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ABSTRACT Bifurcation theory (center manifold and Ljapunov–Schmidt reduction, normal form theory,
universal unfolding, calculation of bifurcation diagrams) has become an important and very useful means in
the solution of nonlinear stability problems in many branches of engineering. The present study deals with
qualitative behavior of a two-dimensional discrete-time system for interaction between prey and predator.
The discrete-time model has more chaotic and rich dynamical behavior as compare to its continuous
counterpart. We investigate the qualitative behavior of a discrete-time Lotka-Volterra model with linear
functional response for prey. The local asymptotic behavior of equilibria is discussed for discrete-time
Lotka-Volterra model. Furthermore, with the help of bifurcation theory and center manifold theorem, explicit
parametric conditions for directions and existence of flip and Hopf bifurcations are investigated. Moreover,
two chaos control methods, that is, OGY feedback control and hybrid control strategy, are implemented.
Numerical simulations are provided to illustrate theoretical discussion and their effectiveness.

INDEX TERMS Lotka-Volterra model, stability, flip bifurcation, Hopf bifurcation, chaos control.

I. INTRODUCTION AND PRELIMINARIES
For the many different deterministic non-linear dynamic sys-
tems (physical, mechanical, technical, chemical, ecological,
economic, and civil and structural engineering), the discovery
of irregular vibrations in addition to periodic and almost
periodic vibrations is one of the most significant achieve-
ments of modern science. An in-depth study of the theory and
application of non-linear science will certainly change one’s
perception of numerous non-linear phenomena and laws con-
siderably, together with its great effects on many areas of
application. As the important subject matter of non-linear
science, bifurcation theory, singularity theory and chaos the-
ory have developed rapidly in the past two or three decades.
They are now advancing vigorously in their applications to
mathematics, physics, mechanics and many technical areas
worldwide, and they will be the main subjects of our concern.

Various type of interactions such as predation, mutualism,
competition and parasitism are found in biological species.

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

Predator-prey interaction is one of these relationships. Due
to universal existence and involvement in daily life, prey-
predator systems play key role in ecology and mathematical
biology. The classical Lotka-Volterra mathematical model
was first proposed by Lotka [1] and Volterra [2]. Later on the
classical Lotka-Volterra model was modified and extended
by including density-dependent prey growth functions and
implementing various type of functional responses [3].

The intake rate for a predator as a function of food density
is called a functional response in ecology [4]. Moreover,
the dynamical behavior of predator-prey model is affected
due to implementation of a certain functional response [5].
Arguing as in [6], in general there are three main types of
functional responses, which are called Holling’s type I, II, and
III. For further information related to these three Holling type
functional responses we refer to [3]. In case of overlapping
generations, predator-prey interaction is described by differ-
ential equations.

On the other hand, difference equations are used to discuss
the predator-prey models with non-overlapping generations.
Furthermore, there is a greater chance of complex, chaotic
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and bifurcating behavior of discrete-time models as com-
pare to their continuous counterparts. Many researchers have
studied stability of fixed points, Neimark-Sacker bifurcation,
period-doubling bifurcation, and chaos control of predator-
prey systems which are governed by difference equations.
For example, [4] Ghaziani et al. investigated Hopf and flip
bifurcations for a discrete-time predator-prey model with
Holling type-II functional response. Flip and Hopf bifurca-
tions are discussed in [7] for a discrete version of a predator-
prey model. A non-standard finite difference scheme was
used by Mickens [8] for a class of prey-predator system.
Agiza et al. [9] discussed complex chaotic dynamics for
a predator-prey system with Holling type-II functional
response. Murakami [10] studied stability and Neimark-
Sacker bifurcation for a discrete prey-predator model.
Moreover, Din [11] performed chaos control and bifurcation
analysis for a prey-predator system of Leslie-Gower type.
Similarly, Hopf bifurcation, flip bifurcation, and chaos con-
trol are investigated in [12] for a model of a discrete predator–
prey system with Allee effects.

Zhao et al. [13] reported flip bifurcation and
Neimark-Sacker bifurcation for a class of discrete prey-
predator interaction. Singh et al. [14] explored local dynam-
ics and bifurcation analysis for a class of Leslie-Gower
type predator-prey model with predator partially depen-
dent on prey. Asheghi [15] discussed plant-herbivore type
predator-prey interaction for non-overlapping generations.
Ghaziani et al. [4] reported bifurcating behavior for a discrete
predator–preymodel withHolling functional response.More-
over, piecewise constant argument is implemented in [16] to
investigate bifurcation and chaos control for a predator-prey
system. Keeping in view the herd behavior for prey popula-
tion, Salman et al. [17] implemented a functional response of
square root type in order to discuss bifurcation and chaos con-
trol for a discrete prey-predator model. Chen et al. [18] stud-
ied bifurcation and chaos control for a prey-predator system
with implementing Holling functional response of type-IV.
Crowley–Martin functional response was implemented by
Ren et al. [19] in order to investigate Hopf bifurcation, flip
bifurcation, and chaos for a discrete prey-predator model.
Li and Wang [20] discussed global behavior and existence
of periodic solutions for a discrete predator–prey system.
Matouk and Elsadany [21] explored bifurcating behavior
for a generalized predator-prey system. Gu and Huang [22]
investigated global bifurcations of a discrete predator–prey
system.

For similar type of investigations, we refer to [23]–[29] and
references therein. Recently, Ma et al. [30] studied stability,
bifurcation and chaos control for a host-parasitoid system
with a Beverton-Holt growth function for a host population
and Hassell-Varley framework. Shabbir et al. [31] proposed
a new class of prey-predator interaction for non-overlapping
generations with implementation of cannibalism in prey
population.

The classical Lotka-Volterra prey-predator model with lin-
ear functional response of prey is governed by the following

nonlinear differential system [32]:

dN (τ )
dτ

= N (τ ) (α − βN (τ )− γP(τ )) ,

dP(τ )
dτ
= P(τ ) (γ δN (τ )− D) , (1)

where N (τ ) and P(τ ) are population densities of prey and
predator, respectively, at time τ , α denotes maximum per
capita growth rate for prey species, β represents the strength
for intra-specific competition of prey population, γ repre-
sents the strength for intra-specific competition between prey
and its predator, δ denotes the conversion rate of prey into
predator, and per capita death rate of predator species is
represented byD. Moreover, all these parameters are positive
constants.

