
Received May 31, 2020, accepted July 7, 2020, date of publication July 10, 2020, date of current version July 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3008433

A Brute-Force Black-Box Method to Attack
Machine Learning-Based Systems
in Cybersecurity
SICONG ZHANG 1,2, XIAOYAO XIE2, (Member, IEEE), AND YANG XU2
1School of Computer Science and Technology, Guizhou University, Guiyang 550025, China
2Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang 550001, China

Corresponding author: Sicong Zhang (351625648@qq.com)

This work was supported in part by the National Natural Science Foundation of China under Grant U1831131, in part by the Central
Government Guides Local Science and Technology Development Special Funds under Grant [2018]4008, in part by the Technology
Cooperation Key Project of Guizhou Province, China Grant [2015]7763, and in part by the Science and Technology Planned Project of
Guizhou Province, China under Grant [2020]2Y013.

ABSTRACT Machine learning algorithms are widely utilized in cybersecurity. However, recent studies
show that machine learning algorithms are vulnerable to adversarial examples. This poses new threats to
the security-critical applications in cybersecurity. Currently, there is still a short of study on adversarial
examples in the domain of cybersecurity. In this paper, we propose a new method known as the brute-force
attack method to better evaluate the robustness of the machine learning classifiers in cybersecurity against
adversarial examples. The proposed method, which works in a black-box way and covers some shortages
of the existing adversarial attack methods based on generative adversarial networks, is simple to implement
and only needs the output of the target classifiers to generate adversarial examples. To have a comprehensive
evaluation of the attack performance of the proposed method, we use our method to generate adversarial
examples against the common machine learning based security systems in cybersecurity including host
intrusion detection systems, Android malware detection systems, and network intrusion detection systems.
We compare the attack performance of the proposed method against these security systems with that
of state-of-the-art adversarial attack methods based on generative adversarial networks. The preliminary
experimental results show that the proposed method, which is more efficient in computation and outperforms
the state-of-the-art attack methods based on generative adversarial networks, can be used to evaluate the
robustness of various machine learning based systems in cybersecurity against adversarial examples.

INDEX TERMS Adversarial examples, machine learning, deep learning, intrusion detection, malware
detection, neural networks, black-box method.

I. INTRODUCTION
Most scenarios in cybersecurity, such as malware
detection [1] and intrusion detection [2], can be viewed as
classification problems. Machine learning is effective in clas-
sification issues and shows excellent performance in cyber-
security, so it is widely applied in this domain [3]. However,
with the emergence of adversarial examples [4], the machine
learning based systems in this security-critical field face new
challenges. Adversarial examples (AEs), which are generated
by adding intentionally crafted noises to the original inputs,
can make the target classifiers misclassify. In the context

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng Xiao .

of cybersecurity, this usually means adversaries disguise
malicious behavior as normal to evade the detection of the
machine learning based systems.

Currently, the research onAEsmainly focuses on computer
vision [4]–[7]. Although there has been some pioneering
work [8]–[11] about AEs in cybersecurity, there is still a lack
of relevant research in this domain. On the other hand, the pre-
vious studies [7]–[11] concentrate on generating the AEs
against deep neural networks. The research on AEs against
traditional machine learning algorithms in cybersecurity is
less concerned. Therefore, to better evaluate the robustness of
the machine learning based security systems in cybersecurity,
it is necessary to further research the generation of AEs
against machine learning classifiers in this domain.

128250 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-8547-6531
https://orcid.org/0000-0003-1144-7599


S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

Generative adversarial networks (GANs) [12] are now the
hot topic in deep learning. GAN has shown excellent perfor-
mance in generating images, sounds, and texts [13]. GANs
are a new generative framework that is composed of the
discriminator and the generator. Normally, the discriminator
and the generator are both neural networks. The discriminator
learns to distinguish whether the inputs are fake or real.
The generator learns to produce high-quality fake samples
which can mislead the discriminator. Through the competi-
tion between the discriminator and the generator, GAN can be
trained to produce real-like samples. Because of its excellent
generating performance, it becomes one of the most prevail-
ing and effective methods to generate AEs [9], [14], [15]
in cybersecurity. Although the adversarial attack methods
based on GANs can make the target classifiers misclassify
in a high success rate, the training of GANs is currently
unstable [9], [15] and the attack performance of GAN-based
methods is influenced by training data [14], which are not
always available for adversaries. Besides, GANs are normally
composed of two deep neural networks. Neural networks are
generally regarded as black-box models, which means the
process of generating AEs in GANs is uncontrolled by the
adversaries. We can not intervene in the generating process
to decide the features to be perturbed when generating AEs
with GANs. This will hinder the application of adversarial
attack methods based on GANs under certain circumstances
in cybersecurity because sometimes we can only perturb
some specific features of input vectors to ensure that the
functionality of the inputs does not change. This will be
discussed detailedly in Section III.

In this paper, to avoid the tedious training of the
GAN-based adversarial attack methods and generate adver-
sarial examples more efficiently, we propose a new and
simple black-box attack method known as the brute-force
attack method (BFAM) to better evaluate the robustness of
the machine learning based systems in cybersecurity against
AEs. Our method is simple to implement compared with
the GAN-based methods. Our method modifies the fea-
tures of input vectors for machine learning based systems
in a controlled way. Our method does not need the internal
information of the target classifiers and is a gradient-free
method, which means the computation of the gradient is
unnecessary. The outputs of the target classifiers are the
only needed knowledge for generating AEs. Specifically, our
method needs the confidence scores of the target classifiers.
Our method can be used to produce AEs against different
machine learning based systems in cybersecurity. To vali-
date this, we design three experiments involving different
scenarios of cybersecurity, i.e., host intrusion detection [16],
network intrusion detection [2], and Android malware detec-
tion [17], where the machine learning algorithms are widely
used to improve the detection performance of the target
systems. Our method operates in a black-box way, which
is more common in the real world because the adversary
can only obtain the output of the target classifier in most
cases. The internal knowledge of the target classifiers is

usually unknown to the adversary. To verify the attack per-
formance of our method against various machine learning
algorithms, we adopt the machine learning algorithms which
are widely applied in cybersecurity to build up the tar-
get systems, i.e., logistic regression (LR) [15], [17], deci-
sion tree (DT) [2], [3], [16], [17], multilayer perceptron
(MLP) [2], [17], naive Bayes (NB) [2], [3], [17] and random
forest (RF) [2], [17]. In general, we make the following
contributions:
• We propose a new method known as the brute-force
attack method to generate AEs against machine learning
based systems in cybersecurity. Our method is sim-
ple to implement and avoids the tedious training of
GAN-based attack methods. Besides, our method is a
gradient-free method and manipulates the features of
input vectors in a determinate way, which makes our
method more suitable for the adversarial attacks in
cybersecurity. Our method generates AEs based on the
confidence scores of the target classifiers heuristically.

• Android malware detection, host intrusion detection,
and network intrusion detection are common scenarios
of cybersecurity, where machine learning techniques
are widely used. We compare the attack performance
of BFAM against different target classifiers in these
scenarios with that of the state-of-the-art GAN-based
attack methods to have a comprehensive evaluation of
our method.

• Our method is a black-box attack method for which
the architectures and parameters of the target classifiers
are unnecessary for attacks. The confidence scores of
the target models are the only required knowledge to
produceAEs. Themost widely appliedmachine learning
classifiers for different scenarios of cybersecurity are
chosen as our target classifiers. Through this, we hope to
have a full-scale evaluation of the robustness of different
machine learning classifiers against AEs.

