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ABSTRACT Inspired by the empirical dynamic characteristics of the load of real logistics network,
we propose a dynamic cascading failure model against cascading failure, which is more suitable for complex
logistics network by adding dynamic factors based on the nonlinear load-capacitymodel under initial residual
capacity load-redistribution strategy. The simulation is executed on the complex logistics network model
and the results show that the controllability robustness and economy after cascading failure based on the
dynamic cascading failure model is feasible and effective. It can effectively reduce the logistics cost and
enhance controllability robustness against cascading failure by adjusting the network cost e and capacity
parameter γ , so as to balance the controllability robustness and economy for the complex logistics network.

INDEX TERMS Complex logistics network, cascading failure, controllability robustness, dynamic cascad-
ing failure model.

I. INTRODUCTION
The operation of the logistics network is highly dependent
on the external environment and is susceptible to the impact
of emergencies. Emergencies include natural disasters, public
health incidents and social security incidents, such as epi-
demic outbreak, natural disasters, terrorist attacks and the
‘‘out of space’’ in the shopping festival and so on. These
‘‘black swan’’ events lead to direct impact on the operation of
the logistics network. For example, in January 2020, the new
coronavirus epidemic broke out in Wuhan China, and spread
rapidly across the country. China launched an emergency
quarantine to prevent and control the epidemic. Traffic was
blocked and logistics workers were making slow progress in
returning to work. Therefore, a series of cascading failure
occurred from Wuhan to all over the country. Figure 1 shows
the logistics network of the provinces and global key
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manufacturing industries affected by the covid-19 outbreak
which is from the Johns Hopkins University Center for Engi-
neering and Systems Science on February 19, 2020 [1].
As can be seen from Figure 1, the red node is the failure
node, that is, the epidemic event in Hubei province led to
the involvement of Hunan, Anhui, Shanxi and other regions.
The supply chain of key manufacturing industries in many
provinces and cities was completely disrupted by the cascad-
ing failure, and the logistics network was largely paralyzed.

Thus, cascading failure is an extremely important problem
for logistics network. It has become the key competitiveness
of logistics industry about how to reduce cost, increase effi-
ciency and improve the quality of logistics operation after
cascading failure. Experts and scholars study the cascading
failure for logistics network by applying complex network
theory, so as to obtain amore robust and less cost logistics net-
work, which has become a hot research direction in the field
of logistics network. Complex logistics network is a complex
network composed of nodes which carry logistics activities
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FIGURE 1. The logistics network of the provinces and global key
manufacturing industries affected by the covid-19 outbreak.

such as storage, loading and unloading, handling, packaging
and other logistics functions, and edges which connect these
nodes. The nodes include logistics parks, logistics centers,
distribution centers and storage centers, and the edges include
transportation lines, transportation pipelines and communi-
cation lines. At present, some academic achievements have
been made in cascading failure research based on complex
logistics network [2].

A number of complex logistics network model have been
intensively investigated in recent years [2]–[10]. Due to the
characteristic of the power-law distribution of the logistics
network, the construction of logistics network is simulated
by experts based on complex network theory which consid-
ered the Baraba’ si and Albert (BA) network for describ-
ing the agglomeration of economic benefits. Their rules
for constructing complex logistics network are only adding
nodes, and do not deleting them [3]–[6]. However, besides
the agglomeration mechanism, logistics network also has
the sprawl mechanism. Hessez and Feitelson et al. [7]–[10]
proposed that logistics activities would have a long-distance
layout, which reflected in the key logistics nodes beingmoved
or deleted due to industrial characteristics such as the need to
avoid traffic congestion, rigid requirements for logistics plan-
ning, trade organization authority, etc. In this case, logistics
nodes will be removed or moved into areas where the cost
is relatively low. So, the way to construct complex logistics
network which only considering the increase of nodes with-
out deleting nodes is inaccurate for simulating the evolution
mechanism of real logistics network. Yue Yang et al. con-
structed a complex logistics network both considering the
agglomeration and sprawl evolution mechanism based on the
complex network, and confirmed it to the power-law distribu-
tion characteristic of complex networks [2]. This study lays a
foundation for the follow-up cascading failure simulation for
complex logistics network.

