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ABSTRACT Autism Spectrum Disorder (ASD) is a developmental disorder characterized by difficulty in
communication, which includes a high incidence of speech production errors. We hypothesize that these
errors are partly due to underlying deficits in motor coordination and control, which are also manifested
in degraded fine motor control of facial expressions and purposeful hand movements. In this pilot study,
we computed correlations of acoustic, video, and handwriting time-series derived from five children with
ASD and five children with neurotypical development during speech and handwriting tasks. These correla-
tions and eigenvalues derived from the correlations act as a proxy for motor coordination across articulatory,
laryngeal, and respiratory speech production systems and for fine motor skills. We utilized features derived
from these correlations to discriminate between children with and without ASD. Eigenvalues derived from
these correlations highlighted differences in complexity of coordination across speech subsystems and during
handwriting, and helped discriminate between the two subject groups. These results suggest differences in
coupling within speech production and fine motor skill systems in children with ASD. Our long-term goal
is to create a platform assessing motor coordination in children with ASD in order to track progress from
speech and motor interventions administered by clinicians.

INDEX TERMS Acoustic speech analysis, biomedical application, autism spectrum disorder, motor
coordination, fine motor skills.

I. INTRODUCTION
Children with Autism Spectrum Disorder (ASD) undergo a
large number of speech interventions in the home, the clinic,
and at school to address communication difficulties at the
core of the disorder [1]. However, the effectiveness and track-
ing of these treatments have not been well documented [2].
Most progress is denoted by subjective observations from the
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clinician or caregivers. A goal of our research is to design a
speech assessment protocol that can be used in the clinic and
the home setting, from which we can derive objective speech
biomarkers that can aid in tracking subtle but meaningful
changes in speech production due to speech interventions and
can inform intervention decisions.

Delay in the development of fine motor skills has been
found to be common in ASD, and is typically a better pre-
dictor of diagnosis than gross motor skills [3]. In children,
this can manifest in degraded control during handwriting
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[4], [5] and drawing tasks [6]. Recent research has sug-
gested that speech differences witnessed in ASD stem from
the motor coordination and control deficits that are associ-
ated with facial and fine motor gestures in ASD [7]. Some
children with ASD demonstrate difficulties with oral motor
skills which are linked to speech production [8]. Correla-
tions between deficits in fine motor skills and development
of expressive and receptive language suggest, furthermore,
that difficulties in speech production for children with
ASD may contribute to communication difficulties [9], [10].
These findings of a co-occurrence of motor deficits across
perceptuo-motor systems suggest that motor and language
skills, including speech production, are interrelated in devel-
opment [11].

There has been considerable research into acoustic
biomarkers of ASD, such as fundamental frequency (F0) or
intensity [12]. There has not yet emerged, however, a consis-
tent set of objective acoustic biomarkers sensitive and specific
to ASD for use in assessment, phenotyping, and tracking
response to treatments, nor is there a complete understanding
of interactions between acoustic biomarkers [12]. There is
therefore a pressing need to develop quantifiable and sensitive
biomarkers to understand speech production differences in
individuals with ASD, and to fill the gap between advances in
research into acoustic biomarkers and their use in the clinical
setting.

Many acoustic analyses have focused on a single speech
production subsystem, either articulatory (formants and facial
features), laryngeal (fundamental frequency), or respiratory
(intensity). One approach to addressing the interaction is
through correlation structures across speech subsystems.
These structures are formed from acoustic and facial fea-
tures and have previously been used as a proxy measure of
motor coordination. Features extracted from the structures
have been used to predict clinical severity scores of individu-
als with major depressive disorder (MDD) [13], Parkinson’s
disease [14], and mild traumatic brain injury (mTBI) [15].
While these features have been successful in representing
motor coordination deficits within speech subsystems, there
are also relationships across speech subsystems. For exam-
ple, lip, jaw, and laryngeal motion timings are constrained
to facilitate their coordination [16], and pitch and loudness
are positively correlated [17]. These relationships between
subsystems are depicted in Fig. 1. The correlation features
have also not been applied to fine motor skills, such as
shape-drawing.