II. RELATED WORK
In recent years, machine learning has shown promising
results in the field of cybersecurity. Machine learning algo-
rithms are diffusely adopted to solve various tasks in
this domain including malware detection [1], [17], intru-
sion detection [2], [3], [16], spam filtering [18], et al.
Fatima et al. [19] utilize the genetic algorithm to select fea-
tures and use the selected features to train machine learning
basedAndroidmalware classifiers. Their results show that the
feature dimension can be reduced to half of the original fea-
ture set with the help of the genetic algorithm and high accu-
racy can be achieved. Yao et al. [20] adopt machine learning
techniques to propose a new intrusion detection framework
to overcome the imbalance of different kinds of data in
network traffic and the nonidentical distribution between the
training set and the test set. Ren et al. [21] adopt isolation
forest, genetic algorithm, and RF to design a new intrusion
detection system which mainly consists of data sampling and
feature selection. Vijayakumar and Ganapathy [22] explore

VOLUME 8, 2020 128251



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

the role of machine learning to reduce the false alarm rate
of wireless intrusion detection systems. They propose a new
filtration technique to reduce false alarms. Sahın et al. [23]
evaluate the spam classification performance of different
machine learning methods combined with the bag of words
technique.

Because machine learning is widely applied in cybersecu-
rity, it is necessary to pay more attention to AEs, which pose
new threats to the machine learning based systems in this
domain and restrict the further application of machine learn-
ing algorithms in this security-critical field. Szegedy et al. [4]
are the first to reveal the vulnerability of deep neural networks
to AEs. Small but intentionally crafted noises added to orig-
inal inputs can make the target classifiers misclassify. They
adopt the box-constrained limited memory approximation of
the Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm
to generate AEs against the classifiers in computer vision
successfully. Papernot et al. [5] make use of the Jacobian
matrix of the target classifiers to determine the input features
to be perturbed. Their method is called the Jacobian-based
saliency map attack (JSMA). Moosavi-Dezfooli et al. [6]
propose DeepFool to produce AEs by finding the closest
distances between original inputs and the decision boundary.
Carlini and Wagner [7] put forward three new gradient-based
attack methods by introducing new objective functions. The
Carlini and Wagner (CW) attacks are claimed to be more
effective than many previously proposed attack methods. The
above methods are all white-box attacks.

With machine learning techniques widely applied in cyber-
security, more and more attention is paid to the study of AEs
in cybersecurity. Grosse et al. [8] are the first to research the
generation of AEs in cybersecurity. They expand the JSMA
to generate AEs against the deep learning based Android
malware detection systems (AMDSs). Yang et al. [9] investi-
gate the attack performance of common black-box adversarial
attacks against deep learning based network intrusion detec-
tion systems (NIDSs). They adopt three kinds of black-box
attack methods including zeroth-order optimization attacks,
training a substitute model, and GAN-based attack methods
to evaluate the robustness of deep neural networks for NIDS.
Wang [10] assesses the attack performance of state-of-the-
art adversarial attack methods against deep learning based
intrusion detection systems including JSMA, DeepFool, and
CW. Liu et al. [11] explore the generation of AEs based
on the genetic algorithm in the domain of the internet of
things (IoT).

Because of the excellent generating performance of GANs,
GANs are widely adopted to generate AEs against various
security systems in cybersecurity. Hu and Tan [14] propose a
new framework called MalGAN to generate adversarial mal-
ware to mislead machine learning based malware detection
systems. Lin et al. [15] propose IDSGAN to produce AEs
against machine learning based network intrusion detection
systems. The adversarial attack methods based on GANs are
currently one of the most widely used [9], [14], [15] and
effective [9] black-box attacks in cybersecurity.

III. BACKGROUND
In this section, we briefly introduce the background
knowledge about this paper, which will help understand the
subsequent sections. It mainly involves AEs, GANs, adver-
sarial attacks based on GANs, and the datasets used in our
experiments.

A. ADVERSARIAL EXAMPLES
AEs are derived from adding small but intentionally crafted
perturbations to original inputs. The objective of AEs is nor-
mally to make the target classifiers misclassify. In computer
vision, the perturbations added to inputs are needed to be
imperceptible to human eyes. In cybersecurity, this restriction
is usually replaced by ensuring that the functionality of the
adversarial examples is unchanged [8], [15], [24]. Assuming
that the purpose of malware is to steal the password of the
target system, it is meaningless that the adversaries generate
the adversarial malware using the adversarial attack methods,
which can evade the detection of the target security system but
lose the ability to steal the password. Therefore, it is necessary
to guarantee the validity of AEs.

The adversarial attack methods of generating AEs can be
categorized as white-box and black-box based on the knowl-
edge of the target classifiers possessed by the adversaries.
The white-box attacks normally assume that the adversaries
possess the complete knowledge of the target classifiers
including internal parameters, architectures, training data,
et al. [24]. The black-box attacks assume that the adversaries
own limited knowledge of the target classifiers, which does
not include the model parameters [24].

The adversarial attack methods can also be categorized as
targeted and non-targeted based on the adversarial goal. Let
C(x) be the label predicted by the classifier for x, x be the
original input, x∗ be the corresponding adversarial example,
y be the true label of x, and y∗ be the target label which the
adversaries want the target classifier to output. The goal of
non-targeted attacks is to find a x∗ which makes the classifier
output C(x∗) 6= y. The goal of targeted attacks is to make the
classifier output C(x∗) = y∗.

B. GENERATIVE ADVERSARIAL NETWORKS
GANs are a new category of generative models that are
originally proposed by Goodfellow et al. [12]. GANs
show excellent performance on various tasks including
image translation, semi-supervised learning, image gener-
ation, et al. [13]. GANs mainly consist of two important
components, i.e., the discriminator and the generator. The
generator takes in the latent variable z as inputs and learns
how to produce high-quality fake samples to fool the dis-
criminator. On the contrary, the discriminator takes in fake
samples generated by the generator and real samples as inputs
and learns how to distinguish between real samples and fake
samples. Through the competition between the discrimina-
tor and the generator, GANs generate high-quality real-like
samples [13]. The normal architecture of GANs is shown

128252 VOLUME 8, 2020



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

in Fig. 1, where z is the latent variable usually sampled from
a uniform distribution.

FIGURE 1. The normal architecture of GANs.

The training of GANs can be viewed as a game between
the generator and the discriminator. On each training step,
the discriminator is first trained to distinguish whether the
input is real or fake. Then the generator is trained to produce
fake samples that can fool the discriminator. By iteratively
carrying out this process, if the discriminator and the gen-
erator have the competent capacity, the Nash equilibrium
will be achieved [12], [13]. Then the discriminator can not
distinguish whether the input is real or fake.

Generally, when the discriminator is trained, the gener-
ator needs to be fixed and when the generator is trained,
the discriminator needs to be fixed. The training of the dis-
criminator is usually to minimize the loss function in (1).
The loss function (1) for the discriminator can be regarded
as a standard cross-entropy loss used to train a standard
binary classifier. The difference is that the discriminator is
trained on two batches of data [12], [13]. To minimize the
loss function (1) corresponds to training the discriminator
to distinguish between the real samples from the real data
distribution, which are labeled as 1, and the fake samples
generated by the generator, which are labeled as 0. The train-
ing of the generator is usually to minimize the loss function
in (2). The loss function (2) for the generator is minimized
to make the generator produce the fake samples predicted as
real by the discriminator. In these two equations, G denotes
the generator and D denotes the discriminator. x denotes the
real samples from the real data distribution pdata and z denotes
the latent variable from the distribution pz.

JD = −
1
2
Ex∼pdata logD(x)

−
1
2
Ez∼pz log(1− D(G(z))). (1)

JG = −
1
2
Ez∼pz logD(G(z)). (2)

C. ADVERSARIAL ATTACKS BASED ON GANs
The adversarial attack methods based on GANs are
currently the most concerned black-box attacks in cyberse-
curity [9], [14], [15]. The advantages of adversarial attacks
based on GANs are as follows: 1) The GAN-based adver-
sarial attacks only require the predicted labels of the target
classifiers to generate AEs, which makes them applicable

for more tasks. The internal information of the target clas-
sifiers is unknown to the adversaries most of the time. The
white-box attacks do not work in this situation. 2) Although
the GAN-based attack methods need minimal knowledge
of the target classifiers, AEs generated by them show an
excellent result in misleading the target models [9], [14], [15].

