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ABSTRACT Air travelers’ behavior is closely related to the operational performance of any airport terminal.
Much of previous research has focused on how airport operators balance the number of facilities in a
terminal and the Level of Service (LOS), while the behavior of passengers is less considered. Not much
is known, however, about passenger’s behavior during the entire departure process in an airport. In this
study, we analyze empirical departure passenger’s data to gain an insight into the regular patterns of their
activities in an airport. We find that there exist two distinguished temporal patterns during two discretionary
periods— post check-in and pre-security check, post security check and pre-boarding. The time that departure
passengers spend in these two periods is well approximated by a double power-law distribution and an
exponential truncated power-law distribution respectively. The two distinguished distributions suggest that
there may be different mechanisms underlying passengers’ behavior as indicated by previous studies on
human mobility. We introduce a stochastic model that considers traveling experience and time pressure to
capture the decision dynamics of human behavior. Simulation results suggest that traveling experience and
time pressure dominate passenger’s decisions before and after security respectively. Our findings contribute
to a better understanding of human dynamics, and also offer the potential for optimizing and simulation of
airport terminal operation.

INDEX TERMS Air transportation, human dynamics, airport passenger, data-driven approach.

I. INTRODUCTION
Air transport provided transportation service to more than
3.5 billion passenger segments in 2015, with an average
of 5.5% growth rate since 2010 [1]. Although efforts from
every aspect of air transport industry have been made to
improve the safety, capacity, and efficiency of the air trans-
portation system, ranging from the development of new types
of aircraft to the deployment of most advanced automa-
tion tools in air traffic management system, there are still
important challenges remaining. One of these great chal-
lenges is airport planning and management. The airport
is a social-technological complex system involving various
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parties, including airport authority, airlines, air traffic con-
trol, security, immigration, customs, fire department, and
passengers. The operation of the airport thus demands an
effective planning and dynamic coordination of multiple
processes [2].

With the aim of optimal utilization of system resources,
while considering each stakeholder’s interest, the concept
of Collaborative Decision-Making (CDM) has been success-
fully applied to operations in many airports. Apart from
those professionally trained operators involved in CDM, air
travelers play a significant role in airport operations, since
the airport is the interface where passengers are engaged
in transportation operation. Comparing to the uncertain
weather or technological systems, passenger’s behavior is
much more difficult to be predicted. Passengers’ long-time
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stay in airport terminal may increase the airport’s com-
mercial revenue, while the late arrival of passengers may
cause disruptions in the airline’s network operations. The
understanding of passenger’s behavior needs to be inherent
research.

The problems related to airport terminal operations have
received a considerable amount of attention from airport
operators and researchers around the world. Both analyti-
cal and simulation models have been developed to support
airport terminal decision-making [3]–[5]. In an early work,
Ashford et al. put forward the importance of understand-
ing of passenger’s behavior in design airport terminal [6].
The performance of processing passengers is critical to the
level of service of the airport. Yuan and McCabe validated
a computer model with service times and arrival rates at a
check-in counter, a security checkpoint, and a boarding gate
[7]. A review of the studies of airport passenger behaviors
including both departing passengers and arrival passengers is
presented in [3].

An enduring aim of research in airport passengers’
behavior is to support airports and airlines providing better
service to their customers by enhancing the level of service
while minimizing cost [8]. It was recognized that check-in
as perhaps the major point of congestion in the terminal.
Given the nature of passenger’s activity-processing in an air-
port, the most prevalent analytical approach is using queuing
theory or queuing network [3], [9], [10]. The purpose of
using queuing theory is to encapsulate the essential stochastic
nature of passenger’s behavior as well as of the operators. The
service processes at Check-in, security check, and boarding
can be modeled with a Poisson input or passenger arrivals
process M , and a negative exponential service time distri-
bution M , and a number of servers C (C = 1 for board-
ing). These models employ a first-come-first service queuing
discipline.

For instance, Stolletz proposed a stationary backlog
carryover approach to approximate the performance mea-
sures of check-in counters [11]. But his work is restricted to
models with homogeneous operators and homogeneous pas-
sengers.In [10], Wu et al. introduced a method that integrates
a Bayesian Network model based on stochastic queuing the-
ory to model passenger facilitation in airport. The central idea
of the model is that the Bayesian network is used to capture
the causal relationships between airport system factors, while
Poisson and exponential distributions are used to model pas-
senger movements from one subsystem to another. There are
also discussions in improving performance by optimizing the
utilization of check-in facilities. Hsu et al. investigated mini-
mizing total waiting time andmaximizing utilization facilities
by dynamic allocation of check-in facilities and dynamic
assignment of passengers [12]. Combining an evolutionary
approach and simulation, Mota et al. proposed an approach to
solve the optimization problems of check-in allocation [13].
Clearly, however, the queuing approach is fundamentally lim-
ited when it comes to accounting for time-dependent arrival
and heterogeneous nature of passengers.