In this pilot study, we build upon acoustic analysis stud-
ies of ASD that have typically looked at individual sub-
systems [12]. We add new analyses to characterize motor
coordination across speech production subsystems and for
fine motor skills by looking at the patterns of the correlations
across signals derived from speech and shape-drawing tasks.
Furthermore, we create machine learning models with cor-
relation structure features to discriminate between children
with ASD and neurotypical controls.

FIGURE 1. Major speech production subsystems of articulation,
phonation, and respiration and their relationships. Speech production
involves coordination within and between these subsystems as denoted
in the figure.

II. METHODS
A. PARTICIPANTS
This study involved five children (5 males, ages 7.20 ±
0.40 years) with ASD and five neurotypical controls (4males,
ages 6.25 ± 0.43 years; 1 female, age 11 years), verbally
and natively fluent in English and with age-appropriate
reading skills. All subjects with ASD were evaluated by
developmental specialists at the Massachusetts General Hos-
pital (MGH) Lurie Center for Autism who verified a diagno-
sis of ASD based on a comprehensive diagnostic interview,
direct observation, review of records, and formal testing,
including the Autism Diagnostic Observation Schedule, 2nd
Edition (ADOS-2) [18], when necessary. The Primary Inves-
tigator then confirmed each ASD diagnosis with completion
of a formal Diagnostic and Statistical Manual of Mental
Disorders, 5th edition (DSM-5) checklist [19]. Children who
had other neurodevelopmental or psychiatric disorders were
excluded from enrollment through a thorough study screening
process. All ASD subjects and controls were screened for
global cognitive impairments by clinical interview and review
of records, and subjects with intellectual disability were not
included. For ASD subjects, IQ scores ranged from average
to significantly above average (Full Scale IQ ranged from
105 to 135 with a mean of 124). All neurotypical controls had
no reported or recorded history of speech, language, hearing,
vision, or neurological disorders. The study was approved by
the Institutional Review Boards (IRBs) at the Massachusetts
Institute of Technology, MGH, and the US Army Human
Research Protection Office (HRPO). Prior to participation,
written, informed consent from one parent or guardian and
verbal assent from the child were obtained.

B. PROTOCOL
Data was collected in a well-lit, electrically and acoustically
shielded room at the Lurie Center. The protocol was dis-
played to the child on an iPad (Apple, Inc., Cupertino, CA)
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through Powerpoint (Microsoft Corp., Redmond,WA) slides.
A neuropsychologist administered the protocol through a
separate, connected iPad and verbally instructed the child to
follow prompts displayed on the slides. Audio was recorded
at 48000 Hz with a wired DPA 4060 Microphone (DPA
Microphones, Denmark) hanging from the ceiling above and
slightly in front of the child, and video was recorded with
a Canon XA20 Pro HD camera (Canon Inc., Japan) placed
in front of the child. Each child first read aloud a simpli-
fied version of The Caterpillar passage [20], adapted to be
age-appropriate and designed to induce phonetic contrasts
and prosodic stress. One control subject had difficulty reading
the passage and was therefore excluded from any analysis
of The Caterpillar passage. Children were then instructed
to repeat the diadochokinetic sequence ‘‘pa-ta-ka’’ as many
times as possible in a single breath. Children then vocalized
four different vowels ([a], [i], [u], [æ]) each in a single
sustained breath for 5-7 seconds. Each child was led through
two free speech tasks: 1) describing their favorite toy, sport,
or hobby, and 2) describing the situations displayed in six
different pictures.

Subsequently, the children proceeded through an adapted
version of the Beery-Buktenica Developmental Test of
Visual-Motor Integration [21] on a custom iPad application.
The task involved simple drawings: vertical, horizontal, and
diagonal lines, as well as squares, circles, triangles, plus
signs and crosses. Handwriting measurements consisted of
a time-series of spatial coordinates {x, y} and pressures {z},
extracted using the jQuery Pressure.js module [22]. The time
interval between successive data points was typically 16 ms.
Variability in the time intervals was due to the module record-
ing coordinates every time a pixel was displayed.