However, the training of the GANs is currently still unsta-
ble [9], [14], [15]. The attack performance of GAN-based
methods partly depends on the training data [14]. The gen-
erating process of GAN-based methods is normally uncon-
trolled because the generator is usually deep neural networks
which are regarded as black-box models.

In cybersecurity, the existing adversarial attack methods
based on GANs adopt a similar architecture to generate AEs,
which is shown in Fig. 2. The generator takes the concate-
nation of malicious examples and noise as inputs to pro-
duce adversarial malicious examples. The black-box detector
in Fig. 2 is the target classifier the adversaries want to attack.
The black-box detector is just employed to provide the labels
of benign examples and adversarial malicious examples for
the discriminator. In other words, the discriminator is used to
fit the black-box detector and provide the indirect knowledge
for the generator to produce the AEs which can deceive the
black-box detector.

FIGURE 2. The normal architecture of adversarial attacks based on GANs.

The loss functions for the discriminator and the generator
are changed to (3) and (4) [14], [15]. In (3) and (4), Sbenign
and Sadmal denote benign examples and adversarial mali-
cious examples predicted by the black-box detector. Smalicious
denotes the original malicious examples in the dataset. D
denotes the discriminator and G denotes the generator. x is
the input for the discriminator and the generator. z is the noise
vector from the distribution pz which is usually a uniform
distribution. To train this framework to generate AEs, the loss
functions in (3) and (4) need to be minimized.

JD = Ex∈SbenignD(x)− Ex∈SadmalD(x). (3)

JG = Ex∈Smalicious,z∈pzD(G(x, z)). (4)

D. DATASETS
To have a comprehensive evaluation of the attack effect of
our method, three datasets which involve three scenarios of
cybersecurity are adopted to validate the effectiveness of our
method.

VOLUME 8, 2020 128253



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

The Australian Defence Force Academy Linux Dataset
(ADFA-LD) is a professional and widely used host intrusion
detection dataset [16], [25] published by Creech and Hu [26].
The system call traces are usually used by the host intrusion
detection systems (HIDSs) to detect the attacks against the
target systems. ADFA-LD consists of 833 normal training
traces, 4372 normal validation traces, and 746 attack traces,
which are all collected under the Linux system. Each system
call in the traces is represented by an integer. The details of
the ADFA-LD dataset are shown in Table 1.

TABLE 1. Details of the ADFA-LD dataset.

The NSL-KDD dataset is a benchmark dataset for net-
work intrusion detection, which is widely adopted to evalu-
ate the performance of NIDSs [2], [16], [20]. The previous
work [9], [10], [15] mostly adopts the NSL-KDD dataset
to verify the attack effect of their methods. Every record in
NSL-KDD is composed of 41 features which can be grouped
into four feature sets: Intrinsic, Content, Time-based Traffic,
and Host-based Traffic. Each record in NSL-KDD is labeled
as normal or a specific attack type. There are four main
attacks, i.e., Denial of Service (DoS), Probe, User to Root
(U2R), and Remote to Local (R2L). The four kinds of attacks
can be further divided into 38 attack classes. The training data
contain 22 attack classes and the testing data contain 37 attack
classes, in which 16 novel attacks only exist in the test set. The
details of NSL-KDD are shown in Table 2.

TABLE 2. Details of the NSL-KDD dataset.

The DREBIN dataset originally published by
Arp et al. [27] is a widely used Android malware detection
dataset [8]. DREBIN includes 129013 Android applications,
which consist of 123453 benign applications and 5560 mali-
cious applications. Each application can be transformed into
a vector with 54533 features, each of which is represented by
a binary value to indicate whether the feature is present in the
application [8]. All the features can be divided into 8 feature
sets. The detailed statistics of the number of features in each
feature set is shown in Table 3.

TABLE 3. Details of the DREBIN dataset.

IV. PROPOSED METHOD
The generation of AEs in a targeted way can usually be for-
malized as solving the optimization problem in (5) [4]–[11],
where x is the original input, C(x) denotes the label predicted
by the classifier for x, y∗ is the target label and δ is the
minimal adversarial perturbation causing the target classifier
to misclassify. δ is normally not unique. ‖·‖p denotes a norm.

minimize ‖δ‖p
s.t. C(x+ δ) = y∗. (5)

The adversarial perturbation δ needs to be small enough to
be imperceptible to human eyes in computer vision. As dis-
cussed in Section III.A, this restriction is replaced by guar-
anteeing the functionality of the malware or intrusion data
when AEs are generated in cybersecurity, which implies
that the adversarial perturbation δ added to the original
inputs does not need to be small but it can not destroy the
original functionality of AEs [8]. Therefore, the distortion
of the adversarial examples is normally not concerned in
cybersecurity [9], [10], [14], [15], [24].

Generally, because of the nonconvexity and nonlin-
earity of the target classifiers, there is no closed-form
solution to the problem in (5). Therefore, many exist-
ing attack methods adopt optimization algorithms such
as the gradient-based method to achieve the approxi-
mate adversarial perturbation. Inspired by the previous
work [4]–[11], [14], [15], [28], [29], [30], the generation of
AEs can also be viewed as the problem to search the key
features of an input vector which can affect the output of the
target classifiers. By modifying these key features appropri-
ately, the AEs can be produced to fool the target classifiers.
In the setting of black-box attacks, the generation of AEs is
then transformed into searching the key features with limited
knowledge. Assuming that the confidence scores of the target
classifiers are the only information that adversaries can obtain
from the target classifiers, the problem is further transformed
into searching the key features under the instruction of the
confidence scores of the target classifiers.

The intuitive attempt is to modify the features in the input
vector successively and determine which modification helps
generate AEs which can mislead the target classifiers. This
is like the situation that when a hacker wants to make illegal
access to a target systemwithout knowing the login password,
he will try every possible combination of the passwords and
determine the right login password based on the response of

128254 VOLUME 8, 2020



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

the target system. Inspired by the attackmode of this common
attack in cybersecurity, we propose the brute-force attack
method (BFAM) to generate AEs against machine learning
based systems in cybersecurity.

Before the detailed introduction to BFAM, some notations
need to be elaborated first. Assuming that F(x) is the con-
fidence scores outputted by the target classifier. Fi(x) is the
ith component of F(x) and indicates the probability of x
belonging to Class i. 0 ≤ Fi(x) ≤ 1 and

∑
i Fi(x) = 1.

Therefore, the label predicted by the target classifier is
C(x) = argmaxiFi(x).

Algorithm 1 Targeted Version of Brute-Force AttackMethod
Input: Target classifier F ; original input x; target label y∗;

perturbation strength α;
indexes of features allowed to be perturbed
p_index.

Output: Adversarial examples adx.
1: i← 0;
2: while argmaxjFj(x) ! = y∗ and i < len(p_index) do
3: f stores the confidence scores before modification:

f← F(x);
4: perturb the feature x[p_index[i]] with the strength α:

x[p_index[i]]← x[p_index[i]]+ α;
5: clip the x into the allowed range;
6: recalculate the confidence score F(x);
7: if Fy∗ (x)− f[y∗] > 0 then
8: keep the modification;
9: else

10: cancel the modification,
return the feature to its original value;

11: end if
12: i← i+ 1;
13: end while
14: adx← x;
15: return adx.