Based on the complex logistics network, some progress has
been made in the research of constructing cascading failure
model, which has been studied more deeply and applied
to many different fields [11]–[20]. Among them, the load-
capacity model is the most widely used one for complex
logistics network to construct the cascading failure model
for the load-capacity characteristics of the logistics network.
The classical linear load-capacity model is adopted by schol-
ars in order to simplify the cascading failure problem for
complex logistics network, which defined the capacity and
initial load of the logistics nodes as linear relationship [2],
[4]–[6], [21]. However, Kim and Motter [22] demonstrated
the feasibility of the nonlinear relationship of load-capacity.
This breakthrough work was focused on the cascading failure
problem of communication and transportation systems based
on complex network theory, and proved that the capacity
of the nodes of the four real-world networks of aviation,
highway, power and Internet routers are nonlinear in their
initial loads.

Given the above-mentioned circumstances, several authors
have applied the nonlinear load-capacity model to study the
controllability robustness against cascading failure and found
that the nonlinear load-capacity model could tackle these
difficulties and reduce the network cost by flexibly adjust-
ing the minimum residual capacity of the nodes [23]–[26].
Especially, Chen and Dou [24], [25] proposed the nonlinear
load-capacity model to study the processes and features of
cascading failure based on complex network and proved that
the nonlinear load-capacity model was helpful to improve
the robustness of complex network. Although the research
of controllability robustness of cascading failure based on
the nonlinear load-capacity model has been expected to be
feasible on some basic complex network model, but it hasn’t
frequently been used in the complex logistics network until
Yang et al. [2] studied the empirical load-capacity charac-
teristics of two different real logistics networks and proved
the feasibility of the nonlinear load-capacity model. Then
we proposed four different kinds of cascading failure mod-
els and proved the cascading failure model which adopting
nonlinear load-capacity model with initial residual capacity
load-redistribution strategy was the optimal cascading failure
model by cascading failure simulation analysis on complex
logistics network model. Since then, the nonlinear load-
capacity model has been applied to the complex logistics
network, and it was of great significance to the construction
of cascading failure model.

The studies above are all based on the static network
model, which assume that the load of the network is constant
without considering the dynamic characteristics of the real
logistics network. However, one of the special characteristics
of the real logistics network is the flow of objects, so the
dynamic characteristics of complex logistics network with
load changes in real-time is an important influence factor
influencing cascading failure research. When cascading fail-
ure occurs, the real-time load of logistics nodes and the
residual capacity of the neighbor nodes of the failure node

VOLUME 8, 2020 127451



S. Wang et al.: Controllability Robustness Against Cascading Failure

would change with time according to its dynamic charac-
teristics. The distribution of load from failure node to the
neighbor nodes after cascading failure is bound to be biased.
So, the study of dynamic cascading failures problem based
on complex network is also a hot topic. Duan et al. [27], [28]
not only proposed a new cascading model based on a tun-
able load redistribution model with the linear load-capacity
model, but also proved it for better robustness on scale-
free network against cascading failure than the previous
model by adjusting the redistribution range and heterogene-
ity. Schäfer et al. [29] proposed a model that incorporates
the dynamical properties and the complex network topology
of the Turkish power grid to investigate cascading failures.
Jun et al. [30] proposed the load-redistribution strategy based
on time-varying load against cascading failure for complex
network and proved it can reduce the scale of cascading
failure efficiently. It is a significant research for some basic
complex network model, but there are some limitations that
the model they proposed is based on the linear load-capacity
model which cannot fit for the complex logistics network.
It is because that the relationship between load and capacity
of complex logistics network is nonlinear [2]. Moreover,
the existing studies on cascading failure of complex logistics
network do not consider the dynamic characteristics. So,
the distribution of load after cascading failure which dis-
tributed from failure node to the neighbor nodes is bound to
be biased. Therefore, the cascading failure model consider-
ing the dynamic characteristics and nonlinear characteristics
of the real logistics network would improve the rationality of
the stage of load distribution after cascading failure, reduce
the scale of cascading failure, enhance the controllability
robustness and economy of complex logistics network, so as
to provide a better solution to the cascading failure problem
for complex logistics network.

From previous discussions, according to the dynamic
characteristics and nonlinear characteristics of real logistics
network, we propose a dynamic cascading failure model
by adding dynamic factors to the cascading failure model
composed of nonlinear load-capacity model and initial resid-
ual capacity load-redistribution strategy. Based on com-
plex logistics network model, the dynamic cascading failure
model is compared with the cascading failure model with-
out dynamic factors by detail cascading failure simulation
analysis. Through the simulation analysis of controllability
robustness and economy after cascading failure, we prove that
the proposed dynamic cascading failure model is the optimal
one for complex logistics networks. Furthermore, we provide
the solution method to balance the controllability robustness
and economy for complex logistics network by adjusting
the network cost e and capacity parameter γ based on the
dynamic cascading failure model.