The security check process and boarding process are
another two extensively investigated topics [14]–[16].
Li et al. demonstrated different network structures have dif-
ferent effects on the optimal queuing performance of security
checkpoint [17]. At the frontiers of research in boarding, pas-
senger boarding behavior is modeled as a one-dimensional,
stochastic, and time/space discrete transition process, then a
set of indicators for prediction of boarding time is proposed
in [18]. These works have some limitations. For example,
passenger’s arrival patterns are needed in order to improve
the accuracy of predictability in boarding time.

Alternative simulation approaches like agent-based
modeling and logit modeling have been proposed. The
development of the model that is capable of describing
airport passengers’ behavior has attracted increasing atten-
tion [19]–[23]. To predict air travelers’ activity patterns
in an airport, Liu et al. developed a nested logit model
based on passengers’ socio-demographical characteristics
and travel-specific information (e.g. number of check-in bag-
gage, flight time, etc.) [23]. Passengers’ data was collected
using a web-based survey, and a total of 359 passengers’
data was analyzed. Departing passengers’ activities were
divided into three phases: Before-check-in, Before-security,
and Before-boarding. Kierzkowski et al. developed a simu-
lation model by dynamic management of check-in counters
to obtain a uniformly distributed passenger arrival flow at
security checkpoint [24]. Crucially, however, these work over
the past couple of decades has focused almost exclusively on
the analysis of airport operation while ignoring passenger’s
ability of adaption. Less is known about how passengers
behave in the airport.

Advances in data science and information technology
have further sharpened our understanding of human behav-
ior. Research in human dynamics and human mobility
has long sought to understand the underlying mechanisms
that govern human traveling behavior [25]–[33]. Human
dynamics studies have emphasized on the temporal patterns
in various human activities, while human mobility have
focused on the patterns of human movements. Contempo-
rary research has further elaborated that urban mobility pat-
terns with a resolution of 10 min and hundreds of meters
can be generated from mobile phone data [34]. A question
may arise in airport passengers whether we can understand
and predict passengers’ ‘‘mobility patterns’’ in the airport
terminal.

This rapidly developing field in data science holds great
promise for advancing research on passenger behavior in the
airport terminal. Motivated by these overwhelming results in
both fields, here we investigate 1 month’s departure passen-
ger’s data to uncover the underlying patterns in passenger’s
temporal behavior. Our focus is specifically on domestic
flight passengers due to data limitations. The paper is orga-
nized as follows: In Section II we depict passenger depart-
ing processes from two different points of view. Section III
presents the information of the data investigated and a general
description of the statistical testing method. Section IV and
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FIGURE 1. The queuing process from two different perspectives. (a) Time-line of services provided to passenger by an airline/airport
for a departure flight. (b) Time-line for a passenger to catch his/her flight. Red vertical lines indicate the schedule time of departure (STD)
of the flight.

Section V show the patterns of passengers behavior and the
model we developed. Discussions are given in Section VI.

II. TWO DIFFERENT PERSPECTIVES ON DEPARTURE
PASSENGER FLOW
For many studies on airport terminal operations, there
are important efforts for optimizing airline’s and airport’s
resources including dynamic allocation check-in/security
check facilities and staff. One of the objectives is to minimiz-
ing the total waiting time of passengers in each process, which
is an important key performance indicator to measure the
level of service [35]. Unfortunately, less attention has been
given to understanding the departure process from a passen-
ger’s perspective. In Fig. 1, we show airline’s and passengers’
perspectives on the departure processes of a domestic flight.

A. AIRLINE/AIRPORT PERSPECTIVES
As illustrated in Fig. 1(a), three main types of service are
provided by airlines and airport to departure passengers are
check-in, security check, and boarding.