The non-dimensional form of (1) can be obtained by using
the following transformations:

x(t) =
αδN (τ )
D

, y(t) =
γP(τ )
D

, t = Dτ.

Furthermore, introducing the new parameters a = α
D , b =

β
αδ

and c = γ
α
, we obtain the following non-dimensional form

of (1):

dx(t)
dt
= x(t) (a− bx(t)− y(t)) ,

dy(t)
dt
= y(t) (cx(t)− 1) , (2)

where a, b and c are positive constants.
In genetics of population overlapping generations alludes

to breeding systems in which more than one mating genera-
tion is present at any one time, and differential equations are
appropriate for modeling of such interactions. On the other
hand, in the system in which this is not the case there must be
non–overlapping generations (or discrete-time generations)
where everymating generation ends just one breeding season,
and difference equations or discrete counterparts of differen-
tial equations are suitable for such interactions. Overlapping
generations are considered normal rather than exceptional.
Generations of overlapping type are found in species which
survive for several years, and procreate several times. Gener-
ations of non–overlapping type are detected in many species
where the adult generation lasts after one breeding season.
The examples of non-overlapping generations are univoltine
insects, and some annual plants. On the other hand, synchro-
nized life cycles with non–overlapping of generations in both
prey and predator suggest that the discrete–time model is
suitable for describing prey–predator interaction. It is familiar
that there are two methods for construction of discrete–time
systems related to population dynamics starting from a con-
tinuous model governed by differential equations. The first
method consists of procedure to follow the mechanism rudi-
mentary in the continuous system and formulating a discrete–
time model which directly demonstrates the phenomenon,
and the second instead is inspired by the discretization of the
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continuous system. In most of the cases second method is fre-
quently used to study rich dynamics, chaotic behavior, bifur-
cation analysis and chaos control for discrete-time models.
Piecewise constant arguments and Euler forward approxima-
tions are most frequently used numerical schemes to obtain
discrete–time counterparts of predator–prey models. In this
paper, we implement piecewise constant arguments method
for the discretization of system (2). The coming investigation
reveals that piecewise constant arguments method is more
appropriate to discuss rich dynamics, chaotic behavior, bifur-
cation analysis and chaos control for discrete counterpart
of system (2). According to [33], [34] piecewise constant
arguments method is a better choice for discretization of
continuous classes of predator-prey interaction.

In [32], Elsadany and Matouk studied fractional-order
discretized counterpart of (2). They discussed local dynam-
ics of equilibria and Neimark-Sacker bifurcation is demon-
strated through implementation of numerical simulations
only. On the other hand, theoretical discussions related to
Neimark-Sacker bifurcation, period-doubling bifurcation and
chaos control are clearly missing in [32]. In order to compen-
sate this deficiency, we apply piecewise constant arguments
method to obtain a simple looking discrete-time model for
non-overlapping generations but with comprehensive theoret-
ical discussion.

Arguing as in [11], [12], [16], [35], one can apply the piece-
wise constant arguments method for differential equations to
obtain the following discrete-time predator-prey system:

xn+1 = xnea−bxn−yn ,

yn+1 = ynecxn−1, n = 0, 1, 2, . . . . (3)

Moreover, related to parametric selection in system (3) for
numerical simulation the following Remark is stated:
Remark 1: The parameter values for system (3) are not

from some field studies. We choose the parameter values
to illustrate the dynamics, bifurcations and chaos control of
system (3) in numerical simulation section.

We investigate qualitative behavior of model (3) including
existence of equilibria and their local stability, Hopf bifurca-
tion, flip bifurcation and chaos control. Themain contribution
and novelty of this article are summarized as follows:

• A novel discrete-time model for a class of predator-prey
interaction is obtained via implementation of piecewise
constant arguments method.

• The obtained model is a good representative of predator-
prey interaction for non-overlapping generations.

• Local stability analysis for steady-states of discrete-time
model is carried out.

• It is demonstrated that system (3) undergoes two types of
bifurcations (period-doubling bifurcation and Neimark-
Sacker bifurcation) at its interior fixed point.

• Hybrid control method and OGY control strategy are
implemented for controlling chaotic and bifurcating
behavior of system (3).

Furthermore, in Section II, we investigate local asymptotic
behavior of steady-states for the model (3). With the imple-
mentation of center manifold theorem and bifurcation theory
of normal forms, flip bifurcation is discussed at positive fixed
point of system (3) in Section III. Neimark-Sacker bifurca-
tion is performed is Section IV for positive steady-state of
system (3). OGY feedback and hybrid control methods are
introduced in Section V. At the end, numerical simulations
are provided in Section VI in order to illustrate our theoretical
discussion.

II. LOCAL STABILITY OF STEADY-STATES
In order to obtain the steady-states of (3), we consider the
following two-dimensional algebraic system:

x = x exp (a− bx − y) , y = y exp (cx − 1) . (4)

Then, there are three solutions of (4), namely, O = (0, 0),
E =

( a
b , 0

)
and P =

(
1
c ,

ac−b
c

)
, which are three equilibria

of system (3). Next, we assume that ac > b, then P is the
unique positive equilibrium point of system (3). Furthermore,
denote J (O) as variational matrix of (3) evaluated at trivial
equilibrium point O, then J (O) is computed as follows:

J (O) =

[
ea 0

0
1
e

]
,

which reveals that O = (0, 0) is a saddle equilibrium point.
Next, assume that J (E) denotes the variational matrix of (3)
evaluated at boundary equilibrium point E , then we have

J (E) =

 1− a −
a
b

0 e

ac
b
−1

 .
Then, the following Lemma gives the dynamics for the
boundary equilibrium point E of system (3).
Lemma 1: For steady-state E =

( a
b , 0

)
the following

statements holds true:
(a) E =

( a
b , 0

)
is a repeller (source) if and only if a > 2

and ac > b.
(b) E =

( a
b , 0

)
is a saddle point if and only if 0 < a < 2

and ac > b, or a > 2 and ac < b.
(c) E =

( a
b , 0

)
is non-hyperbolic point if and only if

a = 2, or ac = b.
(d) E =

( a
b , 0

)
is a sink if and only if 0 < a < 2 and

ac < b.
For c = 1.9, a ∈ [0, 5] and b ∈ [0, 8] topological

classification of boundary fixed point E =
( a
b , 0

)
is depicted

in Fig. 1. Next, we suppose that ac > b, then variational
matrix J (P) of (3) at steady-state P =

(
1
c ,

ac−b
c

)
is computed

as follows:

J (P) =

[
1− d bc −

1
c

ac− b 1

]
.
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FIGURE 1. Topological classification of E =
(

a
b ,0

)
at c = 1.9, a ∈ [0,5]

and b ∈ [0,8].