The intact pseudocode of the targeted version of BFAM
is shown in Algorithm 1. BFAM has two hyperparameters,
i.e., p_index and α. p_index stores the indexes of the features
of x which are permitted to be modified. As discussed in
Section III.A, we need to guarantee the functionality of the
adversarial examples. Therefore, we can only modify the
nonfunctional features of the input vectors [8], [15]. In each
iteration, the confidence scores before the modification are
first stored in f . Then, we modify a permitted feature in x
with a specified perturbation strength α. Then, the modified
feature needs to be clipped into its original value range in
case of destroying the functionality of the input. Through
the clipping, the feature which is less than the minimum
value is set to the minimum value and the feature which is
greater than the maximum value is set to the maximum value.
The modified x is fed to the target classifier to recalculate
the confidence scores F(x). If the Fy∗ (x) − f [y∗] is greater
than 0, the modification to the current feature is valid. The

modification is kept. Otherwise, we cancel the modification
to the current feature and restore the feature to its original
value. f [y∗] denotes the original confidence score of the target
class. Two conditions will terminate the while loop: 1) The
AEwhich canmislead the target classifier has been produced.
2) All the features which are allowed to be perturbed have
been tried.

The nontargeted version of BFAM is shown in
Algorithm 2. The biggest difference between the targeted
BFAM and the nontargeted BFAM is that the targeted BFAM
is to increase the confidence score of the target class, but the
nontargeted BFAM is to decrease the confidence score of the
real class.

Algorithm 2 Non-Targeted Version of Brute-Force Attack
Method
Input: Target classifier F ; original input x; true label y;

perturbation strength α;
indexes of features allowed to be perturbed
p_index.

Output: Adversarial examples adx.
1: i← 0;
2: while argmaxjFj(x) == y and i < len(p_index) do
3: f stores the confidence scores before modification:

f← F(x);
4: perturb the feature x[p_index[i]] with the strength α:

x[p_index[i]]← x[p_index[i]]+ α;
5: clip the x into the allowed range;
6: recalculate the confidence score F(x);
7: if f[y]− Fy(x) > 0 then
8: keep the modification;
9: else
10: cancel the modification,

return the feature to its original value;
11: end if
12: i← i+ 1;
13: end while
14: adx← x;
15: return adx.

As shown in Algorithm 1 and Algorithm 2, our method
does not utilize neural networks to generate the adversarial
examples. The proposed method determines the features to
be perturbed based on the confidence scores outputted by the
target classifiers and produces the adversarial examples by
directly manipulating the features of input vectors. We can
regard the generating process of our method as that the con-
fidence scores indicate the direction along which we should
modify the inputs. Our method operates in a black-box way
and does not require any internal knowledge of the target clas-
sifier, which makes our method applicable for more adver-
sarial tasks in cybersecurity. Our method avoids the unstable
training of the GAN-based attack methods and has complete
control over the generating process of AEs. Our method
can perturb the specified features with a specified strength,

VOLUME 8, 2020 128255



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

which is exactly the deficiency of the GAN-based attack
methods.

V. EXPERIMENTS AND ANALYSIS
To have a comprehensive evaluation of the attack effect of our
method, we adopt BFAM to generate AEs on three different
datasets, i.e., ADFA-LD, NSL-KDD, and DREBIN. These
datasets are chosen to validate the performance of our method
because host intrusion detection, network intrusion detection,
and Android malware detection are the common scenarios in
cybersecurity where machine learning algorithms are widely
applied. Besides, these datasets can represent the typical
inputs for machine learning classifiers in cybersecurity. The
machine learning algorithms which are widely used in cyber-
security [1]–[3], [16]–[23] are employed to build up the target
detection systems, i.e., LR, DT, MLP, NB, and RF. We regard
these three scenarios as binary classification problems. All
the normal examples are labeled as 0 and all the malicious
examples are labeled as 1.

In cybersecurity, the black-box attack methods are nor-
mally thought to be more practical than the white-box
attacks [9], [11], [14], [15] because the adversaries can only
access the target systems as a standard user most of the
time, which means that the adversaries only possess lim-
ited knowledge of the target classifiers. Normally, they can
just access the output of the target classifiers. Therefore,
we only consider the generation of AEs under the setting of
black-box attacks in this paper. GAN-based adversarial attack
methods are currently one of the most effective and con-
cerned black-box attacks in cybersecurity [9], [14], [15], [31].
The previous work [9] has already compared the attack per-
formance of the common black-box attacks in cybersecurity
such as training a substitute model, zeroth-order optimization
methods, and GAN-based attack methods. The GAN-based
attack methods show excellent performance among these
black-box attacks. Besides, our method is proposed to cover
some drawbacks of the GAN-based attack methods such
as the unstable training et al. Therefore, We only compare
the attack effect of our method with that of the state-of-
the-art GAN-based attack methods. Because the existing
GAN-based attack methods [9], [14], [15] all employ the
architecture in Fig. 2 to generate AEs, we also adopt this
architecture to build up the adversarial attack method based
on GAN (AAM-GAN). TheWasserstein GAN (WGAN) [32]
shows excellent performance among the various variants
of GAN. Therefore, we adopt WGAN to implement the
architecture in Fig. 2.

In the real world, the adversaries aremore likely to disguise
malicious behavior as normal. Therefore, we only consider
generating adversarial malicious examples that can evade the
detection of the target security systems without changing
the functionality of the malicious examples in this paper.
The targeted version of BFAM is employed to generate AEs.
Besides, we assume that the adversarial attacks happen in the
test stage, which is closer to the actual condition. Accord-
ingly, the test data are utilized to produce AEs.

Fig. 3 is adopted to illustrate the generation process of
targeted BFAM more intuitively. For an input vector with n
features, assuming that the features allowed to be modified
are the first six features, BFAM successively modifies the
modifiable features to generate AEs and processes a single
feature in each iteration. As shown in Fig. 3, the current
feature to be perturbed is f2. BFAM modifies the current
feature with specific perturbation strength and recalculates
the confidence scores of the target classifiers for the modified
input. If the modification increases the confidence score of
the target class, the modification is kept. Otherwise, it is
canceled and the modified feature is restored to its original
value. We then test whether the target classifiers output the
target label. If the target classifiers output the target label,
we terminate the generation because the adversarial examples
have been produced successfully. Otherwise, we continue to
modify the next feature f3. The above generation process pro-
ceeds iteratively until the adversarial examples are produced
or all the modifiable features are tried. We ignore the clipping
procedure of Algorithm 1 in Fig. 3. To generate m AEs with
n modifiable features, the computational complexity of the
proposed method can be represented as O(m × n) if BFAM
produces m AEs separately. If the vectorized programming
is adopted, the computational complexity can be reduced
to O(n).

FIGURE 3. The process of generating AEs using targeted BFAM.

The metrics used in this paper include the original detec-
tion rate (ODR), adversarial detection rate (ADR), and the
total time cost (TTC) of generating AEs. The ODR indicates
the detection performance of the target classifiers against
the original attack examples. The ODR can be formalized
as (6). The ADR indicates the detection performance of the
target classifiers against the adversarial attack examples. The
ADR can be calculated with (7). Detection rate is a very
important metric for machine learning classifiers in cyberse-
curity. A lower detection rate usually means that many attacks
evade the detection of the target detection systems. This will
put the systems protected by the target detection systems in
danger, which is usually unacceptable. We can intuitively
observe the attack effect of the adversarial attack methods
and the robustness of the target classifiers against AEs by
comparing ODR of the target classifier with its ADR. The
attack method shows an excellent attack performance if the
target classifier with a high ODR achieves a low ADR on

128256 VOLUME 8, 2020



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

the adversarial attack examples. Our method can be regarded
as an exhaustive but greedy search algorithm. The compu-
tational efficiency of our method needs to be concerned.
TTC measures the total time consumption of producing a
set of AEs. To verify the computational efficiency of BFAM,
we compare the TTC of BFAMwith that of AAM-GAN in the
experiments.