Check-in and boarding are typically provided by airlines.
Given a departure flight, the airline first has to determine
when and how many check-in counters shall be open and
closed. Each airline has its own policy. Most airlines check-in
counters open at least two hours before the scheduled time of
departure of the flight, and close 60 minutes prior to depar-
ture. While the passenger boarding process has the potential
to significantly influence the flight [18], [36], boarding gates
open and close may depend on several factors, including the
range of flight, the type of aircraft, etc.

The balance between the quality of service and the cost
at the security checkpoints is an important issue that the
airport should consider. A long time waiting and processing

at security can result in passengers increasing complaints,
which may cause loss of passenger flow departing from the
airport.

B. PASSENGER’s PERSPECTIVES
Apassenger has his/her own plan on how to take a flight. In an
individual passenger’s perspective, he/she first estimates total
time spent on traveling to the airport, queueing times at
check-in, and security check before reaching the boarding
gate as shown in the upper dot arrow line in Fig. 1. The time
when begin to depart for the airport, tH , depends on several
factors, such as passenger’s past experiences, airport, and
airline. This will generate different patterns of time of arrival
at the airport. If the passenger is familiar with the airport and
airline, he/she can make a good estimation of traveling time
to the airport. Otherwise, a passenger may ask a local when
and how to arrive at the airport. Queuing time and processing
time at check-in and security checkpoint are estimated as well
to be able to arrive at the boarding gate before boarding gate
closed (tB).

Most of the previous studies on departure passengers are
based on some assumptions. For example, the arrival patterns
of passengers are described by the Poisson process, and the
service times are following unit distributions or exponential
distributions.

C. SELF-ADAPTATION OF OPERATORS AND PASSENGERS
The direct interactions between passengers and operators
occur in three subsystems: check-in, security check, and
boarding, which are typically modeled as queuing systems.
As indicated in [37], queuing people should consider both
strategies of operators and customers since the results of
combining queues may counterproductive. Operators may
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adjust his/her service time based on the length of the queue.
Sometimes, the quicker he/she serves, the more customers
he/she gets. Passengers can choose a queue with minimum
length or a queue that moves fast. The self-adaptation ability
should be considered while building a simulation model.

III. DATA AND METHODS
A. DATA DESCRIPTION
Every time a passenger prints out his/her boarding pass,
screening the boarding pass at a security check desk or at a
boarding gate, a new record of the passenger will be auto-
matically created. To study passenger’s behavior, information
from three separate databases is retrieved to form a compre-
hensive dataset in which a single record represents a single
passenger. Each data record contains passenger’s name, gen-
der, ID, age, mobile phone number, flight number, sched-
uled departure time of the flight, check-in counter/machine,
security check counter, and boarding gate, as well as the
temporal information listed below. Passengers’ names are
replaced with surrogate keys for the purpose of retaining
anonymity. Empty and noise data are first cleaned. We then
drop passenger’s national identity number and mobile phone
number after using them to locate his/her city of residence.

The inter-activity time in our study is the time intervals
between check-in and security check, and between security
check and boarding. We calculate the following time intervals
for every passenger. We define the following variables for a
passenger i based the data and Fig. 1.
• t iC : time stamp when a passenger has completed
check-in. It is recorded when the boarding pass is
printed out;

• t iS : time stamp when a passenger has entered secu-
rity checking queue, which is recorded when his/her
boarding pass is scanned at security checkpoint;

• t iB: time stamp when a passenger has passed boarding
gate by scanning boarding pass.

• t iD: scheduled time of departure of the flight that
passenger i takes

• τ iCS : time interval between check-in and security
checking, i.e. τ iCS = t iS − t

i
C ;

• τ iSB: time interval between security check and boarding,
i.e. τ iSB = t iB − t

i
S ;

• τ iSD: time difference between scheduled time of
departure and security checking, i.e. τ iSD = t iD − t

i
S ;

• τ iCD: time difference between scheduled time of
departure and check-in, i.e. τ iCD = t iD − t

i
C .

The original datasets were obtained from different
automation systems which contain inaccurate records and
inconsistent data. It is therefore very important to clean the
data before any further analysis. Empty and noise data are
fist cleaned, then the following rules are applied for further
cleaning and preprocessing.

1) All the records with negative time intervals τ iCS , τ
i
SB,

τ iCD and T iSD, are dropped.
2) The minimum of time intervals τ iCS and τ iSB is set

to 2 minutes while considering the distances between

TABLE 1. Information of the two datasets.

check-in counters and security gate, and between
security gates and boarding gates.

3) The maximum of time intervals is set to 6 hours
according to the regulations of the airport and airlines.