All children additionally underwent two clinical assess-
ments of visual-motor skills. The neuropsychologist led
them through the Beery-Buktenica Developmental Test of
Visual-Motor Integration - 6th edition (VMI-6) [21], as well
as the NEPSY-II Visuomotor Precision task [23]. In the latter,
children were asked to quickly draw a line through a series of
mazes without crossing the boundary of the maze.

C. LOW-LEVEL FEATURE EXTRACTION
Speech data from the subjects was manually segmented using
the VCode annotation tool [24]. Each segment represented
a period of continuous speech from the subjects. Segments
were further split to ensure that no segment had pauses longer
than a second, as detected by an energy-based speech activity
detection algorithm developed in MATLAB. This algorithm
also allowed for elimination of segments without at least
3 seconds of continuous speech from further analysis. All
recordings were manually checked to ensure the absence of
any distortion in the audio and video recordings. A speech
example from a neurotypical control reciting the diadochoki-
netic sequence ’pa-ta-ka’ is provided in Fig. 2.

A set of low-level speech features was selected based on
acoustic and facial parameters that have been used in studies
to characterize individuals with ASD [12]. An example of

FIGURE 2. Waveform and spectrogram extracted from a control subject’s
recitation of the diadochokinetic sequence ’pa-ta-ka’. The extracted
intensity time-series is overlaid on the waveform in orange. The extracted
formants time-series are depicted on the spectrogram in blue, and the
extracted F0 time-series is depicted in red.

these acoustic features extracted from a neurotypical control
is provided in Fig. 2. The first three formant time-series (F1-
F3) were estimated using the Kalman-based autoregressive
moving average (KARMA) software tool with a 10 ms frame
interval [25]. KARMA includes an energy-based speech
activity detector that allows aKalman smoother to extrapolate
formants through silent gaps in the signal with no speech,
thereby providing continuous time-series of formants.

Fundamental frequency (F0) was extracted using the vfxrapt
tracker from theVOICEBOX speech processing toolbox [26],
using frequency limits of 180-300 Hz, based on values of fun-
damental frequency for children of our target age range [27].

Intensity was extracted using a custom MATLAB script
that provides a smooth contour of amplitude peaks based
on an iterative time-domain signal envelope estimation [28],
[29]. This technique captures both the contributions of the
respiratory muscles and resonance-harmonics interaction to
amplitude modulation of a speech envelope.

Facial action unit (FAU) features were extracted from
video segments using the OpenFace toolbox [30], consistent
with the Facial Action Coding System [31]. Each FAU rep-
resents a particular configuration of facial muscles, such as
lip tightener or chin raiser, and has typically been used to
recognize emotion [31]. The intensity of 9 FAUs, capturing
the lips and jaw, were estimatedwith a sampling rate of 30Hz.
These FAUs are listed in the Appendix B. F0 and intensity
were downsampled to a sampling rate of 100 Hz, while
FAUs were interpolated to a sampling rate of 100 Hz using
MATLAB’s interp1 function with spline interpolation.

Each handwritten shape was automatically parsed into
different segments whenever the time interval between suc-
cessive data points was greater than 40 ms or the euclidean
distance was greater than 30 pixels. A segment was valid for
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further analysis if it contained at least 10 data points. The
positions and pressures of valid segments were then converted
into time series of movement and pressure accelerations by
convolving each channel with the discrete Laplacian filter,
[1,−2, 1], followed by smoothing with a 7-point Gaussian
filter (σ = 1).

D. HIGH-LEVEL CORRELATION FEATURE EXTRACTION
Multivariate auto- and cross-correlations of acoustic, facial,
and handwriting low-level features were used to produce
proxy measures of coordination within and across the under-
lying mechanisms of speech subsystems and fine motor skills
[13]–[15].