On the other hand, one can compute characteristic polynomial
for J (P) as follows:

P(λ) = λ2 −
(
2−

b
c

)
λ+ 1+ a−

2b
c
. (5)

Keeping in view the relations between coefficients and
roots of a quadratic equation, we have the following
Lemma [36]–[41]:
Lemma 2: Consider P(τ ) = τ 2 − ατ + β a quadratic

polynomial with P(1) > 0, and τ1, τ2 represent roots for
P(τ ) = 0, then the following conditions are satisfied:

(a) |τ1| < 1 and |τ2| < 1 if and only if P(−1) > 0 and
P(0) < 1.

(b) |τ1| < 1 and |τ2| > 1, or |τ1| > 1 and |τ2| < 1 if and
only if P(−1) < 0.
(c) |τ1| > 1 and |τ2| > 1 if and only if P(−1) > 0

and P(0) > 1.
(d) τ1 = −1 and |τ2| 6= 1 if and only if P(−1) = 0 and

P(0) 6= ±1.
(e) τ1 and τ2 are conjugate complex numbers with
|τ1| = |τ2| = 1 if and only if α2 − 4β < 0 and P(0) = 1.
On the other hand, from (5) it follows that P(1) = ac−b

c >

0 because ac > b. Thus, one can apply Lemma 2 to prove the
following results for positive fixed point of system (3).
Lemma 3: Assume that ac > b, then the following state-

ments hold true:
(i) The steady-state P =

(
1
c ,

ac−b
c

)
of (3) is a sink if and

only if

0 < a ≤ 2,
b
a
< c <

2 b
a
,

or

2 < a < 8,
3 b
4+ a

< c <
2 b
a
.

(ii) P =
(
1
c ,

ac−b
c

)
is a saddle point if and only if

a > 2 and
b
a
< c <

3 b
4+ a

.

(iii) P =
(
1
c ,

ac−b
c

)
is a source or repeller if and only if

0 < a ≤ 8, c >
2 b
a
,

or

a > 8, c >
3 b
4+ a

.

(iv) Assume that λ1 and λ2 be distinct real roots of (5), then
λ1 = −1 and |λ2| 6= 1 if the following conditions are
satisfied:

a ∈
(
2,∞

)
\ {8} , and c =

3 b
4+ a

.

(v) Suppose that λ1 and λ2 be conjugate complex roots of (5),
then |λ1| = |λ2| = 1 if the following conditions are satisfied:

0 < a < 8, c =
2b
a
.

For c = 1.5, a ∈ [0, 8] and b ∈ [0, 8] topological classi-
fication of positive fixed point P =

(
1
c ,

ac−b
c

)
is depicted

in Fig. 2, in which blue, red and green regions represent sink,
source and saddle, respectively. Furthermore, yellow region
represents where positive fixed point does not exist, that is,
ac < b.

III. PERIOD-DOUBLING BIFURCATION
This section deals with period-doubling bifurcation about
positive fixed point of (3). For this, bifurcation theory of nor-
mal forms and center manifold theorem [42] are implemented

FIGURE 2. Topological classification of P =
(

1
c ,

ac−b
c

)
at c = 1.5,

a ∈ [0,8] and b ∈ [0,8].
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in order to discuss parametric conditions for existence and
direction of flip bifurcation at fixed point P =

(
1
c ,

ac−b
c

)
of

system (3). We assume that(
2−

b
c

)2

− 4
(
1+ a−

2b
c

)
> 0. (6)

Then, it follows that characteristic polynomial (5) has distinct
real roots, say λ1 and λ2. Furthermore, we suppose that

c ≡ c0 =
3 b
a+ 4

.

Then, roots of characteristic polynomial (5) are λ1 = −1
and λ2 = 5−a

3 . Moreover, |λ2| 6= 1 under the restriction that

a 6= 2, 8. Next, we consider the following set

�FB =

{
(a, b, c0) : a ∈

(
2,∞

)
\ {8} , and

c0 =
3 b
4+ a

, b > 0
}
.

Suppose that (a, b, c0) ∈ �FB, then the system (3) is
expressed as follows:

(
X
Y

)
→

X exp
(
a− bX − Y

)
Y exp

(
c0X − 1

)
 . (7)

Denote by c̄ as bifurcation parameter with |c̄| � 1. Then,
for the aforementioned map (7), we have the following cor-
responding perturbed mapping:

(
X
Y

)
→

 X exp
(
a− bX − Y

)
Y exp

(
(c0 + c̄)X − 1

)
 . (8)

Then, the unique positive fixed point for the map (8) is given
by
(

1
c0+c̄

,
a(c0+c̄)−b
c0+c̄

)
. Next, we consider the transformations

x = X − x∗ and y = Y − y∗, where x∗ = 1
c0+c̄

and y∗ =
a(c0+c̄)−b
c0+c̄

, then we get the following map whose fixed point
is shifted at origin (0, 0):(

x
y

)
→

 1−
b
c0

−
1
c0

ac0 − b 1

[ x
y

]
+

(
f1(x, y, c̄)
f2(x, y, c̄)

)
, (9)

where

f1(x, y, c̄) =
(
b(b− 2c0)

2c0

)
x2 +

(
b− c0
c0

)
xy

+
1
2c0

y2 +
1

c30
c̄2 +

b

c20
c̄x +

1

c20
c̄y

−

(
b2(b− 3c0)

6c0

)
x3

−

(
b(b− 2c0)

2c0

)
x2y−

(
b− c0
2c0

)
xy2

−
1
6c0

y3 −
b

c30
xc̄2 −

1

c30
yc̄2 −

b2

2c20
x2c̄

−
1

2c20
y2c̄−

b

c20
xyc̄

−
1

c40
c̄3 + O

(
(|x| + |y| + |c̄|)4

)
,

and

f2(x, y, c̄) =
1
2
c0(ac0 − b)x2 + c0xy−

b

c30
c̄2

+ac̄x +
1
6
c20(ac0 − b)x

3
+

1
2
c20 x

2y

+

(
ac0 −

1
2
b
)
x2c̄+ xyc̄+

b

c40
c̄3

+O
(
(|x| + |y| + |c̄|)4

)
.