In view of the above problem, the rest of this paper is orga-
nized as follows. The dynamic characteristic of real logistics
network is demonstrated in Section II. The complex logistics
network model is constructed In Section III. The dynamic
cascading failure model is constructed in Section IV and

simulated in Section V. Controllability robustness and econ-
omy of complex logistics network after cascading failure
based on dynamic cascading failure model and cascading
failure model without dynamic factors are simulated and ana-
lyzed in Section VI. Conclusions are drawn in Section VII.

II. EMPIRICAL STUDY ON DYNAMIC CHARACTERISTICS
OF COMPLEX LOGISTICS NETWORK
One of the special characteristics of the complex logistics
network is the flow of objects. However, the existing stud-
ies on cascading failures for complex logistics network are
neglected to consider the dynamic characteristics. This will
result in inaccurate residual load distribution after cascading
failures. To consider the dynamic characteristics, we study
the dynamic change of the load of logistics nodes in the
real logistics network over time to reveal the operation law
and structure characteristic of complex logistics network.
In order to demonstrate the dynamic characteristics of the
load of real logistics network, we take the logistics data of
a fortune 500 enterprise (referred to as enterprise A) as an
example, so as to provide the theoretical support for the
dynamic cascading failure model for the complex logistics
network. Figure 2 shows the real-time inventory data of the
seven logistics distribution centers that we tracked in the
logistics network of enterprise A during 20 consecutive days
in January 2019. The daily inventory curve fluctuations are
shown in Figure 2.

FIGURE 2. The real-time inventory data of the seven logistics distribution
centers.

According to Figure 2, we can see the real-time load of
logistics nodes in the complex logistics network become
dynamic over time. Real-time inventory curves of logistics
distribution center from 1 to 7 are all fluctuation curves.
Among them, we can see that, for the logistics node 1, 3,
5 and 7, the inventory curve fluctuates relatively smoothly.
For example, the inventory of logistics node 3 fluctuates
from 2400 to 2750, the highest inventory is 2750 pieces on
January 16th and the lowest inventory is 2400 pieces on
January 7th to 10th. It is proved that the dynamic characteris-
tics of the load of real logistics network. Similarly, there are
other logistics node curves that can also prove this feature in
Figure 2. For the logistics node 2, 4 and 6, the inventory curve
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fluctuates sharply in a relatively large range. It can be seen
that the actual inventory of real logistics nodes are dynamic
data with real-time changes, that is to say, the load of logis-
tics nodes in complex logistics network presents dynamic
characteristics. So, it can be inferred that when cascading
failure occurs, the real-time load of the neighbor nodes of the
failure node must also show dynamic characteristics. Under
the background of such dynamic characteristics as verified
in Figure 2, the cascading failure problem should consider
the dynamic characteristics for accuracy and reality, which
carried out in the topic of our innovation study for dynamic
cascading failure model. Therefore, in this paper, we propose
a cascading failure model with the real-time load for complex
logistics network, which is defined as a dynamic cascading
failure model for complex logistics network.

III. COMPLEX LOGISTICS NETWORK
From the above, we construct a complex logistics network
for experimental purpose, which include the agglomeration
and sprawl mechanism and the complex features of logistics
network. We define the complex logistics network as a logis-
tics infrastructure network G = (V ,E). The V is the nodes
that realize all of the functions in real logistics network, such
as package sending and receiving, transit and circulation,
warehousing and information processing, etc., which include
logistics parks, logistics centers, distribution centers and stor-
age centers. The E is the edges that realize the functions
of goods transportation and information transmission, which
include facilities such as roads, transportation pipelines and
communication lines required for logistics operations. Each
node and edge has a different weight related to its service
capabilities. Therefore, the traffic flow generated by each
node and edge is defined as the node weight and edge weight
respectively. Since the flow of goods between adjacent nodes
in the logistics infrastructure network can move in both direc-
tions, the micro flow direction of the material flow is not
considered in this paper. Therefore, the complex logistics
network can be abstracted into an extend BA network model,
whose generation algorithm is given as follows:

(1) The network starts with m0 nodes and adds a new node
at every equal time interval. The new node is connected with
m(m ≤ m0) different old nodes that already exist in the
network to generate m new edges.
(2) According to the aggregation mechanism of the logis-

tics network, the newly added node and edges are connected
according to the preferred connection rules. It is assumed that
the probability that the new node j is connected to the existing
node i is P(ki), and the degree of the node i is ki, as shown in
formula (1):

P(ki) =
ki∑
j kj

(1)

(3) Let si be the node strength, which represents the capability
of the logistics flow processing of node i as follows:

si =
∑

j
aijfij (2)

where aij is the neighbor matrix of the failed node i, and fij is
the edge weight, that is, the scale of the logistics flow between
nodes i and j.
(4) According to the sprawl mechanism of the complex

logistics network, all the nodes in si > s0 case of the network
are selected, and the partial nodes and all edges connected to
these nodes are deleted with probability P.

