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ABSTRACT This paper concentrates on the design of intelligent adaptive tracking controller for stochastic
switched nonlinear pure-feedback systems with input saturation and non-lower triangular structure. It needs
to be emphasized that both the issues of pure-feedback structure and non-differential saturation nonlinearity
are involved in the studied system. With the help of the mean-value theorem, a novel intelligent adaptive
tracking controller is developed in this work to overcome the difficulty resulted from pure-feedback structure,
and the inherent property of Gaussian functions is utilized to handle functions that are unknown and include
all state variables. Moreover, through the universal intelligent approximation technology, a novel control
strategy is constructed under the framework of backstepping, which guarantees that the tracking error can
converge to a small neighborhood near the origin in the sense of mean quartic value and all signals of the
nonlinear closed-loop system can be bounded in probability. Eventually, the effectiveness of the presented
scheme is further illustrated by the simulation of two practical examples.

INDEX TERMS Stochastic switched nonlinear systems, non-lower triangular structure, pure-feedback
structure, input saturation, intelligent adaptive tracking control.

I. INTRODUCTION
Since the nonlinear systems have important application value
in practical engineering applications, for instance, power
systems, computer network systems, aerospace systems, and
multi-agent systems, etc., the control design of more com-
plicated nonlinear dynamic systems has always become a
research hotspot and difficulty in the field of control [1].
As we all know, the current research of nonlinear systems
has gained abundant achievements [2]–[8], especially the
rapid development of modern control theory, which provides
broader development prospects and stronger technical sup-
port for the research of nonlinear systems. To name only
a few, based on backstepping method, [9] proposed a new
neural adaptive design approach for high-order nonlinear
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systems with the mismatched condition; [10] solved the sta-
bilization difficulties for nonlinear stochastic systems with
lower triangular structure by utilizing backstepping technique
and adaptive control approach, and this novel scheme guar-
antees global asymptotic stability in probability. However,
none of the above schemes is suitable for switched nonlinear
systems. Since lots of practical systems can be modeled
through common exchange frameworks, for instance, power
systems, transportation systems, and intricate industrial pro-
cesses, switched nonlinear systems are regarded as typical
and important hybrid systems, which have attracted wide
attention. At the moment, according to the main characteris-
tics of the switched nonlinear system, the main methods that
can be utilized to study and analyze the switched nonlinear
systems are multiple Lyapunov functions method and com-
mon Lyapunov function method. In [11], by constructing the
common Lyapunov function, the final controller can ensure
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the stability of the controlled system under any switched.
Numerous practices, however, cannot keep the stability under
the free switched signals, and may be stable under the limited
switched signals. Although many control problems of the
switched nonlinear system have been studied till now, and
a great number of outstanding accomplishments have been
published (see, for instance, [12]–[18] and the references
therein), how to construct the appropriate switched signal is
still a challenge in the procedure of controller design.

Furthermore, it is difficult to model the system in most
cases due to many completely unknown nonlinearities exist-
ing in the actual switched nonlinear system. Fortunately,
neural networks (NNs) and fuzzy logic systems (FLSs) are
viewed to be powerful tools with the universal approxima-
tion performance for handling unknown nonlinear functions
[19]–[31]. Whether Single Input Single Output(SISO) or
Multiple Input Multiple Output(MIMO) nonlinear switched
systems, a great number of works have been reported by
combining adaptive neural control and backstepping method
[32], [33]. However, the control strategies proposed in the
previous work are only suitable for nonlinear switched sys-
tems with lower triangular structure. This means that the
i-th subsystem function fi(·) must include state variables
x1, . . . , xi only. Fortunately, in order to break the limitation
brought by the system structure, the researchers have made
corresponding efforts. For example, the variable separation
method proposed in [34] successfully solves the controller
design difficulties result from the non-lower triangular struc-
ture. By employing the approximation capability of NNs
or FLSs and variable separation method, a series of results
about the design of controllers for nonlinear switched systems
with non-lower triangular structures have been reported, for
instance, [35], [36]. Unfortunately, the variable separation
method needs to meet strict conditions, that is, the function
of the system must be a strictly monotonically increasing
bounded function. Hence, it is a very meaningful subject
to improve the variable separation method or put forward a
novel method to handle the non-lower triangular structure in
future research.

In reality, input constraints, dead-zone inputs, and time
delay are common phenomena in industrial production,
aerospace, and other engineering fields. For nonlinear
switched systems with time delay, [37] developed an adaptive
tracking control algorithm. [38] solved the semi-global sta-
bility problem of nonlinear switched systems with dead-zone
input. It must be noted that from the existing research results,
the input saturation phenomenon in the system usually causes
the performance of the system to decrease or become unsta-
ble, which seriously affects the system’s normal operations.
Fortunately, there are some design algorithms for nonlinear
switched systems with input constraints and lower triangular
structure, for instance, [39]–[44]. However, due to the lack of
appropriate technical means to deal with the more complex
structure of the system, compared with nonlinear systems
with lower triangular structure, there are few research reports
on nonlinear switched stochastic pure-feedback systems with

input saturation and non-lower triangular structure. Although
the input saturation and non-lower triangle structure are
considered in [45], the method in [45] is not suitable for
pure-feedback systems. Therefore, how to effectively solve
this problem is the focus of this paper.

