20] C. Quan, D. Wan, B. Zhang, and F. Ren, ‘‘Reduce the dimensions of
emotional features by principal component analysis for speech emotion
recognition,’’ in Proc. IEEE/SICE Int. Symp. Syst. Integr., Dec. 2013,
pp. 222–226.

[21] J. M. Cadenas, M. C. Garrido, and R. Martínez, ‘‘Feature subset selection
Filter–Wrapper based on low quality data,’’ Expert Syst. Appl., vol. 40,
no. 16, pp. 6241–6252, Nov. 2013.

[22] T. Wuest, D. Weimer, C. Irgens, and K.-D. Thoben, ‘‘Machine learning in
manufacturing: Advantages, challenges, and applications,’’ Prod. Manuf.
Res., vol. 4, no. 1, pp. 23–45, Jan. 2016.

[23] D. Wu, S. Liu, L. Zhang, J. Terpenny, R. X. Gao, T. Kurfess, and
J. A. Guzzo, ‘‘A fog computing-based framework for process monitoring
and prognosis in cyber-manufacturing,’’ J. Manuf. Syst., vol. 43, pp. 25–34,
Apr. 2017.

[24] D. Wu, C. Jennings, J. Terpenny, R. X. Gao, and S. Kumara, ‘‘A compar-
ative study on machine learning algorithms for smart manufacturing: Tool
wear prediction using random forests,’’ J. Manuf. Sci. Eng., vol. 139, no. 7,
Jul. 2017, Art. no. 071018.

[25] D. Moldovan, T. Cioara, I. Anghel, and I. Salomie, ‘‘Machine learning
for sensor-based manufacturing processes,’’ in Proc. 13th IEEE Int. Conf.
Intell. Comput. Commun. Process. (ICCP), Sep. 2017, pp. 147–154.

[26] D. Stanisavljevic and M. Spitzer, ‘‘A review of related work on machine
learning in semiconductor manufacturing and assembly lines,’’ in Proc.
SAMI iKNOW, 2016, pp. 1–6.

[27] P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli, ‘‘A detailed inves-
tigation and analysis of using machine learning techniques for intrusion
detection,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 686–728,
1st Quart., 2019.

[28] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
San Francisco, CA, USA, Aug. 2016, pp. 785–794.

[29] H. Zheng, J. Yuan, and L. Chen, ‘‘Short-term load forecasting using
EMD-LSTMneural networks with a XGBoost algorithm for feature impor-
tance evaluation,’’ Energies, vol. 10, no. 8, p. 1168, Aug. 2017.

[30] J. Zhong, Y. Sun, W. Peng, M. Xie, J. Yang, and X. Tang, ‘‘XGBFEMF:
An XGBoost-based framework for essential protein prediction,’’ IEEE
Trans. Nanobiosci., vol. 17, no. 3, pp. 243–250, Jul. 2018.

[31] L. Torlay, M. Perrone-Bertolotti, E. Thomas, and M. Baciu, ‘‘Machine
learning–XGBoost analysis of language networks to classify patients with
epilepsy,’’ Brain Inform., vol. 4, no. 3, p. 159, 2017.

[32] L. D. Raedt, K. Kersting, S. Natarajan, and D. Poole, ‘‘Statistical relational
artificial intelligence: Logic, probability, and computation,’’ Synth. Lec-
tures Artif. Intell. Mach. Learn., vol. 10, no. 2, pp. 1–189, Mar. 2016.

[33] H. Lakkaraju, S. H. Bach, and J. Leskovec, ‘‘Interpretable decision
sets: A joint framework for description and prediction,’’ in Proc. 22nd
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2016,
pp. 1675–1684.

[34] K. Broelemann andG. Kasneci, ‘‘A gradient-based split criterion for highly
accurate and transparent model trees,’’ 2018, arXiv:1809.09703. [Online].
Available: http://arxiv.org/abs/1809.09703

[35] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, ‘‘A survey of methods for explaining black box models,’’
ACM Comput. Surveys, vol. 51, no. 5, pp. 1–42, 2018.

[36] S. Putatunda and K. Rama, ‘‘A comparative analysis of hyperopt as against
other approaches for hyper-parameter optimization of XGBoost,’’ in Proc.
Int. Conf. Signal Process. Mach. Learn. (SPML), 2018, pp. 6–10.