After t time intervals, the model evolves into an extended
BA model with N nodes, simulating the agglomeration and
sprawl evolution of the logistics infrastructure network.

Based on the generation algorithm of the complex logistics
network, the extended BA network is generated using a sim-
ulation tool called Python. As shown in Figure 3, the number
of initialization network nodes is 1000, and the average
degree is 4.

FIGURE 3. Extended BA network.

IV. MODELING OF DYNAMIC CASCADING
FAILURE MODEL
A. CASCADING FAILURE MODEL
Based on the complex network theory, the cascading failure
process of a complex logistics network is described as fol-
lows: we delete the node with the largest degree to simulate
the phenomenon of logistics node failure due to some force
majeure emergencies. Then the service coupling relationship
between the failed logistics node and its adjacent nodes is
disrupted, and the load of the failed logistics node is redis-
tributed to its adjacent nodes, the load-redistribution process
may cause a chain reaction of successive failures in adjacent
nodes, because they also could surpass their own load capac-
ities. The above phenomenon is called the cascading failure
of the complex logistics network.

To measure the robustness against cascading failure for
complex logistics network, we use the relative size G of the
giant component to measure the extent of disconnection of
the network as follows:

G =
N ′

N
(3)

where N ′ is the size of the giant component after cascading
failure and N is the initial network size. High G values
correspond to robust network, while low G values represent
vulnerable networks [31], [32].
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Many previous studies have shown that the cascading
failure model of complex logistics networks covers the
following: the definition of the initial load of the node,
the load-capacity model and the load-redistribution strategy.
Among these, the initial load L0i of node i is defined as a
function of the degree of the node [4], [30], [32], [35], [36].
If the number of adjacent nodes connected to logistics node i
is ki, then the degree of logistics node i is ki. The initial load
L0i of node i is defined as follows:

L0i = (ki
∑
m∈0i

km)α, i = 1, 2, . . . ,N (4)

where 0i is the set of adjacent nodes of logistics node i, α is
the load parameter which is used to control the strength of the
initial load, with α > 0, N is the total number of nodes in the
network.

The load capacity model includes linear load capacity
model and nonlinear load capacity model, as shown below.
The linear load-capacity model is adopted to define node
capacity in complex logistics networks [25], [33] as follows::

Ci = (1+ β)L0i , i = 1, 2, . . . ,N (5)

where Ci is the capacity of node i, β is the tolerance parame-
ters, with β ≥ 0. The capacity of a complex logistics network
is defined based on the nonlinear load-capacitymodel [5], [6],
as follows:

Ci = L0i + β(L
0
i )
γ (6)

where Ci is the capacity of node i, β, γ are the tolerance
parameters, with β ≥ 0, γ > 0. Note that, if γ = 1,
the nonlinear load-capacity model degenerates to the linear
load-capacity model (5).

Let Cj denotes the capacity of the adjacent node j of node i.
The additional load 1Lji of the adjacent node j, moved from
the failed node i under the initial residual capacity load-
redistribution strategy, is defined as follows:

1Lji = Li ×
Cj − L0j∑

n∈0i (Cn − L
0
n
)

(7)

Among them, Li is the load of the failed node i, L0j is the
initial load of the adjacent node j, L0n is the initial load of the
adjacent node n, 0i is the set of adjacent nodes of node i. It is
worth explaining that the difference between L0i and Li is that
L0i is the initial load of node i which is set before cascading
failure, while Li is the load of node i after cascading failure.
Except this, the load of the first attacked node in the cascading
failure experiment is equal to its initial load, the load of the
other failed nodes is not the initial load, but the sum of the
initial load and the load of the assigned failed node.

In order to analyze the different effect on the robust-
ness against cascading failure between linear load-capacity
model and nonlinear load-capacity model, we simulate the
two model based on the complex logistics network model
respectively. Since the probability of multiple nodes failing
simultaneously in a real logistics network is small, this paper

assumes that only one node is attacked when emergencies
at a time, and the failed node cannot automatically renew
to its normal state. Based on the complex logistics network
constructed in Section III as shown in Figure 3, the cascading
failure simulation process under the above two cascading
failure models is given as follows:
Step 1: Select linear load-capacitymodel or nonlinear load-

capacity model to define the relationship between the initial
load and capacity of the network.
Step 2: Let the most efficient logistics node i fails, such as

ki = kmax.
Step 3: The load of failed node i is redistributed to the

adjacent node j in accordance with the load-redistribution
strategy as equation (7). The extra load of node j is 1Lji.
Step 4: Determine whether node j fails. If1Lji > Cj, node

j fails, then return to step 3. If1Lji ≤ Cj, node j does not fail,
then go to step 5.
Step 5:When there is no failed node appear, calculate the

robustness G of the complex logistics network.
The cascading failure simulation results are shown as

follows:

FIGURE 4. The relation between β and G for linear load-capacity model.