All the experiments are performed on a computer with
an i5-8265U CPU and an 8GB RAM. Two 6G Nvidia
GTX 1660 GPUs are used to accelerate the computation.
We implement all the machine learning classifiers based on
Scikit-learn [33] which is a widely used machine learning
framework. The deep learning framework Pytorch [34] is
used to implement BFAM and AAM-GAN.

ODR

=
Num. of correctly detected original attack examples

Num. of all the original attack examples
.

(6)

ADR

=
Num. of correctly detected adversarial attack examples

Num. of all the adversarial attack examples
.

(7)

A. CRAFTING ADVERSARIAL EXAMPLES AGAINST
MACHINE LEARNING BASED HIDS
The original inputs for HIDSs are normally system call traces
as discussed in Section III.D. The machine learning clas-
sifiers can only process vectors. Therefore, all the original
traces need to be transformed into vectors before feeding
them to the target classifiers. We adopt the set of words tech-
nique to preprocess the original traces because it is widely
applied in cybersecurity [23], [35], [36]. Assuming that
C = {c1, c2, c3, . . . , cm} denotes the set of system calls, m is
the number of system calls and ci denotes a single system
call. For any system call trace s, we transform it into a vector
x =< x1, x2, x3, . . . , xm >, where xi = 1 if s includes ci else
xi = 0. After the preprocessing, all the original system call
traces are transformed into vectors with 175 features.

All the malicious system call traces are labeled as 1 and
all the normal system call traces are labeled as 0. Thirty
percent of the dataset is used as the test set and the rest
is used as the training set. The AAM-GAN and the target
classifiers share the same training data, which usually means
a better performance of the GAN-based attack methods [14].
We adopt the 3-fold cross-validation and grid search to find
the optimal parameters for the target classifiers. To guarantee
the functionality of the malicious system call traces, we only
add system calls to the original malicious system call traces.
In this case, p_index of BFAM is set to the indexes of the
features whose values are zero for each input and α is set to 1.
The number of training epochs for AAM-GAN is set to 50.
The learning rates of the discriminator and the generator are
both set to 0.0001. The RMSProp optimizer is adopted to train
the discriminator and the generator. The outputs of the gen-
erator are firstly clipped into the range of [0, 1]. Then, all the

features which are greater than 0.5 are set to 1. All the features
which are less than or equal to 0.5 are set to 0. To make sure
that we only add additional system calls to original system
call traces, we achieve the final AEs generated byAAM-GAN
through (8), where x is the original input, A(x) denotes the
output of AAM-GAN, x∗ is the final AE, and | denotes the
element-wise OR operation [14].

x∗ = x|A(x). (8)

Table 4 shows the attack performance of BFAM and
AAM-GAN against the machine learning based HIDSs. The
results show that our method shows an excellent attack
performance on all machine learning based classifiers for
host intrusion detection. Before the adversarial attacks, all
the target classifiers achieve a high detection rate on the
original malicious system call traces. However, after trans-
forming the original malicious system call traces into the
adversarial malicious system call traces using BFAM, all the
adversarial malicious traces evade the detection of the tar-
get classifiers. Our method achieves the attack performance
comparable to AAM-GAN on LR-based HIDS, NB-based
HIDS, MLP-based HIDS, and RF-based HIDS. Our method
outperforms AAM-GAN on NB-based HIDS.

TABLE 4. Attacks against machine learning based HIDSs.

Table 5 shows the computational efficiency of BFAM
against machine learning based HIDSs. The TTCs in Table 5
indicate the total time consumption of the correspond-
ing attack methods on the whole test set. The TTCs of
AAM-GAN in Table 5 include training cost and generation
cost. Because BFAM does not need training, the TTCs of
BFAM just involves generation cost. As shown in Table 5,
the TTCs consumed by BFAM to generate AEs against all
the target classifiers are much less than those consumed by
AAM-GAN. This proves the effectiveness of BFAM. The
TTCs of BFAM and AAM-GAN against RF-based HIDS are
much more than the time cost against the other classifiers,
which partly shows that ensemble models are more robust

TABLE 5. Computational efficiency of BFAM against machine learning
based HIDSs.

VOLUME 8, 2020 128257



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

against AEs and the efficiency of BFAM against ensemble
models needs to be improved.

B. CRAFTING ADVERSARIAL EXAMPLES AGAINST
MACHINE LEARNING BASED AMDS
DREBIN dataset contains 123453 benign Android applica-
tions and 5560malicious Android applications. Arp et al. [27]
transform every application into a binary indicator vector
whose component indicates whether the corresponding fea-
ture exists in the target application. If the feature exists in
the target application, the corresponding component of the
input vector is set to 1. Otherwise, the component is set
to 0 [8]. Each application will be transformed into a vector
with 54533 features through this method. All the features are
grouped into 8 feature sets as shown in Table 3.

We randomly pick out 45000 benign applications as normal
samples. All the 5560malicious applications are used asmali-
cious samples. The benign applications are labeled as 0 and
the malicious applications are labeled as 1. Thirty percent
of all the selected samples are used as the test set and the
others are used as the training set. The AAM-GAN still shares
the training set with the target classifiers to achieve a better
attack performance. The 10-fold cross-validation and grid
search are employed to search the optimal parameters for the
target classifiers. To ensure the functionality of the malicious
applications, we only modify the nonfunctional features of
the applications. Grosse et al. [8] have shown that modifying
the features in S1, S2, S3, and S4 does not influence the
functionality of malicious applications. Therefore, p_index
includes the indexes of features belonging to these four fea-
ture sets. α is still set to 1 because the components of the input
vectors are either 0 or 1.We still train theAAM-GANwith the
RMSProp optimizer and the learning rate is still set to 0.0001.
All the outputs of the generator are clipped into [0, 1]. Then,
all the features which are greater than 0.5 are set to 1 and
the features which are less than or equal to 0.5 are set to 0.
We still employ (8) for AAM-GAN to guarantee that we only
add additional features to original malicious applications.

Table 6 shows the attack performance of BFAM
and AAM-GAN against the machine learning based
AMDSs. BFAM shows excellent attack performance against
LR-based, MLP-based, and NB-based AMDSs, whose ADRs
against AEs are decreased to 0. This means that all the adver-
sarial malicious applications evade the detection of these
target classifiers with their functionality unchanged. BFAM

TABLE 6. Attacks against machine learning based AMDSs.

obtains the same performance as AAM-GAN on LR-based
and MLP-based AMDSs. BFAM outperforms AAM-GAN
on DT-based, NB-based, and RF-based AMDSs. The results
in Table 6 also show that RF classifiers are more robust
against AEs. Especially, there are still 43.08 percent of
adversarial malicious applications generated by AAM-GAN
being detected by RF-based AMDS. Although the attack
performance of BFAM on RF classifier is worse than its
attack performance on the other classifiers, the ADR of
RF-based AMDS against adversarial malicious applications
generated by BFAM is 17.25 percent, which is far less than
43.08 percent of AAM-GAN.

The computational efficiency of BFAM against machine
learning based AMDSs is shown in Table 7. BFAM consumes
much less time to generate AEs against LR-based, DT-based,
MLP-based, and NB-based AMDSs than AAM-GAN. The
TTCs of BFAM and AAM-GAN against RF-based AMDS
are still more than their TTCs against the other classifiers.
However, the TTC of BFAM against RF-based AMDS is just
a quarter of that of AAM-GAN. The results show that our
method is more efficient than the GAN-based attack method
in the setting of Android malware detection.

TABLE 7. Computational efficiency of BFAM against machine learning
based AMDSs.