Inspired by the above observations, this work presents the
neural network-based adaptive control method for stochastic
switched nonlinear pure-feedback systems with input sat-
uration and non-lower triangular structure. In the design
scheme, the uncertain nonlinear functions in the system are
handled by NNs. In the non-lower triangular structure, all
states will appear in step i, while the virtual controller in
step i can only contain the first i states, which makes the
traditional backstepping method difficult to be used to deal
with this structure. By employing the inherent property of
Gaussian functions (i.e., Lemma 1), the difficulty caused by
the non-lower triangular structure is overcome. Additionally,
the given reference signal is followed by the system output
within the bounded error. Then, simulation results based on
actual examples prove the effectiveness of the developed
design algorithm. The contributions of this work can be out-
lined as follows: (1) This paper considers a more general
switched nonlinear system, which extends the processing
methods in the existing results to a switched nonlinear sys-
tem framework with a wide range of applications. (2) The
difficulty that the non-differential saturation nonlinearity is
tackled by using a nonlinear smooth function of the input
signal to approximate the saturation function. (3) To solve the
problem of controller design for nonlinear switched systems
with non-lower triangular structure, in this paper, the inherent
property of Gaussian functions is utilized as a more effective
tool than the variable separation method used in [35], [36].

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider a class of stochastic switched nonlinear non-lower
triangular pure-feedback systems described as follows:
dxi=hi,σ (t)(x̃, xi+1)dt+φTi,σ (t)(x)dω, 1≤ i≤n−1,

dxn=hn,σ (t)(x, u)dt + φTn,σ (t)(x)dω,

y = x1,

(1)

where y ∈ R; x = x̃n, x̃ = [x1, x2, . . . xi, xi+2, . . . , xn]T ∈
Rn−1 with x̃i = [x1, x2, . . . xi]T ∈ Ri(i = 1, 2, . . . n) means
the system output and state variable, respectively. ω ∈ Rr

represents the standard Wiener process defined on space
(�,F,P), which is called ‘complete probability space’. σ (t) :
[0,+∞) → M = {1, 2, . . . ,m} denotes switched signal.
hi,σ (t)(·) and φi,σ (t)(·) : Rn → Rr (i = 1, 2, . . . n) are the
nonlinear functions which are smooth and unknown.

The signal u stands for system input affected by nonlinear-
ity saturation that is nonsymmetric, as shown below:

u = sat (v) =


umax, v ≥ umax

v, umin < v < umax

umin, v ≤ umin

(2)
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with unknown parameters umax > 0 and umin < 0, and v
being input variable of u.
According to mean-value theorem in [46], functions hi(·, ·)

in (1) are converted as

hi,σ (t)(x̃, xi+1) = hi,σ (t)(x̃, x0i+1)+ fµi,σ (t)(xi+1 − x
0
i+1),

1 ≤ i ≤ n− 1,

hn,σ (t)(x, u) = hn,σ (t)(x, u0)+ fµn,σ (t)(u− u
0), (3)

where the function hi(·, ·) is distinctly analyzed
between hi(x̃, xi+1) and hi(x̃, x0i+1), fµi = fi(x̃, xµi ) =

( ∂hi(x̃,xi+1)
∂xi+1

)
∣∣∣xi+1=xµi , xn+1 = u, and xµi = µix0i+1 + (1 −

µi)xi+1 with 0 < µi < 1, i = 1, 2, . . . , n.
Then, substituting (3) into (1) and defining x0i+1 = 0,

u0 = 0, one has
dxi = (hi,σ (t)(x̃, 0)+ fµi,σ (t)xi+1)dt + φ

T
i,σ (t)(x)dw,

dxn = (hn,σ (t)(x, 0)+ fµn,σ (t)u)dt + φ
T
n,σ (t)(x)dw,

y = x1.

(4)

It is easy to find the two sharp corners umax and umin in the
saturation nonlinearity existing in (2). In order to dispose this
difficult, with the help of the method proposed in [47], f (v)
can be changed into

f (v) =


umax ∗ tanh(

v
umax

), v ≥ 0,

umin ∗ tanh(
v

umin
), v < 0,

=


umax ∗

e
v

umax − e−
v

umax

e
v

umax + e−
v

umax
, v ≥ 0,

umin ∗
e

v
umin − e−

v
umin

e
v

umin + e−
v

umin

, v < 0.

(5)

What’s more, we have

u = sat(v) = f (v)+ d(v) (6)

with the bound of d(v) being calculated as

|d (v)| = |sat(v)− f (v)|

≤ max {umax(1− tanh(1)), umin(tanh(1)− 1)}

= D. (7)

By utilizing the mean-value theorem [46], we can obtain

f (v) = f (0)+ fvµv, (8)

where µ(0 < µ < 1) stands for a constant, fvµ =
( ∂f (v)
∂v )

∣∣v=vµ , and vµ = µv + (1 − µ)v0. Because of f0 = 0,
(8) can be converted into

f (v) = fvµv. (9)

Considering (4), (8) and (9), yields
dxi = (hi,σ (x̃, 0)+ fµi,σ xi+1)dt + φ

T
i,σ (x)dω,

dxn = (hn,σ (x, 0)+ fµn,σ (fvµv+ d(v)))dt
+φTn,σ (x)dω

y = x1.