FIGURE 5. The relation between β and G for nonlinear load-capacity
model.

Figure 4 is the cascading failure simulation diagram under
the linear load-capacity model. Figure 5 is the cascading
failure simulation diagram under the nonlinear load-capacity
model. To analyze the relation between β and G in the
simulation results analysis, we conclude from Figure 4 and
Figure 5 that, with the increase of β, the value of G presents
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three states: firstly, with the increase of β, the value of G
remains unchanged as 0, which means no cascading failure
occurs; secondly, with the increase of β, the value of G
increases, which means cascading failure occurs. Finally,
with the increase of β, the value of G remains the same as
1, that is, all nodes are failed. It can be seen that, under the
same α, the cascading failure threshold of β in Figure 4 is
larger than that in Figure 5. For example, when α = 0.4, β is
β = 0.05 in Figure 4, while β is β = 0.04 in Figure 5; when
α = 0.4, β is β = 0.08 in Figure 4, while β is β = 0.06
in Figure 5. It means that the cascading failure threshold
based on nonlinear load-capacity model is smaller than that
based on linear load-capacity model. Based on the above,
it can be concluded that the cascading failure model of com-
plex logistics network based on the nonlinear load-capacity
model is superior, and the complex logistics network after
cascading failure is more robust. Therefore, we will establish
a dynamic cascading failure model based on nonlinear load-
capacity model by adding dynamic factors.

B. DYNAMIC CASCADING FAILURE MODEL
Based on the above research results, we establish a dynamic
cascading failure model based on nonlinear load-capacity
model by adding dynamic factors. First, the initial load L0i
of node i is defined as equation (4). The dynamic load of the
logistics node 1Li is defined as follows:

1Li = ηL0i δ (8)

where1Li is the dynamic load of the logistics node. Based on
the initial load, the dynamic real-time load of logistics node
is dependent on the dynamically adjustable parameters η and
δ, η ∈ [−1, 1], δ ∈ [0, 1]. The dynamic real-time load Li of
logistics node i is defined as follows:

Li = L0i +1Li (9)

Obviously, the real-time load of the logistics node Li is a
dynamic variable. According to the nonlinear load-capacity
model as equation (6), the load-capacity model for dynamic
cascading failure model is defined as follows:

Ci = L0i + β(L
0
i )
γ (10)

where Ci is the capacity of node i, and β, γ are the tolerance
parameters, with β ≥ 0, γ > 0.
Let Cj denotes the capacity of the adjacent node j of node

i. The additional load 1L̃ji of the adjacent node j, which
is moved from the failed node i under the initial residual
capacity load-redistribution strategy, is defined as follows:

1L̃ji = Li ×
Cj − L0j∑

m∈0i (Cm − L
0
m)

= Li ×
L0j + β(L

0
j )
γ
− L0j∑

m∈0i (L
0
m + β(L0m)γ − L0m)

= Li ×
(L0j )

γ∑
m∈0i (L

0
m)γ

(11)

Among them, Li is the load of the failed node i,L0j is the
initial load of the adjacent node j, L0m is the initial load of the
adjacent node m, 0i is the set of adjacent nodes of node i. Cj
is the capacity of the adjacent node j. Considering the change
of the dynamic load of logistics node, the load of the failure
node i is distributed to its neighbor node j in proportion to∏

j which is based on the differential redistribution strategy.
Among them, the

∏
j is defined as follows:∏

j
=

Cj − Lj(t)∑
m∈0i (Cm − Lm(t))

, t = 0, 1, 2, . . . q (12)

where t is the time interval, q is the number of time intervals
from the initial state to the end of cascading failure, Cj is the
capacity of the adjacent node j, Lj(t) is the real-time load of
the adjacent node j at time t , 0i is the set of adjacent nodes of
node i.
Then, under the dynamic load distribution strategy,

the additional load 1L̂ji of the adjacent node j is defined as
follows:

1L̂ji = Li ×
Cj − Lj(t)∑

m∈0i (Cm − Lm(t))

= Li ×
(L0j + β(L

0
j )
γ )− (L0j + ηL

0
j δ)∑

m∈0i ((L
0
m + β(L0m)γ )− (L0m + ηL0mδ))

= Li ×
β(L0j )

γ
+ ηL0j δ∑

m∈0i (β(L
0
m)γ + ηL0mδ)

(13)

According to equation (13), we can know that the load
distribution results after cascading failure can be adjusted
by the dynamically adjustable parameters η and δ, so as to
obtain more accurate cascading failure redistribution results
and improve the robustness of the complex logistics network.