Specifically, time-delay embedding was used to expand the
dimensionality of the feature time series, resulting in corre-
lation matrices with embedded auto- and cross-correlation
patterns that represent coupling strengths across feature chan-
nels at multiple relative time delays. High complexity in
a feature signal results in a narrow central band of high
autocorrelation due to energy being distributed across a
broad range of signal frequencies. Lower complexity in the
feature signal corresponds to energy being concentrated in
fewer frequencies, often with a wider central band of high
autocorrelation. The correlation matrix eigenspectra quan-
tify and summarize the frequency properties of the set of
feature signals. Higher complexity across multiple signals is
reflected in a more uniform distribution of eigenvalues, with
lower complexity reflected in a larger proportion of the over-
all signal variability being concentrated in a small number
of eigenvalues.

The mathematical details of this method are provided in
[13] and a visual explanation of the method is in Fig.3.
For each speech segment, channel-delay correlation matrices
were calculated from various combinations of formants (F1,
F2, F3), F0, intensity, and FAU time-series. Each matrix
contained the correlation coefficients between the time-series
at defined time delays to create the embedding space. Four
matrices were computed at four delay scales (10, 30, 70,
150 ms) with 15 time-delays used per scale. These delay
scales allow for characterization of coupling of signals at the
frame rate and at longer time scales. These scales, in par-
ticular, have been used for characterization of psychomotor
slowing in MDD [13]. Each matrix comparing n signals

FIGURE 3. Example correlation structure pipeline for eigenspectra feature
calculation using formants (F1-F3).

has a dimension of (n*15 × n*15). For all correlations,
an automatic masking technique was used to include only
segments that contained speech, using a custom speech activ-
ity detection algorithm. Eigenvalues of all resulting matrices
were extracted by rank-order, from largest to smallest. For
each task in the protocol, the eigenvalues across individual
segments that made up the task were averaged to obtain the
mean eigenspectrum for the task, which were used as feature
vectors for comparison and classification analysis. For a com-
parison of n signals, this will yield n ∗ 15 eigenvalues.
For the handwriting segments, matrices were calculated

from the smoothed derivatives of the {x, y, z} values in each
segment. Because the segments could be as short as 10 data
points, only a single delay scale, with 7 time-delays and
delay spacing of one data point (16 ms), was used. Eigen-
values were extracted in the same way as they were for
the speech segments. For a comparison of the 3 signals,
this yielded 21 eigenvalues. The eigenspectrum from each
segment was treated independently in comparison and classi-
fication analysis.

E. CHARACTERIZATION AND CLASSIFICATION
Cohen’s d effect sizes of the eigenvalues for ASD vs con-
trol subjects were computed to characterize complexity of
cross-correlations of signals [13]–[15]. The eigenspectra
were also used as features in constructing Gaussian Mixture
Models (GMMs) to classify subjects as ASD or control. This
process used leave-one-subject-out (LOSO) cross-validation.
For each of the speech feature sets and tasks, the first six prin-
cipal component analysis (PCA) features were extracted from
the eigenspectra which were normalized (z-scored) across
the subjects, capturing at least 90% of the variability in the
eigenspectra. For each cross-validation fold, an ensemble
of 10 GMMs was created from these PCA features in the
training data. Supervised adaptation of the GMM means
was used to create ASD and control GMMs, a technique
typically used in speaker recognition [32]. For each speech
feature set and task combination, the ASD prediction score
for the test subject was the log-likelihood ratio of the sum
of the likelihoods of ASD GMMs and control GMMs in the
ensemble.