Consider the transformation:(
x
y

)
= T

(
u
v

)
, (10)

where

T =

 −
1
c0

−
1
c0

b
c0
− 2

b
c0
− 1+

5− a
3


be a non-singular matrix. Then, from (9) and (10), it follows
that(

u
v

)
→

(
−1 0

0
5− a
3

)(
u
v

)
+

(
f3(u, v, c̄)
f4(u, v, c̄)

)
, (11)

where

f3(u, v, c̄)

=

(
b(2a3c̄− 6a2b+ 9a2c̄− 30ab+ 48ac̄)

2(8− a)(a+ 4)2

)
x2

+

(
b(84b+ 176c̄)
2(8− a)(a+ 4)2

)
x2

+

(
2a2c̄− 6ab+ 13ac̄− 15b+ 20c̄

(8− a)(a+ 4)

)
xy

+

(
ac̄− 3b+ 4c̄
b(8− a)

)
y2

+

(
b3(a3 + 3a2 − 33a− 62)

(8− a)(a+ 4)3

)
x3

+

(
3b2(2a2 + 4a− 25)
2(8− a)(a+ 4)2

)
x2 y

+

(
3b(1+ a)

(8− a)(a+ 4)

)
xy2

+

(
2a2c̄− 15ab+ 16ac̄− 24b+ 32c̄

3b(8− a)

)
c̄x

+

(
1

8− a

)
y3 +

(
2(ac̄− 3b+ 4c̄)(a+ 4)

3b2(8− a)

)
c̄y

+

(
(a− 2)(ac̄− 3b+ 4c̄)(a+ 4)2

27b3(a− 8)

)
c̄2

+O
(
(|u| + |v| + |c̄|)4

)
,
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f4(u, v, c̄)

=

(
b(a4c̄− 3a3b+ 10a3c̄− 21a2c̄− 18ab)

6(a− 8)(a+ 4)2

)
x2

−

(
b(176ac̄+ 60b+ 16c̄)

6(a− 8)(a+ 4)2

)
x2

+

(
a3c̄− 3a2b+ 6a2c̄+ 3ab

3(a− 8)(a+ 4)

)
xy

−

(
9ac̄− 21b− 68c̄
3(a− 8)(a+ 4)

)
xy+

(
a− 2

6(a− 8)

)
y3

+

(
(ac̄− 3b+ 4c̄)(a− 2)

6b(a− 8)

)
y2

+

(
b2(a3 − 12a− 11)
2(a− 8)(a+ 4)2

)
x2 y

+

(
b(1+ a)(a− 2)
2(a− 8)(a+ 4)

)
xy2

+

(
a3c̄− 3a2b+ 6a2c̄− 33ab+ 24b− 32c̄

9b(a− 8)

)
c̄x

+

(
(a− 2)b3(a3 + 3a2 − 24a− 134)

6(a− 8)(a+ 4)3

)
x3

+

(
(a+ 4)(a− 2)(ac̄− 3b+ 4c̄)

9b2(a− 8)

)
c̄y

+

(
2(a+ 4)2(ac̄− 3b+ 4c̄)

9b3(8− a)

)
c̄2

+O
(
(|u| + |v| + |c̄|)4

)
,

x

= −
1
c0
(u+ v), and

y

= −

(
2−

b
c0

)
u+

(
2− a
3
+

b
c0

)
v.

Furthermore, we implement the center manifold theorem
[42]. For this, we assume thatWC (0, 0, 0) denotes the center
manifold for the map (11) which is evaluated at (0, 0) in a
small neighborhood of c̄ = 0. Then, WC (0, 0, 0) is approxi-
mated as follows:

WC (0, 0, 0) = {(u, v, c̄) ∈ R3
: v = m1u2 + m2uc̄

+m3c̄2 + O
(
(|u| + |c̄|)3

)
},

where

m1 = 0, m2 =
(a+ 4)(5a− 4)
b(a− 8)(a− 2)

, and

m3 =
2(a+ 4)2

b2(a− 8)(a− 2)
.

Moreover, we define the following mapping which is
restricted to the center manifoldWC (0, 0, 0):

F : u→−u+ s1u2 + s2uc̄+ s3u2c̄+ s4uc̄2 + s5u3

+O
(
(|u| + |c̄|)4

)
,

where

s1 = 0, s2 = −
(a+ 4)2

b(a− 8)
, s3 =

(a+ 4)(a2 + 20a− 8)
2b(a− 2)(a− 8)

,

s4 = −
(7a2 − 6a+ 32)(a+ 4)2

b2(a− 2)(a− 8)2
,

and

s5 =
(a+ 4)3(a3 − 12a2 − 54a+ 40)

27 b3(a− 8)2(a− 2)
.

l1 =
(
∂2f1
∂u∂ c̄

+
1
2
∂F
∂ c̄
∂2F
∂u2

)
(0,0)
= −

(a+ 4)2

b(a− 8)
,

and

l2 =

(
1
6
∂3F
∂u3
+

(
1
2
∂2F
∂u2

)2)
(0,0)

= s21 + s5.

Moreover, in closed form l2 is calculated as follows:

l2 =
(a+ 4)3(a3 − 12a2 − 54a+ 40)

27 b3(a− 8)2(a− 2)
.