C. CRAFTING ADVERSARIAL EXAMPLES AGAINST
MACHINE LEARNING BASED NIDS
NSL-KDD dataset is a benchmark dataset for network intru-
sion detection. There are 41 features for each record in the
NSL-KDD dataset, which consist of 32 numeric features,
6 binary features, and 3 nominal features. Because machine
learning classifiers can only process numeric values, the orig-
inal records need to be preprocessed before feeding them
to machine learning classifiers. Normally, the preprocessing
includes two steps [2], [10], [15]: 1) Firstly, the 3 nomi-
nal features, i.e., ‘‘protocol type’’, ‘‘service’’, ‘‘flag’’, are
transformed into discrete values. For example, the feature,
‘‘protocol type’’, has three types of values: TCP, UDP, and
ICMP, which will be transformed into 1, 2, 3 correspondingly.
2) Secondly, all the features are scaled into [0,1] with the
Min-Max method to avoid the influence of different feature
ranges. The Min-Max method can be formalized as (9) where
x is the feature value before normalization, x ′ is the feature
value after normalization, xmin is the minimum value of this
feature over the whole dataset, and xmax is the maximum
value of this feature over the whole dataset.

x ′ =
x − xmin

xmax − xmin
. (9)

128258 VOLUME 8, 2020



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

There are 4 kinds of malicious traffic data in NSL-KDD.
Because the network intrusion detection is regarded as binary
classification in this paper, all the malicious traffic data
are labeled as 1 and all the normal traffic data are labeled
as 0. The NSL-KDD dataset contains training data and test
data. We train the target classifiers and AAM-GAN with
the whole training set. The 10-fold cross-validation and grid
search are utilized to find the target classifiers which show
the best detection performance. The whole test set is used
to validate the detection performance of the target classi-
fiers and generate AEs against the target classifiers. We still
only modify the nonfunctional features in a traffic record.
Table 8 [37] shows the functional features of each kind of
malicious traffic. The ‘‘Yes’’ in Table 8 indicates that the
features in the corresponding feature set are functional for
that attack category. Because the functional features of each
attack category are different, we generate AEs of each attack
category separately. Therefore, p_index contains the indexes
of nonfunctional features of the corresponding attack cate-
gory when BFAM generates AEs of each attack category.
In Section V.A and V.B, the inputs for the target classifiers
are all binary indicator vectors whose components are either 0
or 1. The α of BFAM can only be set to 1 in the first two
scenarios. In the context of NIDS, the input vectors after
normalization are the combination of features in continuous
values and features in binary values. All the features are in
the range of [0,1]. Therefore, the α can be set to any value
between 0 and 1 for the continuous features in this setting.
We observe the impact of α on the attack performance of
BFAM, which is shown in Fig. 4. For the binary features
of input vectors, we transform the modified features whose
values are greater than 0.5 into 1 and the modified features
whose values are less than or equal to 0.5 into 0. With the
increase of α, ADRs of LR-based NIDS against AEs of each
attack category gradually decrease. The same phenomenon
can be observed on the other machine learning based NIDSs.
Therefore, we still set α to 1 for BFAM to generate AEs in
the following experiments. We adopt the same parameters
as those in Section V.A and V.B to train the AAM-GAN.
Because the ranges of functional features of different attack
categories are different, we train different AAM-GANs for
different kinds of attack data on the same target classifier to
better evaluate the attack performance of AAM-GAN.

TABLE 8. Functional features of each attack category in the NSL-KDD
dataset.

The attack performance of BFAM and AAM-GAN against
machine learning based NIDSs are shown in Table 9. Because
the number of samples of U2R is small and samples of

FIGURE 4. Impact of α on the attack performance of BFAM against
LR-based NIDS.

U2R and R2L own the same functional features and similar
characteristics, we combine them into one group. Due to the
small number of samples of U2R and R2L in the training
set, the original detection rate of the target classifiers against
them is low. Every row in Table 9 shows the original detection
rate of a certain kind of target classifier against a certain
kind of attack and the adversarial detection rate of the tar-
get classifier against the corresponding adversarial malicious
traffic generated by BFAM and AAM-GAN. We can observe
that different categories of adversarial malicious traffic gen-
erated by AAM-GAN perform differently on the same target
classifier. For instance, the ADR of NB-based NIDS against
adversarial malicious traffic of DoS generated byAAM-GAN
is 33.86 percent. However, the ADR of NB-based NIDS
against adversarial malicious traffic of Probe generated by
AAM-GAN is just 4.88 percent. The similar phenomena
can be observed on DT-based, and MLP-based NIDSs. This
proves the instability of GAN-based attack methods. The
results in Table 9 show that BFAM reduces the ADRs of all
the target classifiers greatly and shows better stability than
AAM-GAN. BFAM outperforms AAM-GAN in most cases.
However, AAM-GAN shows better performance than BFAM
when they generate AEs of Probe against LR-based and
NB-based NIDSs. RF still shows better robustness against
AEs.

The computational efficiency of BFAM against machine
learning based NIDSs is shown in Table 10. Just like the
results in Table 5 and Table 7, BFAM consumes much less
time than AAM-GAN to produce the same number of AEs.
The TTCs of BFAM and AAM-GAN on RF are still much
more than their TTCs on the other target classifiers.

D. THE IMPACT OF THE NUMBER OF FEATURES ALLOWED
TO BE MODIFIED ON ATTACK PERFORMANCE
In this section, we want to discuss the influence of the number
of features permitted to be modified in input vectors on
the attack performance of BFAM and AAM-GAN. As dis-
cussed in Section III.A, the constraint of imperceptibility on
AEs in computer vision is substituted by the limitation of
guaranteeing the functionality of the adversarial examples in

VOLUME 8, 2020 128259



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

TABLE 9. Attacks against machine learning based NIDSs.

TABLE 10. The computational efficiency of BFAM against machine
learning based NIDSs.

cybersecurity. This means that only nonfunctional features of
input vectors can be modified, which usually increases the
difficulty of generating AEs. We evaluate the attack perfor-
mance of BFAMandAAM-GAN against the target classifiers
when different numbers of modifiable features are available.
Specifically, we specify different numbers of features allowed
to be modified for BFAM and AAM-GAN to observe the
changes in their attack performance.

The attack performance of BFAM and AAM-GAN against
machine learning based AMDSs with different numbers of
features allowed to be modified is shown in Fig. 5. The
BFAM_A and AAM-GAN_A in Fig. 5 indicate that BFAM
and AAM-GAN generate AEs by modifying both functional
features and nonfunctional features. BFAM_NF and AAM-
GAN_NF indicate that AEs are produced by only altering
the nonfunctional features of the input vectors. The results
in Fig. 5 indicate that BFAM and AAM-GAN show better
attack performance when there is no restriction on the number
of modifiable features. The ADRs of DT-based, NB-based,

FIGURE 5. Impact of the number of modifiable features on the attack
performance against machine learning based AMDSs.

and RF-based AMDSs increase with the decrease in the
number of modifiable features, which implies the degradation
of attack performance of adversarial attack methods. We can
also observe that the performance degradation of BFAM
is slower than that of AAM-GAN. For instance, the ADR
of the RF-based AMDS against AEs generated by BFAM
increases from 0 percent to 17.25 percent after limiting the
number of modifiable features. The increase of the ADR
against AEs generated by AAM-GAN is from 12.8 percent
to 43.08 percent. The ADRs of LR-based and MLP-based
AMDSs remain unchanged at 0 percent after restricting the
number of modifiable features, which implies that not all the
features are useful for generating AEs. We just need to find
the key features which can influence the output of the target
classifier and modify them appropriately to produce AEs,
which proves the point made in Section IV.