In D1 dataset, about 8.8% noise data was dropped after
cleaning, leaving 989,548 records for investigation.

Two datasets, D1 and D2, were created from two Chinese
hub airports. The statistical summary of the two datasets is
given in Table 1. Due to data protection policy, we have only
τCS and τSB in D2.
Given the detailed information in D1, both airport’s

operations and passenger’s departure activities in the airport
can be recovered from data. Fig. 2 gives a general summary
of airport operations in the investigated 1month period. Fig. 3
depicts temporal behaviors of 113 passengers of a flight
which was scheduled to depart at 15:55:00 on 15 January,
2014.

B. STATISTICAL MODELING AND TESTING
To estimate the parameters of probability distribution
functions of empirical data, the Maximum Likelihood Esti-
mation (MLE) method is used. To test the fitness of statistical
functions, Kolmogorov-Smirnov tests (K-S test or KS test)
are then performed. Detailed information on how to use MLE
and K-S test in statistical modeling can be found in [38], [39].
All fitting results presented in the following sections have
passed K-S tests.

IV. EMPIRICAL EVIDENCES
In contrast to human mobility, departure passenger’s
activities in the airport terminal are under temporal and spatial
constraints. Due to the various operational regulations, each
flight has its deadlines for passengers to be at Check-in
counters, or boarding gates. Departure passengers have three
discretionary time periods: pre-check-in, post check-in and
pre-security, post-security and pre-boarding. The locations
that passengers can be at are also limited, which normally
include information desks, dining/drinking places, shops, and
restrooms. Research into departure passengers activities dur-
ing discretionary periods has mainly focused on the shopping
behavior, other activities such as dining and relaxing, have
not yet been explored [40], [41]. This paper focuses on the
temporal patterns of departing passengers, leaving the spatial
patterns into our further study.

A. POST CHECK-IN AND PRE-SECURITY
As shown in Fig. 3, there exist significant individual
differences in temporal behavior among passengers. On a
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FIGURE 2. Average flow of passengers and departure flights in very two hours. Error bars show the
standard deviation of the two-hour flow.

FIGURE 3. Departure activities of a flight of passengers. The horizontal axis denotes time (in 1s) and each vertical line corresponds to an
event (check-in, security check, or boarding). Each color of vertical line represent a passenger. Check-in counters, security check gate, and
boarding gate are shown with horizontal lines in grey. The upper plot presents boarding activities at a boarding gate, while the middle and
lower plots sharing the same x-axis show passengers’ security check and check-in activities respectively. There are 22 check-in counters,
23 security gates.

large scale, however, the bursty phenomena that emerged
in departing passengers are quite similar to many other

human activities. The distribution P(τCS ) of the inter-activity
time τCS , the interval between check-in and security check,
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TABLE 2. The example of departure passenger’s data.

FIGURE 4. Temporal patterns of departure passengers in airport. (a) and (b) plot the distributions of time intervals of an individual
passenger between check-in and security, and between security and boarding.

is double pwer-law rather than power-law (Fig. 4), which can
be well described as:

P(τ ) =

{
a1τ−α1 , 0 < τ < τmin

a2τ−α2 , otherwise.
(1)

The probability that a passenger goes to a security
checkpoint in τCS minutes is approximated by double
power-law. We can see that the scaling spans from 5 min-
utes to 5 hours. The majority of passengers (≈ 80%)
were at security checkpoints within 1 hour after completing
check-in. However, there are still few passengers who did
early check-in but spent more time before going to a security
check.

Across all datasets, we find exponents α1 = 1.654 ±
0.003, α2 = 2.179 ± 0.128 (a1 = 3.902 ± 0.017,
a2 = 45.658 ± 1.169). The temporal pattern observed here
is different from those patterns reported in1 human dynamics
studies which are typically characterized by a single power-
law. It does however similar to collaborative human dynamics
that have been recently uncovered in inter-update activities
on Wikipedia articles [42]. Their model consists of three
ingredients: (i) individual behavior of updating articles cap-
tured by Poissonian initiation; (ii) human interaction with
power-law waiting time; and (iii)population growth. Most
passengers after check-in go to a security checkpoint, without
any collaborative activity with other individual passengers.
Few passengers may spend time with families or friends
before entering the terminal airside. Rather, passenger’s indi-
vidual decision-making rules may play a dominant role in this
process.