(10)

The purpose of this paper is to design a neural adaptive
tracking controller v so that the output trajectory y can follow
a signal yd , and all signals of the nonlinear closed-loop system
can be bounded in probability. In the mean time, in order to
stabilize the system (10), the following necessary assump-
tions are performed.
Assumption 1: Assuming that the sign of smooth fµi,σ (t),

i = 1, 2, . . . , n is known, and there are unknown constants
bm and bM so that, for 1 ≤ i ≤ n,

0<bm≤
∣∣fµi,σ (t)∣∣≤bM <∞, ∀(x̃i, xi+1)∈Ri×R. (11)

Assumption 2: There exists an unknown constant fm > 0,
which makes the function fvµ in (11) satisfy

0 < fm ≤ fvµ ≤ 1. (12)

Then, according to Assumption 1 and (12), we have

0<b≤ fui,σ (t), i=1, 2, . . . , n−1, 0 < b ≤ fµn fvµ (13)

with constant b = min {bm, bmfm} being unknown.
Assumption 3: The time-varying signal yd has not only

nth-order derivative, but it is smooth and bounded.
In this work, the radial basis function (RBF) NNs can be

utilized to online approximate a continuous functions h(Z )
that is unknown over a compact set �Z . The RBF NNs is
expressed as follows:

hnn(Z ) = W T S(Z ), (14)

where W = [w1, . . . ,wl]T ∈ Rl denotes weight vector and
l > 1 is the number of NNs node. S(Z ) = [s1(z), . . . , sl(z)]T

stands for the basis function vector with Z ∈ �Z ⊂ Rq being
the input vector and q being the input dimensions of NNs.
In general, si(Z ) is selected as the Gaussian function that can
be shown as

si(Z ) = exp[−
(Z − µi)T (Z − µi)

η2
]. (15)

Furthermore, the function h(Z ) can be estimated by (14)
in a bounded closed set �Z ∈ Rq with an arbitrary accuracy
ε > 0 as h(Z ) = W ∗T S(Z )+δ(Z ), in whichW ∗ stands for the
ideal constant weight vector, which is described as follows:

W ∗ = arg min
W∈R̄l

{
sup
Z∈�Z

∣∣∣h(Z )−W T S(Z )
∣∣∣} (16)

and δ(Z ) stands for the approximation error and |δ(Z )| < ε.
Lemma 1 [48]: Define S(x̄q) = [S1(x̄q), . . . , Sl(x̄q)]T as

the basis function vector of RBF NN and x̄q = [x1, . . . , xq]T .
Then, we have ∥∥S(x̄q)∥∥2 ≤ ‖S(x̄k )‖2 (17)

with integer 0 < k ≤ q.
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III. CONTROLLER DESIGN PROCEDURE AND STABILITY
ANALYSIS
In this section, a novel design scheme will be introduced
for system (10) by resorting to RBF NNs and Backstepping
method. Correspondingly, the controller design framework
for system (10) is as follows:

αi(Zi) = −(ki +
3
4
)zi −

z3i
2a2i

θ̂STi (Zi)Si(Zi),

1 ≤ i ≤ n− 1, (18)

v(Zn) = −(kn +
3
4η2

)zn −
z3n
2a2n

θ̂STn (Zn)Sn(Zn), (19)

where positive constants ki, ai(i = 1, 2, . . . , n) and η should
be designed, Z1 = [x1, yd , ẏd ]T ∈ �Z1 ⊂ R3, Zi =[
x̃Ti , θ̂ , ỹ

(i)T
d

]T
∈ �Zi ⊂ R2i+2 (i = 2, . . . , n− 1), and zi

satisfies

zi = xi − αi−1, (20)

where α0 = yd and αi is a virtual controller. θ is estimated by
θ̂ , and

θ = max
{
1
b

∥∥W ∗i,k∥∥2; i = 1, 2, . . . , n
}

(21)

The adaptive law is described by

˙̂
θ =

n∑
i=1

λ

2a2i
z6i S

T
i (Zi)Si(Zi)− γ θ̂, (22)

where γ > 0 and λ > 0.
Step 1: Based on z1 = x1 − yd , we have

dz1 = (h1,k (x̃, 0)+ fµ1,kx2 − ẏd )dt + φ
T
1,k (x)dω. (23)

Select the Lyapunov function candidate as

V1 =
1
4
z41 +

b
2λ
θ̃2, (24)

where θ̃ = θ − θ̂ .
Considering (23) and Itô formula, the following inequality

is obtained:

LV1 ≤ z31

(
h1,k (x̃, 0)+ fµ1,kx2 − ẏd +

3
4
l−21 z1

∥∥φ1,k (x)∥∥4)
+

3
4
l21 −

b
λ
θ̃
˙̂
θ (25)

with l1 > 0.
Defining h̄1,k = h1,k (x̃, 0)− ẏd + (3/4)l−21 z1

∥∥φ1,k (x)∥∥4+
(3/4)z1, then (25) is rewritten as

LV1 ≤ z31
(
fµ1,kx2 + h̄1,k

)
−

3
4
z41 +

3
4
l21 −

b
λ
θ̃
˙̂
θ. (26)

Then, a RBF NN W T
1,kS(Z1),X1 ∈ �X1 ⊂ Rn+2 is used to

approximate h̄1,k , so that

h̄1,k = W ∗T1,kS1 (X1)+ δ1 (X1) , |δ1 (X1)| ≤ ε1 (27)

with X1 = [x, yd , ẏd ]T , ε1 > 0, and δ1 (X1) being
approximation error.