The influence of the number of features allowed to be
modified on the attack performance against machine learning
based NIDSs is shown in Fig. 6.We evaluate the impact of the
number of modifiable features on different attack categories
in the NSL-KDD dataset separately because attack data of

128260 VOLUME 8, 2020



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

FIGURE 6. Impact of the number of modifiable features on the attack
performance against machine learning based NIDSs. (a) displays the
impact on the attack performance of AEs of DoS; (b) displays the impact
on the attack performance of AEs of Probe; (c) displays the impact on the
attack performance of AEs of R2L&U2R.

different categories own different functional features. We still
put R2L and U2R into one group. We can draw the same
conclusion fromFig. 6. The attackmethods show better attack
performance when there is no restriction on the number of

modifiable features. The degradation of the attack perfor-
mance of BFAM is slower than that of AAM-GAN when
there is a constraint on the number of modifiable features.
Besides, we can observe that the performance of AEs of some
attack categories generated by AAM-GAN on some target
classifiers is better than that of AEs generated byBFAMwhen
there is no limitation on the number of features permitted to
be modified. For example, the results in Fig. 6(a) show that
AEs produced by AAM-GAN_A achieve a lower ADR than
those produced by BFAM_A on MLP-based and NB-based
NIDSs.

The results in these figures prove that BFAM ismore robust
and effective than AAM-GAN when there is a restriction on
the number of modifiable features, which is important for the
adversarial attack methods in cybersecurity. The impact of
the number of modifiable features on the attack performance
against machine learning based HIDSs is not displayed in
this section because the ADR of machine learning based
HIDSs against AEs remains the same even when there is
a restriction on the number of modifiable features. This is
because we only add system calls into the original system
call traces to guarantee the functionality of the inputs. The
nonfunctional features of input vectors for machine learning
based HIDSs are the ones whose values are 0 in this setting.
However, BFAM and AAM-GAN clip the modified features
into the range of [0,1] during the generation. AEs that are
generated with all the features allowed to be altered and AEs
that are generated with just nonfunctional features allowed to
be altered obtain the same attack performance.

E. COMPREHENSIVE ANALYSIS
The following analysis and conclusion are given based on the
results of the preliminary experiments above:

1) BFAM is simple to implement and avoids the tedious
training of GAN-based methods, which makes BFAM
more efficient in computation. The results in Table 5,
Table 7, and Table 10 prove that BFAM costs much
less time to generate AEs than AAM-GAN in various
scenarios of cybersecurity.

2) BFAM outperforms the GAN-based attack method in
most cases. Especially, when there is a restriction on
the number of features allowed to be modified, BFAM
is more effective and robust than AAM-GAN.

3) BFAM shows excellent attack performance against
state-of-the-art machine learning classifiers in cyber-
security. Most AEs generated by BFAM can evade the
detection of the target machine learning based systems
in cybersecurity, which means state-of-the-art machine
learning algorithms are vulnerable to AEs. Among all
the target classifiers, RF classifiers are the most robust
against AEs.

4) BFAM is a black-box attack method, which only
requires the confidence scores of the target classifiers
to generate AEs. This makes BFAM closer to the real
condition and suitable for more adversarial tasks in
cybersecurity than the white-box attacks.

VOLUME 8, 2020 128261



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

5) Currently, the training of the GAN-based attack meth-
ods is unstable which is reflected in the instability of
the attack performance of AAM-GAN. For instance,
the ADR of MLP-based NIDS against AEs of Probe
generated by AAM-GAN is 50.81 percent in Table 9.
Nevertheless, the ADR of NB-based NIDS against AEs
of Probe generated by AAM-GAN is just 4.88 percent.
The GAN-based methods show better attack perfor-
mance when there is no restriction on the number of
modifiable features. For example, when all the features
can be modified, AAM-GAN decreases the ADRs of
LR-based, MLP-based, and NB-based NIDSs against
AEs of Probe to 0 percent, as shown in Fig. 6(b). How-
ever, we need to keep the functional features unmod-
ified to guarantee the validity of the AEs in the real
world, which hinders the further application of the
existing GAN-based attack methods.

6) GAN-based attack methods can produce AEs only with
labels. BFAMneeds the confidence scores outputted by
the target classifiers to instruct the generation of AEs,
which means that the proposed method is currently not
fit for being used to evaluate the machine learning clas-
sifiers which only output labels. BFAM requires to be
improved to be applicable for more machine learning
classifiers in future work.

7) Comparing the results in Table 4, Table 6, and Table 9,
we can conclude that BFAM performs better on
machine learning based HIDSs and AMDSs whose
inputs are high dimensional sparse vectors. The intu-
itive hypothesis for this is that BFAM is an exhaustive
algorithm for which more features allowed to be mod-
ified means more opportunities to mislead the target
classifiers.

VI. CONCLUSIONS
The preliminary experimental results in this paper indicate
that the proposed method, BFAM, shows excellent attack per-
formance against the common machine learning algorithms
utilized in cybersecurity. Therefore, BFAM can be used to
evaluate the robustness of machine learning based systems in
cybersecurity against AEs. BFAM outperforms the state-of-
the-art GAN-based attack methods and produces AEs more
simply and efficiently. BFAM decreases the detection rate of
the target classifiers against adversarial malicious examples
greatly without changing the functionality of these malicious
examples. This usually means that most of the adversarial
malicious examples evade the detection of the target classi-
fiers, which is unacceptable for the security-critical systems
in cybersecurity. BFAM operates in a black-box way and
only requires the confidence scores of the target classifiers
to generate AEs, which makes BFAM available for more
adversarial attack tasks in cybersecurity.

Sometimes, the adversaries can only access the labels pre-
dicted by the target classifier. BFAM is not able to work in
this case, as discussed in Section V.E. In future work, we are
going to improve BFAM so that it can generate AEs only

with the labels and can be used for more scenarios and target
classifiers.

REFERENCES
[1] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, ‘‘Significant

permission identification for machine-learning-based Android malware
detection,’’ IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 3216–3225,
Jul. 2018.

[2] A. L. Buczak and E. Guven, ‘‘A survey of data mining and machine
learning methods for cyber security intrusion detection,’’ IEEE Commun.
Surveys Tuts., vol. 18, no. 2, pp. 1153–1176, 2nd Quart., 2016.

[3] T. T. T. Nguyen and G. Armitage, ‘‘A survey of techniques for Internet
traffic classification using machine learning,’’ IEEE Commun. Surveys
Tuts., vol. 10, no. 4, pp. 56–76, 4th Quart., 2008.

[4] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, ‘‘Intriguing properties of neural networks,’’ 2013,
arXiv:1312.6199. [Online]. Available: http://arxiv.org/abs/1312.6199

[5] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, ‘‘The limitations of deep learning in adversarial settings,’’
in Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P), Mar. 2016,
pp. 372–387.

[6] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, ‘‘DeepFool: A simple
and accurate method to fool deep neural networks,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2574–2582.

[7] N. Carlini and D. Wagner, ‘‘Towards evaluating the robustness of neural
networks,’’ inProc. IEEE Symp. Secur. Privacy (SP),May 2017, pp. 39–57.

[8] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
‘‘Adversarial examples for malware detection,’’ in Proc. Eur. Symp. Res.
Comput. Secur. Cham, Switzerland: Springer, 2017, pp. 62–79.

[9] K. Yang, J. Liu, C. Zhang, and Y. Fang, ‘‘Adversarial examples against the
deep learning based network intrusion detection systems,’’ in Proc. IEEE
Mil. Commun. Conf. (MILCOM), Oct. 2018, pp. 559–564.

[10] Z. Wang, ‘‘Deep learning-based intrusion detection with adversaries,’’
IEEE Access, vol. 6, pp. 38367–38384, 2018.

[11] X. Liu, X. Du, X. Zhang, Q. Zhu, H. Wang, and M. Guizani, ‘‘Adversarial
samples on Android malware detection systems for IoT systems,’’ Sensors,
vol. 19, no. 4, p. 974, Feb. 2019.

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[13] Y. Hong, U. Hwang, J. Yoo, and S. Yoon, ‘‘How generative adversarial
networks and their variants work: An overview,’’ ACM Comput. Surv.,
vol. 52, no. 1, p. 10, 2019.