Then, the following Lemma gives the parametric conditions
for existence and direction of flip bifurcation for system (3)
at its positive fixed point.
Theorem 1: Suppose that l1 6= 0 and l2 6= 0, then sys-

tem (3) undergoes flip bifurcation at its positive steady-state(
1
c ,

ac−b
c

)
when parameter c varies in small neighborhood of

c0 = 3 b
a+4 . Furthermore, if l2 > 0, then the period-two orbits

that bifurcate from
(
1
c ,

ac−b
c

)
are stable, and if l2 < 0, then

these orbits are unstable.

IV. NEIMARK-SACKER BIFURCATION
This section is related to investigation for Hopf bifurcation
at positive fixed point

(
1
c ,

ac−b
c

)
of system (3). For this,

we assume that P =
(
1
c ,

ac−b
c

)
is non-hyperbolic fixed

point such that Jacobian matrix at P have complex conju-
gate eigenvalues, and absolute values of these eigenvalues
are equal to one. These are necessary conditions for exis-
tence of Neimark-Sacker at fixed point P. For some other
investigations of Hopf bifurcation for 2-dimensional discrete-
time systems, we refer to [36]–[40], [43]–[50] and references
therein.

Next, keeping in view the bifurcation theory of normal
forms [51]–[55], the following Theorem is presented which
provides explicit parametric conditions for direction and
existence of Hopf bifurcation about positive fixed point(
1
c ,

ac−b
c

)
of model (3).

Theorem 2: Suppose that b2 + 4 bc − 4 ac2 < 0 and
0 < a < 8 such that a 6= 2, 4, then system (3) undergoes
Hopf bifurcation at

(
1
c ,

ac−b
c

)
when c varies in a small neigh-

borhood of c1 = 2b
a . Moreover, assume that c > c1, then an

attracting invariant closed curve bifurcates from
(
1
c ,

ac−b
c

)
.
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Proof: For necessary conditions for existence of
Neimark-Sacker bifurcation at positive fixed point

(
1
c ,

ac−b
c

)
of model (3), we assume that:

c ≡ c1 =
2b
a
, and 0 < a < 8. (12)

Assume that

�NS=

{
(a, b, c1) : c1 =

2b
a
, 0 < a < 8, b > 0, ac1 > b

}
.

Suppose that (a, b, c1) ∈ �NS with c1 = 2b
a . Then, system (3)

is described by the following 2-dimensional map:(
H
P

)
→

(
H exp (a− bH − P)
P exp (c1H − 1)

)
. (13)

Moreover,
(

1
c1
, ac1−bc1

)
is positive fixed point for map (13)

provided that ac1 > b. Next, denote by c̃ as bifurcation
parameter and taking into account the following perturbation
corresponding to the map (13):(

H
P

)
→

(
H exp (a− bH − P)
P exp ((c1 + c̃)H − 1)

)
, (14)

where |c̃| � 1 represents a small perturbation in c1.
Assume that (x∗, y∗) =

(
1

c1+c̃
,
a(c1+c̃)−b
c1+c̃

)
denotes fixed

point for (14).(
x
y

)
→

 1−
b

c1 + c̃
−

1
c1 + c̃

a(c1 + c̃)− b 1

( x
y

)
+

(
g1(x, y)
g2(x, y)

)
,

(15)

where

g1(x, y) =
(
b(b− 2(c1 + c̃))

2(c1 + c̃)

)
x2

+

(
b− (c1 + c̃)
(c1 + c̃)

)
xy+

1
2(c1 + c̃)

y2

−

(
b2(b− 3(c1 + c̃))

6(c1 + c̃)

)
x3

−

(
b(b− 2(c1 + c̃))

2(c1 + c̃)

)
x2y

−

(
b− (c1 + c̃)
2(c1 + c̃)

)
xy2

−
1

6(c1 + c̃)
y3 + O

(
(|x| + |y|)4

)
,

and

g2(x, y) =
1
2
(c1 + c̃)(a(c1 + c̃)− b)x2

+(c1 + c̃)xy+
1
6
(c1 + c̃)2(a(c1 + c̃)− b)x3

+
1
2
(c1 + c̃)2 x2 y+ O

(
(|x| + |y|)4

)
.

Moreover, the characteristic equation for the variational
matrix of (15) evaluated at its fixed point (0, 0) is computed
as follows:

ν2 −
(
2− b

c1+c̃

)
ν + 1+ a− 2b

c1+c̃
= 0. (16)

Suppose that (a, b, c1) ∈ �NS , then the complex conjugate
roots of (16) are given as follows:

ν1 =

2(c1 + c̃)− b− i

√
4(c1 + c̃)

(
a(c1 + c̃)− b

)
− b2

2(c1 + c̃)
,

and

ν2 =

2(c1 + c̃)− b+ i

√
4(c1 + c̃)

(
a(c1 + c̃)− b

)
− b2

2(c1 + c̃)
.

Furthermore, we have that

|ν1| = |ν2| =

√
1+ a−

2 b
c1 + c̃

,

and (
d |ν2|
dc̃

)
c̃=0
=

(
d |ν1|
dc̃

)
c̃=0
=
a2

4b
> 0.

Next, taking F(c̃) = 2− b
c1+c̃

, then we have F(0) = 2− b
c1
.

Assume that (a, b, c1) ∈ �NS , then it follows that

−2 < F(0) = 2−
b
c1
< 2.

Moreover, weasuppose that F(0) 6= 0, 1, that is, 2 − b
c1
6= 0

and 2 − b
c1
6= 1. Therefore, oneahas F(0) 6= ±2, 0, 1 and

thisaimplies that νk1 , ν
k
2 6= 1 for all k = 1, 2, 3, 4 at c̃ = 0.

Thus, we conclude thatathe roots of (16) do not lieain the
intersection of theaunit circle withathe coordinate axes at
c̃ = 0 if the followingaconditions are satisfied:

b 6= 2c1, b 6= c1. (17)

Furthermore, we consider the following transformation:

(
x
y

)
→

 −
1

c1 + c̃
0

κ − 1+
b

c1 + c̃
−ω

( uv
)
, (18)

where

κ :=
a− 4
4

, and ω :=

√
a(8− a)

4
.