By employing Young’s inequality and Lemma 1, we have

z31h̄1,k ≤
bz61
2a21

∥∥∥W ∗1,k∥∥∥2
b

ST1 (X1)S1(X1)+
1
2
a21 +

3
4
z41 +

1
4
ε41

≤
bz61
2a21

∥∥∥W ∗1,k∥∥∥2
b

ST1 (Z1)S1(Z1)+
1
2
a21 +

3
4
z41 +

1
4
ε41

≤
b

2a21
z61θS

T
1 (Z1)S1(Z1)+

1
2
a21+

3
4
z41+

1
4
ε41 (28)

with Z1 = [x1, yd , ẏd ]T ∈ �Z1 ⊂ R3 and a1 being a positive
constant.

Combining (27) and (28), yields

LV1 ≤ z31fµ1,kx2 +
b

2a21
z61θS

T
1 (Z1)S1(Z1)+

1
2
a21 +

1
4
ε41

+
3
4
l21 −

b
λ
θ̃
˙̂
θ. (29)

Employing the formula (20) with i = 1, one has

LV1 ≤ z31fµ1,k (x2 − α1 + α1)+
b

2a21
z61θS

T
1 (Z1)S1(Z1)

+
1
2
a21 +

1
4
ε41 +

3
4
l21 −

b
λ
θ̃
˙̂
θ

≤ z31fµ1,kz2 + z
3
1fµ1,kα1 +

b

2a21
z61θS

T
1 (Z1)S1(Z1)

+
1
2
a21 +

1
4
ε41 +

3
4
l21 −

b
λ
θ̃
˙̂
θ. (30)

Furthermore, by applying Assumption 1 and the virtual
controller in (18) with i = 1, it is easy to show

z31fµ1,kα1 ≤ −k1fµ1,kz
4
1 −

3
4
fµ1,kz

4
1

−
b

2a21
z61θ̂S

T
1 (Z1)S1(Z1)

≤ −k1fµ1,kz
4
1 −

3
4
fµ1,kz

4
1

−
b

2a21
z61θ̂S

T
1 (Z1)S1(Z1). (31)

For the term z31gµ1,kz2, it is true that

LV1 ≤ −k1fµ1,kz
4
1 −

3
4
fµ1,kz

4
1 + z

3
1fµ1,kz2 +

1
2
a21 +

1
4
ε41

+
3
4
l21 +

b
λ
θ̃

(
λ

2a21
z61S

T
1 (Z1)S1(Z1)−

˙̂
θ

)
≤ −c1z41 +

bM
4
z42 + %1

+
b
λ
θ̃

(
λ

2a21
z61S

T
1 (Z1)S1(Z1)−

˙̂
θ

)
, (32)

where c1 = k1fµ1,k > 0 and %1 = (1/2)a21 + (3/4)l21 +
(1/4)ε41 . It is worth pointing out that the term (1/4)bM z42 will
be handled later.
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Step i (2 ≤ i ≤ n− 1): On the basis of zi = xi − αi−1 and
Itô formula, it is easy to obtain

dzi = (hi,k (x̃, 0)+ fui,kxi+1 − Lαi−1)dt

+

φi,k (x)− i−1∑
j=1

∂αi−1

∂xj
φj,k (x)

T

dω, (33)

where

Lαi−1 =
i−1∑
j=1

∂αi−1

∂xj
hj,k

(
x̃, xj+1

)
+

i−1∑
j=0

∂αi−1

∂y(j)d
y(j+1)d

+
∂αi−1

∂θ̂

˙̂
θ +

1
2

i−1∑
p,q=1

∂2αi−1

∂xp∂xq
φTp,k (x)φq,k (x). (34)

Select the Lyapunov function candidate as

Vi = Vi−1 +
1
4
z4i . (35)

Then, we have

LVi = LVi−1 + z3i
(
hi,k (x̃, 0)+ fµi,kxi+1 − Lαi−1

)
+

3
2
z2i

φi,k (x)− i−1∑
j=1

∂αi−1

∂xj
φj,k (x)

T

×

φi,k (x)− i−1∑
j=1

∂αi−1

∂xj
φj,k (x)

 . (36)

Similar to step 1, the following inequality holds

LVi−1 ≤
i−1∑
j=1

(
−cjz4j + %j

)
+
bM
4
z4i

−

i−2∑
m=1

∂αm

∂θ̂
z3m+1

n∑
j=i

λ

2a2j
z6j S

T
j (Zj)Sj(Zj)

+
b
λ
θ̃

 i−1∑
j=1

λ

2a2j
z6j S

T
j (Zj)Sj(Zj)−

˙̂
θ

 , (37)

where cj = kjbm > 0, %j = (1/2) a2j + (1/4) ε
4
j + (3/4) l

2
j ,

and j = 1, 2, . . . , i− 1.
Taking the completion of squares into account,

we have

3
2
z2i

∥∥∥∥∥∥φi,k (x)−
i−1∑
j=1

∂αi−1

∂xj
φj,k (x)

∥∥∥∥∥∥
2

≤
3l2i
4

+
3z4i
4l2i

∥∥∥∥∥∥φi,k (x)−
i−1∑
j=1

∂αi−1

∂xj
φj,k (x)

∥∥∥∥∥∥
4

, (38)

where li represents a positive parameter.