Classification of ASD subjects for handwriting followed
the same GMM architecture, using a single PCA feature
extracted from the eigenspectra of each handwriting segment.
The cumulative prediction per subject was obtained from the
mean of the prediction scores across all of the subject’s hand-
writing segments. Receiver operating characteristic (ROC)
curves were computed from all prediction scores from speech
and handwriting tasks and features, and the area under the
curve (AUC) of the ROCs was computed. For speech tasks,
this resulted in a single AUC per feature combination and
task. For handwriting tasks, independent AUCs were calcu-
lated using either the mean of the prediction scores across all
segments for a subject or by treating each prediction score
independently.
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III. RESULTS
A. CLINICAL ASSESSMENTS
All children demonstrated intact visual-motor integrations
skills with scores on the Beery-Buktenica Developmental
Test of Visual-Motor Integration - 6th Edition (VMI-6) [21]
falling in the average to high average range. The VMI-6 task
produces a standard score with a mean of 100 with a standard
deviation of 15. Children with ASD had an average VMI-
6 standard score of 97.8 ± 5.84 and neurotypical controls
had an average score of 106.2± 5.16, showing no significant
difference with a two-sided t-test (p = 0.05). In contrast to
solidly intact visual-motor integration skills, children with
ASD trended towards slightly reduced visual-motor preci-
sion on the NEPSY-II Visuomotor Precision task [23]. The
NEPSY-II Visuomotor Precision task produces a scaled score
with a mean of 10 with a standard deviation of 3. Children
with ASD had an average score of 6.8 ± 1.79 and neurotyp-
ical controls had an average score of 8.6 ± 1.52, showing
no significant difference between the two groups as well
(p = 0.12).

B. LOW-LEVEL FEATURES
As a baseline using low-level features, Tables 1 and 2 lists
the Cohen’s d effect sizes of the mean and variance of the
extracted acoustic, facial, and handwriting acceleration fea-
tures between the ASD and control groups. Values above
0 indicate that the univariate statistic was larger in the ASD
group as compared to the control group. For each task,
the mean and variance of the feature was calculated for
each segment within the task, and then averaged across all
segments to provide a univariate statistic for the subject. Out
of the features, only the variance of F2 during the ’pa-ta-ka’
task and free speech and the variance of F3 during sustained
vowels showed both high effect sizes (Cohen’s d ≥ 1.0) and
a p-value less than 0.05 with a two-sided t-test between the
ASD and control groups, possibly indicating greater variabil-
ity and less control over articulators. The majority of the
features did not show a large separation between the two
groups, consistent with many previous studies [12]. Exact
values of the univariate statistics are provided in Appendix A.

TABLE 1. Cohen’s d effect sizes comparing means and variances of
features extracted from speech tasks for control and ASD subjects.
p < 0.05*.

TABLE 2. Cohen’s d effect sizes comparing distributions of means and
standard deviations of handwriting acceleration features that are
extracted from position (x, y ) and pressure (z) measurements from the
parsed segments across all handwriting tasks for control and ASD
subjects. p < 0.05*.

C. HIGH-LEVEL FEATURES
Two major patterns were observed when looking at the cor-
relation structures and the eigenspectra across the ASD and
control groups. The first was higher complexity in the cor-
relation of F0 and intensity during the ’pa-ta-ka’ task in the
ASD group (Fig. 4), and the second was lower complexity
in the correlation of formants and FAUs during the reading
task, and in the correlation of handwriting features during
the shape drawing tasks (Fig. 5). This was seen using the
correlation structures and the Cohen’s d effect size patterns
of the eigenspectra.

FIGURE 4. Average correlation matrix of F0 and intensity from control
subjects (left) and ASD subjects (right) during the ’pa-ta-ka’ task.

Fig. 4 depicts the average of correlation matrices of con-
trol subjects and ASD subjects from the ’pa-ta-ka’ task
using auto- and cross-correlations of F0 and intensity. There
are narrower bands of high auto-correlation in the diagonal
blocks for F0 and intensity for the ASD subjects as compared
to the control subjects. The signals in the ASD group, there-
fore, have a shorter time period where their signals are highly
auto-correlated. This indicates that energy is being distributed
across a broad range of signal frequencies, which means that
these signals have higher complexity in the ASD group. This
higher complexity indicates decreased precision of hitting
F0 and intensity targets in the ASD group as compared to
neurotypical controls.