Using transformation (18), the normal form for (15) is com-
puted as follows:(

u
v

)
→

(
κ −ω

ω κ

)(
u
v

)
+

(
p̃(u, v)
q̃(u, v)

)
, (19)

where

p̃(u, v)

= −

(
b(ab− 2ac̃− 4b)

2a

)
x2 +

(
ac̃+ 2b− ab

a

)
xy

−
1
2
y2 +

(
b2(ab− 3ac̃− 6b)

6a

)
x3
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+

(
b(ab− 2ac̃− 4b)

2a

)
x2 y+

(
ab− ac̃− 2b

2a

)
xy2

+
1
6
y3 + O((|u| + |v|)4),

q̃(u, v)

= −

(
b(ac̃κ + ab− ac̃+ 2bκ − 2b)(ab− 2ac̃− 4b)

2aω(ac̃+ 2b)

)
x2

−

(
(ac̃+ b)(ac̃+ 2b)2

6a2ω

)
x2

−

(
(ab− ac̃− 2b)(ac̃κ + ab− ac̃+2bκ − 2b)

aω(ac̃+ 2b)

)
xy

−

(
ac̃+ 2b
aω

)
xy

−

(
ac̃κ + ab− ac̃+ 2bκ − 2b

2ω(ac̃+ 2b)

)
y2

−

(
b2(3ac̃+ 6b− ab)(ac̃κ + ab− ac̃+2bκ − 2b)

6aω(ac̃+ 2b)

)
x3

+

(
(ac̃+ b)(ac̃+ 2b)2

6a2ω

)
x3

−

(
b(2ac̃+ 4b− ab)(ac̃κ + ab− ac̃+2bκ − 2b)

2aω(ac̃+ 2b)

)
x2y

+

(
(ac̃+ 2b)2

2a2ω

)
x2 y

−

(
(ac̃+ 2b− ab)(ac̃κ + ab− ac̃+2bκ − 2b)

2aω(ac̃+ 2b)

)
xy2

+

(
ac̃κ + ab− ac̃+ 2bκ − 2b

6ω(ac̃+ 2b)

)
y3

+O((|u| + |v|)4),

Furthermore, it follows from Fig. 3 that L(a) < 0 for all 0 <
a < 8. Thus an attracting invariant closed curve bifurcates
from the equilibrium point

(
1
c ,

ac−b
c

)
whenever c > c1. �

FIGURE 3. Plot of L(a) for 0 ≤ a ≤ 12.

V. CHAOS CONTROL
In this section, our aim is to apply two chaos control meth-
ods to system (3). These chaos control methods have been
most frequently used strategies for controlling bifurcating and

chaotic behaviors of discrete-time models [11], [12], [16],
[29]–[31], [41], [45], [47], [48], [56]. The first chaos control
method which is known as Ott-Grebogi-Yorke (OGY) [57]
method is considered as pioneer control method for discrete
models with some drawbacks [58]. Particularly, OGYmethod
may be ineffective for discrete-time models which are dis-
crete counterparts of continuous systems with an application
of Euler approximation [47], [48]. But nevertheless, this
method is effective and applicable in our case. Secondly,
hybrid control method [59] is also implemented to system (3).
Recently, in [16] a modified hybrid control method is pro-
posed. On the other hand, in [60] an exponential type chaos
control method is presented for controlling chaos and bifurca-
tions in discrete-time systems. The main contribution of this
section is to obtain mathematical criterion for controllability
of system (3) via OGY and hybrid control methods.

For the application of OGY method, model (3) is written
in the following form:

xn+1 = xnea−bxn−yn = f (xn, yn, c),

yn+1 = ynecxn−1 = g(xn, yn, c), (20)

where c is used for chaos control parameter. Moreover, it is

assumed that c ∈
(
ĉ− η, ĉ+ η

)
, where η > 0 and ĉ denotes

nominal value of c. Furthermore, we consider (x∗, y∗) =(
1
c ,

ac−b
c

)
as positive fixed point of system (3). Then, one can

approximate system (20) in neighborhood of the fixed point
(x∗, y∗) =

(
1
c ,

ac−b
c

)
as follows:[

xn+1 − x∗

yn+1 − y∗

]
≈ J (x∗, y∗, ĉ)

[
xn − x∗

yn − y∗

]
+ B[c− ĉ], (21)

where

J (x∗, y∗, ĉ) =


∂f
(
x∗, y∗, ĉ

)
∂x

∂f
(
x∗, y∗, ĉ

)
∂y

∂g
(
x∗, y∗, ĉ

)
∂x

∂g
(
x∗, y∗, ĉ

)
∂y


=

[
1−

b
ĉ
−
1
ĉ

aĉ− b 1

]
and

B =


∂f
(
x∗, y∗, ĉ

)
∂c

∂g
(
x∗, y∗, ĉ

)
∂c

 =
 0
aĉ− b
ĉ2

 .
Next, we consider the following matrix for controllability:

C = [B : JB] =

 0
b− aĉ
ĉ3

aĉ− b
ĉ2

aĉ− b
ĉ2

 . (22)

Then, it must be noted that system (20) is controllable if C
has rank 2. According to assumption for existence of positive
equilibrium we have aĉ− b 6= 0 and this implies that rank of
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C is 2. Furthermore, we set [c− ĉ] = −K
[
xn − x∗

yn − y∗

]
, where

K =
[
k1 k2

]
, then system (21) is written as follows[

xn+1 − x∗

yn+1 − y∗

]
≈ [J − BK ]

[
xn − x∗

yn − y∗

]
. (23)

In this case, the corresponding control system of (3) is given
as follows

xn+1 = xn exp
(
a− bxn − yn

)
,

yn+1 = yn exp
( (

ĉ− k1(xn − x∗)− k2(yn − y∗)
)
xn − 1

)
.

(24)

Moreover, the positive equilibrium point (x∗, y∗) of (24) is
locally stable if and only if absolute values of both eigenval-
ues of J−BK are less than one. Moreover, the matrix J−BK
is given as follows:

J − BK =

 1−
b
ĉ

−
1
ĉ

aĉ− b−

(
aĉ− b

)
k1

ĉ2
1−

(
aĉ− b

)
k2

ĉ2

 .
The characteristic equation for the matrix J −BK is given as
follows

P(λ) = λ2 −
(
2−

b
ĉ
+
bk2
ĉ2
−
ak2
ĉ

)
λ+ 1+ a−

2b
ĉ

−
ak1
ĉ2
+
bk2
ĉ2
+
abk2
ĉ2
−
ak2
ĉ
+
b (k1 − bk2)

ĉ3
= 0.