Combining (34), (37) and (38), and utilizing (36) yield that

LVi ≤
i−1∑
j=1

(
−cjz4j + %j

)
+ z3i (fµi,kxi+1 + hi,k (x̃, 0)

−
1
2

i−1∑
p,q=1

∂2αi−1

∂xp∂xq
φTp,k (x)φ(x)q,k +

1
4
bM zi

+
3
4
l−2i zi

∥∥∥∥∥∥φi,k (x)−
i−1∑
j=1

∂αi−1

∂xj
φj,k (x)

∥∥∥∥∥∥
4

−

i−1∑
j=0

∂αi−1

∂y(j)d
y(j+1)d −

∂αi−1

∂θ̂

˙̂
θ

−

i−1∑
j=1

∂αi−1

∂xj
hj,k

(
x̃, xj+1

)
)+

3
4
l2i

+
b
λ
θ̃

 i−1∑
j=1

λ

2a2j
z6j S

T
j (Zj)Sj(Zj)−

˙̂
θ


−

i−2∑
m=1

∂αm

∂θ̂
z3m+1

n∑
j=i

λ

2a2j
z6j S

T
j (Zj)Sj(Zj). (39)

Considering the adaptive law in (22), the following equal-
ity can be obtained

∂αi−1

∂θ̂

˙̂
θ =

∂αi−1

∂θ̂

 i∑
j=1

λ

2a2j
z6j S

T
j (Zj)Sj(Zj)− γ θ̂


+
∂αi−1

∂θ̂

n∑
j=i+1

λ

2a2j
z6j S

T
j (Zj)Sj(Zj). (40)

Then, (39) can be converted to

LVi ≤
i−1∑
j=1

(
−cjz4j + %j

)
+ z3i

(
fµi,kxi+1 + h̄i,k

)

+
b
λ
θ̃

 i−1∑
j=1

λ

2a2j
z6j S

T
j (Zj)Sj(Zj)−

˙̂
θ


−

i−1∑
m=1

∂αm

∂θ̂
z3m+1

n∑
j=i+1

λ

2a2j
z6j S

T
j (Zj)Sj(Zj)

−
3
4
z4i +

3
4
l2i , (41)

where

h̄i,k = hi,k (x̃, 0)+
1
4
bM zi −

i−1∑
j=1

∂αi−1

∂xj
hj,k

(
x̃, xj+1

)
+

3
4
zi −

1
2

i−1∑
p,q=1

∂2αi−1

∂xp∂xq
φ(x)Tp,kφ(x)q,k

+
3
4
l−2i zi

∥∥∥∥∥∥φi.k (x)−
i−1∑
j=1

∂αi−1

∂xj
φj,k (x)

∥∥∥∥∥∥
4
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−
λ

2a2i
z3i S

T
i (Zj)Si(Zj)

i−2∑
m=1

∂αm

∂θ̂
z3m+1

−
∂αi−1

∂θ̂

 i∑
j=1

λ

2a2j
z6j S

T
j (Zj)Sj(Zj)− γ θ̂


−

i−1∑
j=0

∂αi−1

∂y(j)d
y(j+1)d . (42)

Again, a RBFNNW T
i,kSi (Xi) is utilized to model h̄i,k , then,

one can derive that

h̄i,k = W ∗Ti,k Si (Xi)+ δi (Xi) (43)

with Xi = [x, θ̂ , ȳ(i)Td ]T , and |δ (Xi)| ≤ εi.
Similar to (28), one has

z3i h̄i,k ≤
bz6i
2a2i

∥∥∥W ∗i,k∥∥∥2
b

STi (Xi)Si(Xi)+
1
2
a2i +

3
4
z4i +

1
4
ε4i

≤
bz6i
2a2i

∥∥∥W ∗i,k∥∥∥2
b

STi (Zi)Si(Zi)+
1
2
a2i +

3
4
z4i +

1
4
ε4i

≤
b

2a2i
z6i θS

T
i (Zi)Si(Z i)+

1
2
a2i +

3
4
z4i +

1
4
ε4i , (44)

where ai > 0.
Additionally, based on (41) and (44), one has

LVi ≤ −
i−1∑
j=1

cjz4j +
i∑

j=1

%j + z3i fµi,kzi+1 + z
3
i fµi,kαi

+
b
λ
θ̃

 i−1∑
j=1

λ

2a2j
z6j S

T
j (Zj)Sj(Zj)−

˙̂
θ


−

i−1∑
m=1

∂αm

∂θ̂
z3m+1

n∑
j=i+1

λ

2a2j
z6j S

T
j (Zj)Sj(Zj)

+
b

2a2i
z6i θS

T
i (Zi)Si(Zi). (45)

Using the virtual control signal ai in (18), we have

LVi ≤
b
λ
θ̃

 i∑
j=1

λ

2a2j
z6j S

T
j (Zj)Sj(Zj)−

˙̂
θ


−

i−1∑
m=1

∂αm

∂θ̂
z3m+1

n∑
j=i+1

λ

2a2j
z6j S

T
j (Zj)Sj(Zj)

−

i∑
j=1

cjz4j +
i∑

j=1

%j +
z4i+1
4
bM , (46)

where cj = kjbm > 0, %j = (1/2) a2j + (3/4) l
2
j + (1/4) ε

4
j ,

and j = 1, 2, . . . , i.