Fig. 5 shows the Cohen’s d effect sizes of the eigenvalue
features derived from the correlation matrices for the com-
bination of formants and FAUs captured during The Cater-
pillar passage, and for the acceleration of x, y, and pressure
(z) time-series from the segments of all handwriting tasks,
features which aided in high discriminability when used in
a GMM. Effect sizes greater than 0 mean that the eigenvalue
was greater for ASD subjects as compared to control subjects.
The pattern in both of these plots indicates that ASD subjects
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FIGURE 5. (a) Cohen’s d effect sizes of eigenvalues derived from the
correlations of formants and FAUs during The Caterpillar passage. There
are 180 eigenvalues for 12 total time series (9 FAUs + 3 formants) and
15 time delays. (b) Cohen’s d effect sizes of eigenvalues derived from the
correlations of displacement (X,Y) and pressure (Z) accelerations during
handwriting tasks. There are 21 eigenvalues for 3 signals and 7 time
delays. Both (a) and (b) are displayed as a function of eigenvalue rank
(from largest to smallest). Effect sizes that are greater in magnitude than
1.41 have a p-value < 0.05.

have lower complexity in the underlying signals as compared
to control subjects during these tasks. ASD subjects, there-
fore, perhaps have more coupling in their movements to hit
formant, FAU, and handwriting targets, as opposed to more
independence of movements in control subjects.

D. CLASSIFICATION
Fig. 6 displays the AUC values generated from ROC curves
of GMM log-likelihood values. Eigenvalues derived from
F0 during free speech, and the correlation of F0 and formants
from The Caterpillar passage were able to perfectly discrim-
inate between the two groups (AUC= 1.00, p= 0.00). FAUs
from The Caterpillar passage both individually and correlated
with formants yielded an AUC of 1.00. There were also many
other tasks that resulted in an AUC greater than 0.77, which
corresponded to p-value less than 0.05. This cutoff is denoted
as a red dashed line in the plots in Fig. 6. Analysis across
some subsystems, such as F0 and intensity in the ’pa-ta-ka’

FIGURE 6. AUC of ROC curves derived from GMM log-likelihood
classification for combinations of speech tasks and features and the
handwriting tasks. The red dotted line depicts an AUC of 0.77,
representing a p-value < 0.05.

task (AUC= 0.88, p= 0.0006) and in the vowel task (AUC=
0.84, p = 0.006), improved performance as compared to
analyzing them separately. Furthermore, the results from the
handwriting data (AUC = 0.79, p = 0.03 per individual
segment, AUC = 1.00, p = 0.00 by averaging prediction
scores across segments) highlights that these features can be
used to assess fine motor coordination.

IV. DISCUSSION
This paper presents a pilot study assessing motor coordina-
tion in five children with ASD and five neurotypical controls
using surrogate measures derived from multiple modalities,
focusing on correlations across and within feature represen-
tations of speech subsystems and handwriting movements.
We found that eigenvalues derived from correlation structures
of time-series of the features, can be used to discriminate
between the ASD and control subject groups with an AUC
of 1.00 for certain speech tasks and features. Furthermore,
our results suggest a characterization of the motor skills of
the ASD subjects. We found that correlations of F0 and
intensity features derived from the ’pa-ta-ka’ speech sig-
nal showed higher complexity in the ASD subjects than
in the neurotypical controls, indicating decreased precision
of movement. On the other hand, ASD subjects showed
lower complexity of signals with correlations of features such
as formants, FAUs, and handwriting position and pressure
accelerations. That features from both speech and handwrit-
ing tasks were successful at discriminating between ASD
and control groups may reflect similar underlying mecha-
nisms linking fine motor skills to the development of speech
production [9], [10].