V. SIMULATION RESULTS AND DISCUSSION
Based on the above dynamic cascading failure model with
dynamic factors, we carry out cascading failure simulation for
the complex logistics model constructed in Section II. Since
the probability of multiple nodes failing simultaneously in a
real logistics network is small, we still assume that only one
node fails at a time, and the failed node cannot automatically
renew to its normal state. The cascading failure simulation
process under the dynamic cascading failure models is given
as follows:
Step 1: Select nonlinear load-capacity model to define

the relationship between the initial load and capacity of the
network.
Step 2: Let the most efficient logistics node i fail, such that

ki = kmax.
Step 3: The load of failed node i is redistributed to the adja-

cent node j in accordance with the load-redistribution strategy
as equation (13). The additional load of node j is 1L̃ji.
Step 4: It is assumed that the node is directly removed from

the network after its failure. Therefore, the value of the failed
node i in the neighbor matrix network is set to 0 and it is no
longer connected with other nodes.
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Step 5: After the load of the failed node is redistributed,
check if any nodes in the neighbor node set have failed.When
the neighbor node is failed, classify the failed node into the
failed node set and update the dynamic load of all nodes, then
return to Step 3; otherwise, go to Step 6.
Step 6: Until no logistics node fails, calculate the robust-

ness G of the complex logistics network, and the whole
dynamic cascading failure simulation process is finished.

Compared the dynamic cascading failure model with the
one without dynamic factors, we assume the tolerance param-
eters as γ = 1.3, γ = 1.1, γ = 0.9, γ = 0.7 and γ = 0.5,
and the simulation results are shown as Figure 6 to Figure1.

FIGURE 6. The relation between β and G for the dynamic cascading
failure model and the cascading failure model without dynamic factors
when γ = 1.3.

FIGURE 7. The relation between β and G for the dynamic cascading
failure model and the cascading failure model without dynamic factors
when γ = 1.1.

Figure 6-10 are the relation between β and robustness
G for the dynamic cascading failure model and the cascad-
ing failure model without dynamic factors when γ = 1.3,
γ = 1.1, γ = 0.9, γ = 0.7, and γ = 0.5 respectively. The
blue lines represent the simulation value of the robustness G
after cascading failure for complex logistics network based on
the dynamic cascading failure model; The red lines represent
the simulation value of the robustness G after cascading
failure for complex logistics network based on the cascading

FIGURE 8. The relation between β and G for the dynamic cascading
failure model and the cascading failure model without dynamic factors
when γ = 0.9.

FIGURE 9. The relation between β and G for the dynamic cascading
failure model and the cascading failure model without dynamic factors
when γ = 0.7.

FIGURE 10. The relation between β and G for the dynamic cascading
failure model and the cascading failure model without dynamic factors
when γ = 0.5.

failure model without dynamic factors. From figure 6, one
can see that, when γ = 1.3, the cascading failure threshold β
for the dynamic cascading failure model is β = 0.02, and
the cascading failure threshold β for the cascading failure
model without dynamic factors is β = 0.03. In a similar way,
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from figure 7, we can see that, when γ = 1.1, the cascading
failure threshold of β for the dynamic cascading failuremodel
is β = 0.04, and the cascading failure threshold β for the
cascading failure model without dynamic factors is β = 0.06.
From figure 8, we can see that, when γ = 0.9, the cascading
failure threshold β for the dynamic cascading failure model
is β = 0.08, and the cascading failure threshold β for the
cascading failure model without dynamic factors is β = 0.1.
From figure 9, we can see that, when γ = 0.7, the cas-
cading failure threshold β for the dynamic cascading failure
model is β = 0.15, and the cascading failure threshold β
for the cascading failure model without dynamic factors is
β = 0.21. From figure 10, we can see that, when γ = 0.5,
the cascading failure threshold β for the dynamic cascading
failure model is β = 0.27, and the cascading failure threshold
β for the cascading failure model without dynamic factors
is β = 0.43. By comparing the five groups of simulation
results, the following conclusions can be proved: 1)the larger
the capacity parameter γ is, the smaller the cascading failure
threshold β is, the more robust the network is. 2) When the
capacity parameter γ is fixed, the cascading failure thresh-
old β based on dynamic cascading failure model is smaller
than the cascading failure model without dynamic factors.
It means that the cascading failure threshold based on the
dynamic cascading failure model is smaller than that based
on the cascading failure model without dynamic factors. So,
the dynamic cascading failure model for complex logistics
network after cascading failure is the optimization model
which has the strongest robustness and can provide a better
solution to the cascading failure problem for complex logis-
tics network.