Step n: Based on (20) and Itô formula, we have

dzn =
(
hn,k (x, 0)+ fµn,k

(
fvµ,k v+ d (v)

)
− Lαn−1

)
dt

+

φn,k (x)− n−1∑
j=1

∂αn−1

∂xj
φj,k (x)

 dω, (47)

where Lαn−1 is displayed in (34) with i = n.
Selecting

Vn = Vn−1 +
1
4
z4n, (48)

and adopting (41) with i = n− 1, one has

LVn ≤ −
n−1∑
j=1

cjz4j +
n−1∑
j=1

%j −
3
4
z4n

+
b
λ
θ̃

n−1∑
j=1

λ

2a2j
z6j S

T
j (Zj)Sj(Zj)−

˙̂
θ


+

3
4
l2n + z

3
n(fµn,k

(
fvµ,kv+ d (v)

)
+ h̄n,k ), (49)

where

h̄n,k = hn,k (x̃, 0)− Lαn−1 +
(
bM
4
+

3
4

)
zn

−
λ

2a2n
z3j S

T
j (Zj)Sj(Zj)

n−2∑
m=1

∂αm

∂αj
z3m+1

+
3
4l2n

zn

∥∥∥∥∥∥φn,k (x)−
n−1∑
j=1

∂αn−1

∂αj
φj,k (x)

∥∥∥∥∥∥
4

. (50)

Similarly, a RBF NN W T
n,kSn (Zn) is employed to

approximate h̄i,k so that h̄n,k = W ∗Tn,kSn(Xn) + δn(Xn) with

Xn =
[
x̃, θ̂ , ȳ(n)Td

]T
and the approximation error δn (Xn)

satisfies |δn (Xn)| ≤ εn. From (28), we have

z3nh̄n,k ≤
bz6n
2a2n

∥∥∥W ∗n,k∥∥∥2
b

STn (Xn)Sn(Xn)+
1
2
a2n

+
3
4
z4n +

1
4
ε4n

≤
bz6n
2a2n

∥∥∥W ∗n,k∥∥∥2
b

STn (Zn)Sn(Zn)+
1
2
a2n

+
3
4
z4n +

1
4
ε4n

≤
b
2a2n

z6nθS
T
n (Zn)Sn(Zn)+

1
2
a2n

+
3
4
z4n +

1
4
ε4n, (51)

where an is a design parameter.
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Then, using (50) and (51), one has

LVn ≤ −
n−1∑
j=1

cjz4j+
n−1∑
j=1

%j +
1
2
a2n +

3
4
l4n +

1
4
ε4n

+
b
λ
θ̃

n−1∑
j=1

λ

2a2j
z6j S

T
j (Zj)Sj(Zj)−

˙̂
θ


+ z3nfµn,k

(
fvµ,k v+ d (v)

)
+

b
2a2n

z6nθS
T
n (Zn)Sn(Zn). (52)

What’s more, by considering the real controller v in (19),
utilizing (14), Assumptions 1 and 2, it yields

z3nfµn,k fvµ,kv ≤ −knfµn,k fmz
4
n −

3
4η2

fµn,k fmz
4
n

−
z6n
2a2n

bθ̂STn (Zn)Sn(Zn)

≤ −knfµn,k fmz
4
n −

3
4η2

fµn,k fmz
4
n

−
z6n
2a2n

bθ̂STn (Zn)Sn(Zn), (53)

z3nfµn,kd (v) ≤
3
4η2

fµn,k fmz
4
n +

1
4fm

η2bMD4. (54)

From (53) and (54), (52) becomes

LVn ≤ −
n−1∑
j=1

cjz4j − knfµn,k fmz
4
n+

n−1∑
j=1

%j +
1
2
a2n +

3
4
l4n

+
b
λ
θ̃

 n∑
j=1

λ

2a2j
z6j S

T
j (Zj)Sj(Zj)−

˙̂
θ


+

1
4
ε4n +

1
4fm

η2bMD4. (55)

Using the adaptive law ˙̂θ in (22), one has

LVn ≤ −
n−1∑
j=1

cjz4j − knfµn,k fmz
4
n+

n−1∑
j=1

%j +
1
2
a2n +

3
4
l4n

+
1
4
ε4n +

1
4fm

η2bMD4
+
bγ
λ
θ̃ θ̂ . (56)

Notice that bγ
λ
θ̃ θ̂ ≤ −

(
bγ
2λ

)
θ̃2 +

(
bγ
2λ

)
θ2, we have

LVn ≤ −
n∑
j=1

cjz4j −
(
bγ
2λ

)
θ̃2+

n∑
j=1

%j, (57)

where cj = kjbm > 0, %j = 1
2a

2
j +

3
4 l

2
j +

1
4ε

4
j , j = 1, 2, . . . ,

n−1, cn = knbmfm > 0, and %n =
bγ
2λ θ

2
+

1
2a

2
n+

3
4 l

2
n+

1
4ε

4
n+

1
4fm
η2bMD4.
So far, the main results of the work are provided as

Theorem 1 .