Overall, the differences in discriminative ability of features
across different tasks, as well as the differences in the patterns
witnessed for different features, suggests that the effect of
limited motor coordination on speech production is highly
nuanced and subsystem or task dependent. This agrees with
studies that indicate that coordination during speech is task
dependent, such as differences in coupling between upper-
and lower-lip movement in 2-year-olds during bilabial and
‘‘nonlabial’’ speech tasks [33]. The differences seen across
features and tasks may also be influenced by the emotional
content present in the task. For example, the discriminative
ability of FAUs in The Caterpillar passage may be a reflec-
tion of differences in processing and production of prosody
and emotion that are witnessed in children with ASD [34],
which would be important to separate out from measures of
motor skills. This may also help to explain discrepancies seen
between studies analyzing acoustic features in ASD [12],
such as awider F0 rangewitnessed in spontaneous production
[35] as opposed to a non-significant difference between the
F0 range for children with ASD and neurotypical controls
during a sentence imitation task [36].

Utilization of these correlation measures have typically
been restricted to formants or FAUs [13]–[15]. Analy-
sis of correlations revealed similar results across speech
subsystems and handwriting in support of our hypothesis that
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these measures may serve to detect motor coordination differ-
ences across speech subsystems and during fine motor tasks.
However, using correlations across speech subsystems did not
always improve discrimination between the groups, which
could be attributed to the difficulty of obtaining additional
discriminable information in a small number of subjects. Fur-
ther exploration is warranted with a larger group of subjects.
It would also be important to ensure agematching of ASD and
control subjects, as development of speech typically leads to
increased independence of articulators [37]. We also want to
ensure sex matching and inclusion of more females to ensure
that there is no sex bias in the measures being developed.

As we extend the use of these correlation features to
function as objective measures of progress related to speech
interventions, it will be important to quantify the relationship
between the eigenvalue patterns and changes in the underly-
ing signals. For example, we aim to quantify how changes
in the frequency spectrum of a signal are directly reflected
in changes in the eigenspectra for that signal. We also aim
to quantify the contribution of auto-correlation of a signal
vs. cross-correlation across signals to the eigenspectra rep-
resenting the time-delay embedding space of multiple sig-
nals. In addition, it will be important to understand how
these measures explicitly map to the articulators and mus-
cles forming the signals. For acoustic features, we plan to
apply acoustic to articulatory inversion techniques, using the
correlation measures on a more direct representation of the
articulators, which has shown promising results in studies of
major depressive disorder [38].

Our next phase of this study aims to create a multimodal
platform to assess motor control and coordination in children
with ASD as they undergo speech interventions. With this
expansion, we aim to validate our pilot results with a larger
number of subjects. We also plan to further quantify the rela-
tionship between finemotor skills and speech production, and
to analyze longitudinal changes in our correlation measures
for an individual to assess their potential for use in clinical
settings. In particular, we plan to incorporate eyetracking as
another measure of fine motor coordination, given observa-
tions of impaired responses to object tracking and saccades
in ASD [39]. We plan to work with clinicians to map any
insights about lower or higher complexity in speech and
handwriting features to existing interventions. This mapping
may help clinicians make decisions about treatment trajec-
tories based on the objective features. Furthermore, it could
inform any changes they make if they find that a specific
intervention is not helping, thereby providing a quantitative
way for clinicians to make intervention decisions.

APPENDIX A
UNIVARIATE STATISTICS FOR ALL TASKS
This appendix contains tables that describe the statistics of
the raw values of the acoustic features extracted for each of
the speech tasks.

Table 3 contains the univariate statistics for ASD and con-
trol subjects during a reading of The Caterpillar passage.

TABLE 3. Univariate summary statistics and p-values of two-sample
t-tests comparing values of features extracted from The Caterpillar
passage from ASD and control subjects.

TABLE 4. Univariate summary statistics and p-values of two-sample
t-tests comparing values of features extracted from the diadochokinetic
task from ASD and control subjects.

Table 4 contains the univariate statistics for ASD and con-
trol subjects during a repetition of the sequence ’pa-ta-ka’.

Table 5 contains the univariate statistics for ASD and con-
trol subjects across all sustained vowel tasks.

Table 6 contains the univariate statistics for ASD and con-
trol subjects during the free speech tasks.

APPENDIX B
FACIAL ACTION UNITS
Table 7 contains the list of the Facial Action Units (FAUs)
that were used in analysis.
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