(25)

Assume that λ1 and λ2 represent the roots of (25), then it
follows that

λ1 + λ2 = 2−
b
ĉ
+
bk2
ĉ2
−
ak2
ĉ
, (26)

and

λ1λ2 = 1+ a−
2b
ĉ
−
ak1
ĉ2
+
bk2
ĉ2
+
abk2
ĉ2
−
ak2
ĉ

+
b (k1 − bk2)

ĉ3
. (27)

Moreover, we take λ1 = ±1 and λ1λ2 = 1. Then, the lines
of marginal stability for (24) are computed as follows:

L1 : a−
2b
ĉ
−
ak1
ĉ2
+
bk2
ĉ2

+
abk2
ĉ2
−
ak2
ĉ
+
b (k1 − bk2)

ĉ3
= 0, (28)

L2 : ĉ2 − k1 + bk2 = 0, (29)

and

L3 : (4+ a)ĉ3 − ĉ2 (3b+ 2ak2)+ b (k1 − bk2)

+ĉ (−ak1 + (2+ a)bk2) = 0. (30)

Then, stability region for (24) is triangular region bounded by
L1, L2 and L3 in k1k2-plane.

FIGURE 4. Bifurcation diagrams and maximum Lyapunov exponents for
system (3) with (a,b) = (3.5,4.8), (x0, y0) = (0.518,1.0129) and
c ∈ [1.5,3].

Secondly, we apply hybrid control method to system (3).
This hybrid control method consists of parameter perturba-
tion and feedback control [40]. Then, an application of hybrid
control method yields the following control system:

xn+1 = αxnea−bxn−yn + (1− α)xn,

yn+1 = αynecxn−1 + (1− α)yn, (31)

where α ∈]0, 1[ denotes external control parameter for sys-
tem (31). On the other hand, the Jacobian matrix for (31) at
(x∗, y∗)

(
1
c ,

ac−b
c

)
is computed as follows:α (1− b

c

)
+ 1− α −

α

c
α (ac− b) 1

 . (32)
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FIGURE 5. Bifurcation diagrams and maximum Lyapunov exponents for
system (3) with (a,b) = (1.5,1.9), (x0, y0) = (0.4,0.74) and c ∈ [2.2,3].

Furthermore, the following Lemma gives parametric condi-
tions for local stability of fixed point (x∗, y∗) =

(
1
c ,

ac−b
c

)
for the controlled system (31).
Lemma 4: The positive equilibrium (x∗, y∗) =

(
1
c ,

ac−b
c

)
of the controlled system (31) is locally asymptotically stable
if and only if the following condition holds true:∣∣∣∣2− bα

c

∣∣∣∣ < 2−
bα
c
+ aα2 −

bα2

c
< 2.

VI. NUMERICAL SIMULATION AND DISCUSSION
In this section, some interesting numerical simulations related
to system (3) are presented for particular choice of para-
metric values. These numerical results give evidence of flip

FIGURE 6. Bifurcation diagrams and maximum Lyapunov exponents for
system (3) with (a,b) = (3.5,4.8), (x0, y0) = (0.365,1.748) and
c ∈ [2.6,3].

bifurcation, Hopf bifurcation for system (3) at its posi-
tive steady-state, and show effectiveness of chaos control
strategies.
Example 1: First, we choose a = 3.5, b = 4.8,

c ∈ [1.5, 3] with initial conditions x0 = 0.518 and
y0 = 1.0129. Then, system (3) undergoes both flip bifurca-
tion and Hopf bifurcation as c varies in small neighborhoods
of c0 ≈ 1.92 and c1 ≈ 2.74286, respectively. At (a, b, c) =
(3.5, 4.8, 1.92) the unique positive steady-state of the sys-
tem (3) is given by (0.520833, 1), and characteristic equation
of (3) at this steady-state is computed as follows

λ2 + 0.5λ− 0.5 = 0.
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FIGURE 7. Phase portraits of system (3) with a = 3.5, b = 4.8, c = 2.741,2.74286,2.75,2.76,2.79,2.9,2.96,3
x0 = 0.365, y0 = 1.748.
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FIGURE 8. Stability region of the controlled system (34).

Moreover, roots of aforementioned equation are λ1 = −1
and λ2 = 0.5. Thus (a, b, c) = (3.5, 4.8, 1.92) ∈ �FB. Fur-
thermore, l1 = 2.604166665 > 0 and l2 = −1.1773757 <
0, which proves the correctness of Theorem 1. Similarly,
at (a, b, c) = (3.5, 4.8, 2.74286) the unique positive steady-
state of the system (3) is given by (0.364583, 1.75), and
characteristic equation of (3) at this steady-state is computed
as follows

λ2 − 0.250002λ+ 1 = 0.

Moreover, roots of aforementioned equation are λ1 =

0.125001+0.992158 i and λ2 = 0.125001−0.992158 i both
with modulus one. Thus (a, b, c) = (3.5, 4.8, 2.74286) ∈
�NS . Furthermore, the first Lyapunov exponent for these
parametric values is given by L = −0.293403 < 0, which
proves the correctness of Theorem 2. Bifurcation diagrams
and maximum Lyapunov exponents are depicted in Fig. 4.
Example 2: Taking the parameters a = 1.5, b = 1.9,

c ∈ [2.2, 3] and initial conditions (x0, y0) = (0.4, 0.74)
for system (3), then it undergoes Hopf bifurcation at c ≈
2.533333333. At (a, b, c) = (1.5, 1.9, 2.5333333333) the
unique positive steady-state of (3) is given by (x∗, y∗) =
(0.394737, 0.75). The characteristic equation for the vari-
ational matrix of system (3) evaluated at (x∗, y∗) =

(0.394737, 0.75) is computed as follows:

λ2 − 1.2499999999901314λ+ 1 = 0. (33)

Moreover, the complex conjugate roots of (33) are given by
λ1 = 0.625− 0.780625 i and λ2 = 0.625+ 0.780625 i with
modulus |λ1,2| = 1. In this case the first Lyapunov exponent
L is given by L = 800−542 a+121 a2−8 a3

32(a−8) = −1.11659 < 0.
The bifurcation diagrams andmaximumLyapunov exponents
(MLE) are depicted in Fig. 5.