Theorem 1:Taking into account the pure-feedback stochas-
tic closed-loop nonlinear switched system with non-lower
triangular structure and input saturation, under the virtual
controller (18), the actual controller (19), and the adaptive
law (22), the neural adaptive tracking scheme can ensure
that all the signals in the closed-loop system are bounded in
probability. Particularly, Giving any initial conditions zj (0)
and θ̂ (0) ≥ 0 belonging to �0 (where �0 is a compact set,
which is selected suitably), the error zj (j = 1, 2, · · · , n) and
θ̃ remain in a bounded closed set �Z shown as

�Z = {zj, θ̃

∣∣∣∣∣∣
n∑
j=1

E
[∣∣∣ zj∣∣4 ] ≤ 4V (0)+ 4

γ0

v0
,

∣∣∣θ̃ ∣∣∣
≤

√
2λ
b

(
V (0)+

γ0

v0

)
, j = 1, 2, · · · , n}, (58)

and finally can converge to bounded closed set �s showen
as

�s = {zj, θ̃

∣∣∣∣∣∣
n∑
j=1

E
[∣∣∣ zj∣∣4 ] ≤ 4

γ0

v0
,

∣∣∣θ̃ ∣∣∣
≤

√
2λ
b
γ0

v0
., j = 1, 2, · · · , n} (59)

Proof: Selecting V = Vn and defining v0 =

min
{
4cj, γ, j = 1, 2, · · · , n

}
, γ0 =

∑n
j=1 %j.

Then, (57) can be transformed as:

LV ≤ −v0V + γ0, t ≥ 0. (60)

What’s more, according to [49], one has

dE [V (t)]
dt

≤ −v0E [V (t)]+ γ0. (61)

So, we can further obtain

0 ≤ E [V (t)] ≤
(
V (0)−

γ0

v0

)
e−v0t +

γ0

v0
. (62)

It yields

E [V (t)] < V (0)+
γ0

v0
, ∀t > 0. (63)

Then, it can be inferred from [50] that all signals remain
bounded in probability.

Based on (62), one can infer

E [V (t)] ≤ e−v0t [V (0)]+
γ0

v0
, ∀t > 0. (64)

As t →∞, we get

E [V (t)] ≤
γ0

v0
. (65)

Therefore, it can be inferred that all signals of the
closed-loop system remain uniformly ultimately bounded-
ness in probability, and it is easy to infer that error zj(j =
1, 2, . . . , n) and θ̃ can converge to a set �s, which is a
bounded closed set.
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Remark 1: Notice that nonlinear multilayer NNs can also
be used to estimate the unknown functions, and their approx-
imation accuracy is often better than that of linear two-layer
NNs such as RBF NNs. However, our main concern is not to
improve the accuracy of estimating the unknown functions,
but just to deal with the unknown functions through some
kind of NNs. Fortunately, RBF NNs can achieve this goal and
thus they are adopted in this paper.
Remark 2: Although the proposed algorithm in this paper

guarantees that the tracking error can converge to a small
neighborhood near the origin in the sense of mean quartic
value, and all signals of the closed-loop system (1) can be
bounded in probability, our algorithm can not achieve the
asymptotic tracking. Therefore, it is necessary to further
improve our algorithm to achieve the asymptotic tracking in
the future.

IV. SIMULATION EXAMPLES
Example 1: So as to prove the applicability of the proposed

control algorithm, a practical example-Brusselator model is
considered. The Brusselator model describes a specific chem-
ical reaction, which was proposed by Turing in an article pub-
lished in 1952 [51], and it was studied in detail by Prigogine
and colleagues [52]. This model is called ‘‘Brusselator’’
because its founder worked in Brussels. It has became one of
the paradigms of chaos research and one of the most famous
nonlinear oscillation models in chemical kinetics. The model
is given below:

ẋ1 = C − (D+ 1)x1 + x21x2,
ẋ2 = Dx1 + (2+ cos(x1))u− x21x2,
y = x1,

(66)

where x1 and x2 represent the concentration of the chemical
reaction intermediate, and positive parameters C , D describe
the supply of ‘‘storage’’ chemicals. In [53], the below
expression was written: ‘‘As a simplified model for describ-
ing chemical reactions, the Brusselsator model is derived
from a series of approximated partial differential equations.’’
Therefore, there are errors and unknown nonlinearities
in actual chemical reactions. Meanwhile, the presence of
stochastic perturbations and input saturation is unavoidable
in Brusselsator model, since it is a actual chemical reac-
tion. Therefore, the controlled Brusselsator model assumes
that

dx1 = (C1,σ−(D1,σ+1)x1+x21x2)dt+f1,σ (X )dw,
dx2 = (D2,σ x1+(2+cos(x1))u−x21x2)dt

+ f2,σ (X )dw,
y = x1,

(67)

where ω is a random perturbation, f (X ) is an uncertain non-
linear function. The saturation limits are chosen as umax= 80
and umin= −50, respectively. Select yd = sin (t) + 1 as
reference signal. Then, f1,1 = A sin(x1x2), f2,1 = Ax2 cos x1,
f1,2 = A sin(x21 + x

2
2 ), f2,2 = Ax22 .