[14] W. Hu and Y. Tan, ‘‘Generating adversarial malware examples for black-
box attacks based on GAN,’’ 2017, arXiv:1702.05983. [Online]. Available:
http://arxiv.org/abs/1702.05983

[15] Z. Lin, Y. Shi, and Z. Xue, ‘‘IDSGAN: Generative adversarial networks for
attack generation against intrusion detection,’’ 2018, arXiv:1809.02077.
[Online]. Available: http://arxiv.org/abs/1809.02077

[16] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and
C. Wang, ‘‘Machine learning and deep learning methods for cybersecu-
rity,’’ IEEE Access, vol. 6, pp. 35365–35381, 2018.

[17] S. Y. Yerima and S. Sezer, ‘‘DroidFusion: A novel multilevel classifier
fusion approach for Android malware detection,’’ IEEE Trans. Cybern.,
vol. 49, no. 2, pp. 453–466, Feb. 2019.

[18] N. M. Shajideen and V. Bindu, ‘‘Spam filtering: A comparison between
different machine learning classifiers,’’ in Proc. 2nd Int. Conf. Elec-
tron., Commun. Aerosp. Technol. (ICECA), Coimbatore, India, Mar. 2018,
pp. 1919–1922.

[19] A. Fatima, R. Maurya, M. K. Dutta, R. Burget, and J. Masek, ‘‘Android
malware detection using genetic algorithm based optimized feature selec-
tion and machine learning,’’ in Proc. 42nd Int. Conf. Telecommun. Signal
Process. (TSP), Budapest, Hungary, Jul. 2019, pp. 220–223.

[20] H. Yao, D. Fu, P. Zhang, M. Li, and Y. Liu, ‘‘MSML: A novel multilevel
semi-supervised machine learning framework for intrusion detection sys-
tem,’’ IEEE Internet Things J., vol. 6, no. 2, pp. 1949–1959, Apr. 2019.

[21] J. Ren, J. Guo, W. Qian, H. Yuan, X. Hao, and H. Jingjing, ‘‘Building
an effective intrusion detection system by using hybrid data optimization
based on machine learning algorithms,’’ Secur. Commun. Netw., vol. 2019,
Jun. 2019, Art. no. 7130868, doi: 10.1155/2019/7130868.

[22] D. S. Vijayakumar and S. Ganapathy, ‘‘Machine learning approach to
combat false alarms in wireless intrusion detection system,’’ Comput. Inf.
Sci., vol. 11, no. 3, pp. 67–81, 2018.

128262 VOLUME 8, 2020

http://dx.doi.org/10.1155/2019/7130868


S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

[23] E. Sahin, M. Aydos, and F. Orhan, ‘‘Spam/ham e-mail classification using
machine learning methods based on bag of words technique,’’ in Proc. 26th
Signal Process. Commun. Appl. Conf. (SIU), İzmir, Turkey, May 2018,
pp. 1–4.

[24] N. Akhtar and A. Mian, ‘‘Threat of adversarial attacks on deep learning in
computer vision: A survey,’’ IEEE Access, vol. 6, pp. 14410–14430, 2018.

[25] A. Chawla, B. Lee, S. Fallon, and P. Jacob, ‘‘Host based intrusion detection
system with combined CNN/RNNmodel,’’ in Proc. Joint Eur. Conf. Mach.
Learn. Knowl. Discovery Databases. Cham, Switzerland: Springer, 2018,
pp. 149–158.

[26] G. Creech and J. Hu, ‘‘Generation of a new IDS test dataset: Time to
retire the KDD collection,’’ in Proc. IEEE Wireless Commun. Netw. Conf.
(WCNC), Apr. 2013, pp. 4487–4492.

[27] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, ‘‘Drebin:
Effective and explainable detection of Android malware in your pocket,’’
in Proc. Netw. Distrib. Syst. Secur. Symp., 2014, pp. 23–26.

[28] R. Taheri, R. Javidan, M. Shojafar, P. Vinod, and M. Conti, ‘‘Can machine
learning model with static features be fooled: An adversarial machine
learning approach,’’ Cluster Comput., Mar. 2020, doi: 10.1007/s10586-
020-03083-5.

[29] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C. Eckert,
and F. Roli, ‘‘Adversarial malware binaries: Evading deep learning for
malware detection in executables,’’ inProc. 26th Eur. Signal Process. Conf.
(EUSIPCO), Sep. 2018, pp. 533–537.

[30] F. Zhang, P. P. K. Chan, B. Biggio, D. S. Yeung, and F. Roli, ‘‘Adversarial
feature selection against evasion attacks,’’ IEEE Trans. Cybern., vol. 46,
no. 3, pp. 766–777, Mar. 2016.

[31] A. Piplai, S. S. L. Chukkapalli, and A. Joshi, ‘‘NAttack! Adversarial
attacks to bypass a GAN based classifier trained to detect
network intrusion,’’ 2020, arXiv:2002.08527. [Online]. Available:
http://arxiv.org/abs/2002.08527

[32] M. Arjovsky, S. Chintala, and L. Bottou, ‘‘Wasserstein GAN,’’ 2017,
arXiv:1701.07875. [Online]. Available: http://arxiv.org/abs/1701.07875

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, and D. Cournapeau, ‘‘Scikit-learn: Machine learning in
Python,’’ J. Mach. Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

[34] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, ‘‘Automatic differentiation in
PyTorch,’’ inProc. NIPS AutodiffWorkshop, FutureGradient-BasedMach.
Learn. Softw. Tech-Niques., 2017, pp. 1–4.

[35] J. Saxe and K. Berlin, ‘‘Deep neural network based malware detection
using two dimensional binary program features,’’ in Proc. 10th Int. Conf.
Malicious Unwanted Softw. (MALWARE), Oct. 2015, pp. 11–20.

[36] R. Taheri, M. Ghahramani, R. Javidan, M. Shojafar, Z. Pooranian, and
M. Conti, ‘‘Similarity-based Android malware detection using Hamming
distance of static binary features,’’ Future Gener. Comput. Syst., vol. 105,
pp. 230–247, Apr. 2020.

[37] W. Lee and S. J. Stolfo, ‘‘A framework for constructing features andmodels
for intrusion detection systems,’’ ACM Trans. Inf. Syst. Secur., vol. 3, no. 4,
pp. 227–261, Nov. 2000.

SICONG ZHANG was born in Chongqing, China.
He received the B.E. degree in electrical engi-
neering and automation from the Civil Aviation
University of China and the M.E. degree in com-
puter science and technology from Guizhou Nor-
mal University. He is currently pursuing the Ph.D.
degree in software engineering with Guizhou Uni-
versity, Guiyang, China. His research interests
include cybersecurity, deep learning, and opti-
mization theory.

XIAOYAO XIE (Member, IEEE) was born in
Guizhou, China. He is currently a Professor and
a Ph.D. Supervisor with the Key Laboratory
of Information and Computing Science Guizhou
Province, Guizhou Normal University, Guiyang,
China. He is also the Director of the Key Labo-
ratory. He is also the Vice President of Guizhou
Normal University. His research interests include
IPv6, 5G, and cybersecurity.

YANG XU was born in Shandong, China.
He received the Ph.D. degree in computer software
and theory from Guizhou University. He is cur-
rently a Professor and a master’s Supervisor with
the Key Laboratory of Information and Comput-
ing Science Guizhou Province, Guizhou Normal
University, Guiyang, China. His research interests
include cybersecurity and machine learning. He is
a Senior Member of the China Computer Federa-
tion (CCF).

VOLUME 8, 2020 128263

http://dx.doi.org/10.1007/s10586-020-03083-5
http://dx.doi.org/10.1007/s10586-020-03083-5