VI. SIMULATION ANALYSIS OF CONTROLLABILITY
ROBUSTNESS AND ECONOMY OF COMPLEX LOGISTICS
NETWORK UNDER CASCADING FAILURE
Logistics cost is the core of logistics economy. The actual
logistics network not only focuses on the robustness of the
network, but also considers the cost of the logistics network.
Cascading failure for complex logistics network would cause
economic losses. So, it is of great significance to control
the robustness and economy for complex logistics network,
which can greatly improve network performance and create
great economic value. In this section, we study the relation-
ship between the controllability robustness and economy for
complex logistics network after cascading failure, so as to
achieve the method for getting the strongest robustness when
the logistics cost is lowest in the same time.

We use the controllability robustness Pi and cost e to mea-
sure the controllability robustness and economy of complex
logistics network [24], [32]. The controllability robustness Pi
is defined as follows:

Pi =
Fi
N

(14)

where Fi is the number of failed nodes in the complex
logistics network after the failure of node i,N is the initial

network size. The cost e is defined as follows:

e =

N∑
i=1

Ci

N∑
i=1

L0i

=

N∑
i=1

L0i + β(L
0
i )
γ

N∑
i=1

L0i

(15)

where
N∑
i=1

Ci is the total capacity of the network that indi-

cates the total cost of complex logistics network,
N∑
i=1

Li(0)

is the total initial load of the network that indicates the
initial cost of complex logistics network. Compared the
dynamic cascading failure model with the cascading failure
model without dynamic factors, the three-dimensional sim-
ulation results considering the controllability robustness Pi,
cost e and capacity parameters γ simultaneously are shown
in Figure 11 and Figure 12.

FIGURE 11. Relationship among Pi , γ and e under cascading failure
model without dynamic factors.

Based on the cascading failure model without dynamic fac-
tors in the complex logistics network, the relationship among
Pi, γ and e is shown in Figure 11. Based on the dynamic
cascading failure model in the complex logistics network,
the relationship among Pi, γ and e is shown in Figure 12.
As can be seen from Figure 11 and Figure 12, the yellow
region indicates that the value of controllability robustness
Pi approaches 1 under different value of capacity parame-
ters γ and cost e.The closer the color is to yellow, the closer
the value of controllability robustness Pi is to 1; The blue
region indicates that the value of controllability robustness
approaches 0 under different value of capacity parameters γ
and cost e. The darker the blue color is, the closer the value
of controllability robustness Pi is to 0. By comparing Fig-
ure 11 and Figure 12, it can be seen that the blue region
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FIGURE 12. Relationship among Pi , γ and e under dynamic cascading
failure model.

in Figure 11 is smaller than the blue region in Figure 12,
which is means that in the dynamic cascading failure model,
the smaller the cost threshold is, the bigger the blue region is.
Moreover, in order to get better comparisons and conclusions
for the results of the two experiments, we make a detailed
comparative analysis of the plane view and side view of the
two three-dimensional figures respectively which are shown
in Figure 13 and Figure14.

FIGURE 13. Relationship between Pi and γ under cascading failure
model without dynamic factors.

Figure 13 is the side view in controllability robustness Pi
and capacity parameter γ directions of Figure 11, it shows
the relationship between Pi and γ based on the cascad-
ing failure model without dynamic factors in the complex
logistics network. Figures 13 is the side view in controlla-
bility robustness Pi and capacity parameter γ directions of
Figure 12, it shows the relationship between Pi and γ based
on the dynamic cascading failure model in the complex logis-
tics network. In Figure 13, the controllability robustness of
the complex logistics network is not stable in the interval
of 0 < γ ≤ 0.8, and very monotonous in the interval of
γ > 0.8. It is hard to optimize the controllability robustness

FIGURE 14. Relationship between Pi and γ under dynamic cascading
failure model.

by controlling γ to fit the actual economic requirements of the
logistics cost e according to Figure 12. However, comparing
Figure 13 with Figure 14, the controllability robustness of the
complex logistics network in Figure 14 ismuchmore stable in
the interval of 0 < γ ≤ 0.8, and much more clearly and mul-
tiply controllability robustness selection intervals of all the
interval of γ . So, a conclusion can be drawn by comparison
is that comparing with the cascading failure model without
dynamic factors, the dynamic cascading failure model can be
optimized more efficiency by adjusting capacity parameter
γ to control the controllability robustness Pi more flexibly
and accurately under a fit cost e. Thus, under the premise of
limited economic cost, the performance of complex logistics
network can be better controlled by the dynamic cascading
failure model.