[37] C. J. Yu. Semiconductor Backend Production Rate Dataset With Partial
Combination Models. Accessed: May 23, 2020. [Online]. Available:
https://github.com/fishyu-tw/Semiconductor-Backend-Production-Rate-
Dataset-with-Partial-Combination-Models

[38] Prices of 50,000 Round Cut Diamonds From Ggplot2 Package.
Accessed: May 23, 2020. [Online]. Available: https://vincentarelbundock.
github.io/Rdatasets/datasets.html

[39] Ggplot2 Documentation. Diamonds: Prices of Over 50,000 Round
Cut Diamonds. Accessed: May 23, 2020. [Online]. Available: https://
rdrr.io/cran/ggplot2/man/diamonds.html

[40] S. Panwala. Regression-Based Machine Learning Approaches for
Diamond Price Prediction. Accessed: May 23, 2020. [Online]. Available:
https://medium.com/@sp7091/regression-approaches-to-predict-
diamond-price-258478a485c9

YI-HSIN WU (Associate Member, IEEE) received
the B.S. degree, in 2007. She is currently pursuing
the Ph.D. degree in electrical engineering with
National Taiwan University, Taipei, Taiwan. Since
2012, she has been working at the Institute
for Information Industry, Taipei, where she is
a Principal Engineer leading the development
of smart manufacturing solutions for the semi-
conductor packaging and testing industries. Her
research interests include streaming analytics,

parallel and distributed computing, embedded systems, algorithms, and
artificial intelligence. She and her team were a recipient of the 56th
Annual Research and Development 100 Awards Winner, Orlando, USA, in
November 2018.

YU-HSIN CHANG received the bachelor’s degree
from the Department of Statistics, National Cheng
Kung University, Tainan, Taiwan, in 2018. She
is currently pursuing the master’s degree with
the Institute of Industrial Engineering, National
Taiwan University, Taipei, Taiwan. Her research
interests include about statistical data analysis,
machine learning, and optimization.

YIN-JING TIEN received the B.S. degree in
applied mathematics and the M.S. degree in statis-
tics from National Chiao Tung University, Tai-
wan, in 1997 and 1999, respectively, and the
Ph.D. degree in statistics from National Cen-
tral University, Taiwan, in 2010. From 2010 to
2014, he was a Postdoctoral Researcher with the
Institute of Statistical Science, Academia Sinica,
Taiwan. He is currently a Principal Engineer
of the Digital Transformation Institute with the

Institute for Information Industry, Taiwan. His current research interests
include statistical modeling, machine learning, artificial intelligent, and
data mining.

CHENG-JUEI YU received the B.S. and Ph.D.
degrees in electrical engineering from National
Taiwan University, Taipei, Taiwan, in 2006 and
2011, respectively. Since 2011, he has been work-
ing at the Institute for Information Industry, Taipei,
where he is currently a Section Manager leading
the development of streaming analytics solutions
for industrial applications. His research interests
include streaming analytics, distributed comput-
ing, and parallel algorithms. He was a recipient of

the Outstanding Young Engineer from the Chinese Institute of Engineers,
Taipei, in 2018.

VOLUME 8, 2020 132119

http://dx.doi.org/10.1007/978-0-387-09823-4_5


Y.-H. Wu et al.: Using Partial Combination Models to Improve Prediction Quality and Transparency

SHENG-DE WANG (Member, IEEE) received
the B.S. degree from National Tsing Hua Uni-
versity, Hsinchu, Taiwan, in 1980, and the
M.S. and Ph.D. degrees in electrical engineering
from National Taiwan University, Taipei, Taiwan,
in 1982 and 1986, respectively. Since 1986, he has
been on the faculty of the Department of Electrical
Engineering, National Taiwan University, where
he is currently a Professor. From 1995 to 2001, he
was the Director of the Computer and Information

Network Center, Computer Operating Group, National Taiwan University.
He was a Visiting Scholar with the Department of Electrical Engineering,
University of Washington, Seattle, from 1998 to 1999. From 2001 to 2003,
he was the Department Chair of the Department of Electrical Engineering,
National Chi Nan University, Puli, Taiwan. His research interests include
embedded systems, Internet computing and security, and intelligent systems.

CHENG-HUNG WU (Member, IEEE) received
the B.S. degree in electrical engineering from
National Taiwan University, Taipei, Taiwan,
in 1998, and the M.S. and Ph.D. degrees in
industrial and operations engineering from the
University of Michigan, Ann Arbor, in 2004 and
2006, respectively. Since 2007, he has been on
the faculty of the Institute of Industrial Engi-
neering, National Taiwan University, where he
is currently an Associate Professor. His research

interests include decisions under uncertainties, information and decision
support systems, theoretical work in Markov decision processes, stochastic
programming, and data science.

132120 VOLUME 8, 2020