FIGURE 9. Bifurcation diagrams for the controlled system (34) with
k1 = 3, (x0, y0) = (0.3,1.87) and k2 ∈ [−1,2].

Example 3: Next we take a = 3.5, b = 4.8, c ∈ [2.6, 3]
and initial values (x0, y0) = (0.365, 1.748). Then bifurcation
diagrams and MLE are depicted in Fig. 6. Moreover, phase
portraits of system (3) for a = 3.5, b = 4.8, (x0, y0) =
(0.365, 1.748) and with different values of c are depicted
in Fig. 7.

Next, we want to apply OGY feedback control method for
(a, b, c) = (3.5, 4.8, 2.96). Under these parametric condi-
tions system has unique positive unstable equilibrium point
(x∗, y∗) = (0.337838, 1.87838) and corresponding phase
portrait of (3) is shown in Fig. 7g. We want to move unstable
equilibrium point towards stable trajectory. For this, tak-
ing ĉ = 2.96 and the corresponding controlled system is
written as:

xn+1 = xn exp (3.5− 4.8xn − yn) ,

yn+1 = yn exp
((

2.96−k1(xn − x∗)−k2(yn − y∗)
)
xn − 1

)
,

(34)

where (x∗, y∗) = (0.337838, 1.87838), and k1 and k2 are
feedback gains. Furthermore, in this case we have

J =
(
−0.621622 −0.337838

5.56 1

)
,

B =
(

0
0.634587

)
,
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FIGURE 10. Plots for the controlled system (36) with α = 0.862 and
(x0, y0) = (0.3,1.87).

C =
(

0 −0.214388
0.634587 0.634587

)
,

and variational matrix of the controlled system (34) is com-
puted as follows

J − BK =
(

−0.621622 −0.337838
5.56− 0.634587k1 1− 0.634587k2

)
.

The characteristic equation for variational matrix J − BK is
calculated as follows:

λ2 − (0.378378− 0.634587k2)λ+ 1.25676

−0.214388k1 + 0.394473k2 = 0. (35)

The roots of (35) lie inside the unit open disk if 0.208333 k1 <
1.82533 + k2, −3.5043 < k1 ≤ 8.09379, 0.650885 +
k2 < 0.543478 k1, or 0.208333 k1 < 1.82533 +
k2, 8.09379 < k1 < 11.6236, 0.892857 k1 + k2 < 10.9745.
Moreover, the lines of marginal stability for the controlled
system (34) are computed as follows

L1 : 0.394473 k2 = 0.214388 k1 − 0.256757,

L2 : 0.214388 k1 = 1.87838+ 1.02906 k2,

and

L3 : 0.214388 k1 + 0.240114 k2 = 2.63514.

It is easy to see that stable eigenvalues lie within the tri-
angular region bounded by the straight lines L1,L2,L3 for
the controlled system (34) (see Fig. 8). In particular, if we
take k1 = 3, then positive equilibrium point (x∗, y∗) =
(0.337838, 1.87838) of the controlled system (34) is locally
stable if and only if −1.20033 < k2 < 0.97955. Taking
k1 = 3 and k2 ∈ [−1, 2], then bifurcation diagrams for the
controlled system (34) are depicted in Fig. 9.

Secondly, for the same parametric values, that is,
(a, b, c) = (3.5, 4.8, 2.96), we discuss the validity of hybrid
control strategy. In this case the controlled system (31) is
rewritten as follows:

xn+1 = αxne3.5−4.8xn−yn + (1− α)xn,

yn+1 = αyne−1+2.96xn + (1− α)yn. (36)

Moreover, the characteristic equation for the variational
matrix of the system (36) at (x∗, y∗) = (0.337838, 1.87838)
is given by:

λ2 − (2− 1.62162α)λ+ 1− 1.62162α + 1.87838α2 = 0.

(37)

Moreover, the roots of (36) lie inside the open unit disk if
and only if 0 < α < 0.863309. For α = 0.862 and
(x0, y0) = (0.3, 1.87) the plots for the controlled system (36)
are depicted in Fig. 10.

VII. CONCLUDING REMARKS
In this paper, piecewise constant argument is implemented
in order to obtain a discrete-time predator-prey model with
linear functional response. The proposed model is governed
by two-dimensional planar system of difference equations in
exponential form, which has more rich dynamics and chaotic
behavior as compare to its continuous counterpart. Stabil-
ity analysis of equilibria is investigated. Moreover, system
(3) undergoes flip bifurcation and Hopf bifurcation as c is
taken as bifurcation parameter. Both critical coefficients in
case of flip (period-doubling) bifurcation and Lyapunov first
coefficient in case of Neimark-Sacker (Hopf) bifurcation are
calculated in closed forms. The numerical simulation results
are provided including the interesting dynamical behaviors
such as invariant cycles and chaotic sets. Two chaos control
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strategies are implemented in order to control chaotic behav-
ior of the system (3). The effectiveness of these chaos con-
trol strategies is illustrated through numerical simulations.
Moreover, one other possible discritization of system (2) was
studied in [38] via Euler approximation. But Euler method is
simple numerical method perhaps not enough appropriate for
population models of predator-prey type [61].

FUTURE WORK
Keeping in view the dynamical consistency for discrete coun-
terpart of continuous predator-prey model, one may apply a
nonstandard finite difference scheme to system (2) as follows:

xn+1 =
(1+ ha) xn

1+ hbxn + hyn
,

yn+1 =
yn (1+ hcxn)

1+ h
, (38)

where h > 0 is step size for nonstandard finite difference
scheme. Dynamical study of system (38) will be our future
work for investigation. Moreover, it is interesting to add
delay effect in system (2) to see the bifurcating behavior of
resulting system [62]. On the other hand, it is also interest-
ing to extend these results for higher dimension and to see
possible hidden attractors and complex behavior for resulting
system [63]–[67].
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