According to Theorem 1, for the system (67), α1, v and
˙̂
θ

are constructed as

α1 = −(k1 +
3
4
)z1 −

1

2a21
z31θ̂S

T
1 (Z1)S1(Z1),

v = −(k2 +
3
4η2

)z2 −
1

2a22
z32θ̂S

T
2 (Z2)S2(Z2),

˙̂
θ =

2∑
i=1

λ

2a2i
z6i S

T
i (Zi)Si(Zi)− γ θ̂ . (68)

The system parameters are designed as k1 = k2 = 100,
a1 = a2 = 3, γ = 0.1, λ = 1, A = 10−8, C1,1 = D1,1 =

D2,1 = 0.1, C1,2 = D1,2 = D2,2 = 0.2, η = 1, and the initial
condition [x1(0), x2(0), θ̂ (0)] = [0.1, 0.1, 0].

Finally, from the simulation results in Figure 1-7, we can
see that the validity of the theoretical derivation of the paper
has been verified. Fig. 1 is the trajectories of y(t) and yd (t)
in this example. Fig. 2 describes the responses of tracking
error z1. Fig. 3-6 show the responses of control law v, signal u,
the adaptive parameter θ̂ , and the evolution of switched signal

FIGURE 1. The responses of the system out y
(
t
)

and reference
signal yd

(
t
)
.

FIGURE 2. The responses of the tracking error z1.
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FIGURE 3. The responses of the control law v .

FIGURE 4. The responses of the signal u.

FIGURE 5. The responses of the adaptive law θ̂ .

σ (t) respectively. So, from the simulation results, the pro-
posed controller guarantees the tracking performance and the
boundedness of the closed-loop system signals.

FIGURE 6. The responses of the switched signal σ (t).

Example 2: The model of the one-link manipulator [54] is
as follows:{

Dq̈+ Bq̇+ N sin (q) = τ + τd ,
M τ̇ + Hτ = u− Kmq̇.

(69)

Let x1 = q, x2 = q̇, x3 = τ , and consider the stochastic
effect, (69) can be changed to

dx1=x2dt + φT1,σ (x) dω

dx2=
(

1
D2,σ

x3 −
B2,σ
D2,σ

x2 −
N2,σ

D2,σ
sin (x1)+

τd2,σ

D2,σ

)
dt

+φT2,σ (x) dω

dx3=
(

1
M3,σ

u−
Km3,σ

M3,σ
x2 −

H3,σ

M3,σ
x3

)
dt + φT3,σ (x) dω

y=x1
(70)

Select yd = sin (0.1t) as reference signal. Then φ1,1 =
A sin (x1x2x3), φ1,2 = A cos (x1x2x3), φ2,1 = Ax3 cos (x1x2),
φ2,2 = A sin

(
x21 + x

2
2 + x

2
3

)
, φ3,1 = Ax1 sin (x2x3), φ3,2 =

A cos
(
x21 + x

2
2 + x

2
3

)
According to Theorem 1, for the system (70), α1, α2, v are

constructed as

αi = −(ki +
3
4
)zi −

1

2a2i
z3i θ̂S

T
i (Zi)Si(Zi), i = 1, 2,

v = −(k3 +
3
4η2

)z3 −
1

2a23
z33θ̂S

T
3 (Z3)S3(Z3),

˙̂
θ =

2∑
i=1

λ

2a2i
z6i S

T
i (Zi)Si(Zi)− γ θ̂ . (71)

The system parameters are designed as k1 = k2 = k3 = 50,
a1 = a2 = a3 = 0.3, γ = 0.1, λ = 1, umax = 800,
umin = −500, η = 1,A = 10−8,D2,1 = 500,
D2,2 = 550,B2,1 = 0.1,B2,2 = 0.2, N2,1 = 0.1,
N2,2 = 0.15, τd2,1 = 1, τd2,2 = 1.5,M3,1 = 0.4,
M3,2 = 0.5,Km3,1 = 0.02,Km3,2 = 0.01,H3,1 = 10,
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FIGURE 7. The responses of the system out y
(
t
)

and reference
signal yd

(
t
)
.

FIGURE 8. The responses of the tracking error z1.

FIGURE 9. The responses of the control law v .

H3,2 = 15, and the initial condition [x1 (0) , x2 (0) ,
x3 (0) , θ̂ (0)] = [0.1, 0.1, 0.1, 0].

Finally, from the simulation results in Figure 7-12, we can
see that the validity of the theoretical derivation of the paper
has been verified again. Fig. 7 is the trajectories of y(t)

FIGURE 10. The responses of the signal u.

FIGURE 11. The responses of the adaptive law θ̂ .

FIGURE 12. The responses of the switched signal σ (t).

and yd (t) in this example. Fig. 8 describes the responses of
tracking error z1. Fig. 9-12 show the responses of control
law v, signal u, the adaptive parameter θ̂ , and the evolution
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of switched signal σ (t) respectively. So, from the simula-
tion results, the proposed controller guarantees the tracking
performance and the boundedness of the closed-loop system
signals.

V. CONCLUSION
In this work, an intelligent adaptive tracking control algo-
rithm is designed for pure-feedback stochastic switched non-
linear systems which are subject to input saturation and
non-lower triangular structure. In the design process, not
only the backstepping technology and universal intelligent
approximation technology are successfully applied to the
more general intelligent control for a class of uncertain
stochastic nonlinear switched systems, but also the design
problems resulted from the pure-feedback and non-lower tri-
angular structures are solved by simple scaling methods. The
designed controllers ensure that all signals of the closed-loop
system remain bounded in probability. It is worth noting that
our work only consider SISO stochastic nonlinear switched
systems. Hence, the control of theMIMO stochastic switched
nonlinear systems are the focus of our attention in the future
work.
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