FIGURE 15. Relationship between e and γ under cascading failure model
without dynamic factors.

Figure 15 is the plane view in cost e and capacity parameter
γ directions of Figure 11, it shows the relationship between e
and γ based on the cascading failure model without dynamic
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FIGURE 16. Relationship between e and γ under dynamic cascading
failure model.

factors in the complex logistics network; Figures 16 is the
plane view in cost e and capacity parameter γ directions of
Figure 12, it shows the relationship between e and γ based on
the dynamic cascading failure model in the complex logistics
network. From Figure 15 and Figure 16, we can see that the
controllability robustness distribution under the influence of
network cost and capacity parameters. The blue area is for the
controllability robustness Pi with Pi 6= 1, the yellow areas is
for the controllability robustness Pi with Pi = 1. The blue
area is the best choice for balancing the optimal combination
of the cost e and capacity parameter γ . Obviously, the blue
area in Figure 15 is smaller than the blue area in Figure 16,
which means that the optional area under cascading failure
model without dynamic factors is smaller than that under
dynamic cascading failure model. So, the dynamic cascading
failure model is a more intelligent model to control the cost
e and capacity parameters γ synchronously to achieve a bet-
ter controllability robustness for complex logistics network.
According to the specific requirements of logistics cost range,
we can control the capacity parameters γ under dynamic
cascading failure model in the blue area to improve the con-
trollability robustness for complex logistics network. When
the cost e is fixed, the bigger capacity parameter γ is, the
stronger controllability robustness is.

Figure 17 is another side view in controllability robustness
Pi and cost e directions of Figure 11, it shows the relation-
ship between Pi and e based on the cascading failure model
without dynamic factors in the complex logistics network.
Figure 18 is another side view in controllability robustness Pi
and cost e directions of Figure 12, it shows the relationship
between Pi and e based on the dynamic cascading failure
model in the complex logistics network. From Figure 17 and
Figure 18, we can see that the controllability robustness
for complex logistics network increases with the increas-
ing cost. On the premise of not considering the limitation
of cost e, the controllability robustness against cascading
failure for logistics network can be controlled to a stronger

FIGURE 17. Relationship between Pi and e under cascading failure model
without dynamic factors.

FIGURE 18. Relationship between Pi and e under dynamic cascading
failure model.

state by increasing the construction cost of logistics network.
Furthermore, we can know from the data in Figure16 and
Figure17 that the controllability robustness Pi approaches to
stable as Pi = 0 with the cost e = 1.95 in Figure 16,
and with the cost e = 1.55 in Figure 18. It means that,
for the same controllability robustness for complex logistics
network, the cost e in Figure 18 can be much lower than
Figure 17. So, a conclusion can be drawn by comparison is
that the dynamic cascading failure model is more intelligent
than the cascading failure model without dynamic factors for
controlling the cost e and controllability robustness Pi syn-
chronously, which can achieve a better economy for complex
logistics network after cascading failure. So, we can control
the controllability robustness Pi with a lower cost e under
dynamic cascading failure model to improve the economy for
complex logistics network.

From the above, the dynamic cascading failure model with
dynamic factors is an optimized model. It can effectively
control the controllability robustness and economy of the
complex logistics network by adjusting the cost e and capac-
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ity parameters γ , so as to reduce the cost and enhance the
controllability against cascading failure.

VII. CONCLUSION
In conclusion, according to the empirical dynamic charac-
teristics of the load of real logistics network, we propose
a dynamic cascading failure model which adds dynamic
factors to the cascading failure model based on nonlinear
load-capacity model under initial residual capacity load-
redistribution strategy. Based on the complex logistics net-
work model, we compare the dynamic cascading failure
model with the cascading failure model without dynamic
factors by cascading failure simulation. Through the simula-
tion analysis of controllability robustness and economy after
cascading failure, we find that the dynamic cascading fail-
ure model we proposed has better performance for complex
logistics network. It can more effectively reduce the logistics
cost and enhance controllability robustness against cascading
failure by adjusting the network cost e and capacity parameter
γ , so as to balance the controllability robustness and economy
of the complex logistics network.
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