B. POST SECURITY AND PRE-BOARDING
To explore the statistical properties of passenger’s activities
after security checking, we measured the time intervals
between a passenger’s security check time and boarding time,
τSB. Surprisingly, we found that the distribution of intervals
of all passengers can be well approximated by a truncated
power-law:

P(τ ) = a(τ +1t0)−βexp(−τ/K ), (2)

with a = 0.021, 1t0 = −5.141, K = 45.455, and exponent
β = −0.504.
Yet, we observe a markedly different pattern from the

one before security, but it follows the patterns in human
mobility [27]. Compared to pre-security discretionary period,
passengers now may feel released since boarding is the
only process remaining. The changes in passengers’ modes
can have a potential influence on their activity. The
clearly distinguished distributions in check-in-to-security and
security-to-boarding imply that there are differentmechanisms
underlying passenger’s mobility.

C. PRIOR TO SCHEDULED TIME OF DEPARTURE (STD)
A third question is how long before the scheduled time of
departure of the flight a passenger arrives at the airport. It is
not possible to give a comprehensive description of arrival
patterns of passengers in the context of the present data sets
since there is no information on when the passenger entering
the airport terminal. Instead of looking into the time of pas-
senger’s arrival, we investigate the time difference between
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FIGURE 5. Distribution of arrival time at (a) check-in and (b) security prior to STD.

TABLE 3. Fitting results to empirical data.

check-in and STD (τCD), and between security and STD
(τSD). As shown in Fig. 5, a third pattern emerges.

The distributions of τCD and τSD can be well approximated
by lognormal distribution:

f (τ ;µ, σ ) =
1

τ
√
2πσ 2

exp
[
−
(ln τ − µ)2

2σ 2

]
. (3)

The R2, known as the coefficient of determination, tells
how well-observed outcomes are replicated by the statistical
model. The R2 in both figures indicate that the empirical data
can be well captured by lognormal distributions

To minimize the effect of check-in processing time on
the distribution of τCD, we generated a new data set by
rounding check-in time stamp to its nearest 5 minutes. We do
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TABLE 4. Factors examined in the determination of passenger’s group.

FIGURE 6. Distributions of time intervals of (a) between Check-in and Security (τCS ) and (b) between Security and Boarding (τSB) in passengers with
different traveling experience.

not however observe any different patterns from the original
check-in data. In fact, lognormal distributions have been
widely reported in natural distributions and across the science
[43], [44]. Specifically, human response times also follow
such patterns [45]–[47]. It has been well explained by the
decision-making process under diffusion models [48]–[50].

We tested the robustness of these parameters for a different
day in data sets. These double power-law, truncated power
law, and lognormal are found to be general across all the days
in our data.

D. FACTORS THAT INFLUENCE PASSENGER’s BEHAVIOR
Here, certain aspects of passengers and flights are examined
to investigate their effects on passengers’ temporal behaviors.
We group the data according to different factors that are listed
in Table 4. For example, to examine whether passengers with
different ages behave differently, we divide the data sets into
four groups according to passenger’s age:
• Group 1: (0, 20]
• Group 2: (20,40]
• Group 3: (40, 60]
• Group 4: (60, 80]
We did not observe a significant difference among groups.

Similarly, gender, residence city, are also found to have in

insignificant effect on passenger’s temporal behavior. The
traveling experience and flight scheduled time of departure
may have an impact on passenger’s behavior in the departure
process.

A regular traveling passenger has a good estimation of
timing thus may have different temporal behavior com-
pared to others. In our data set, we do have a certain
amount of passengers who traveled more than 1 time in a
month. The temporal patterns of passengers with different
traveling experience are plotted in Fig. 6. One interesting
finding is that the time intervals between check-in and secu-
rity, τCS , of passengers who traveled more than 2 times
are captured with a single power-law rather than double
power-law. However, the patterns after security and before
check-in are in agreement with previous observation. The
difference between one-time flight passengers and experi-
enced passengers (traveling more than twice) suggests that
experienced passengers may adopt different strategies before
security.

To examine whether the scheduled time of departure (STD)
of the flight has an impact on passenger’s behavior, we divide
D1 into 12 subsets based on the STD of flights. We found
three distinct patterns of distributions on tauCS and tauSB
as shown in the Fig. 7. Compared to the afternoon and
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FIGURE 7. The effects of STD on passenger’s behavior (a) between Check-in and Security and (b) between Security and Boarding.

FIGURE 8. Simulation results.

TABLE 5. Model parameters for check-in and security check phase.

evening flights, passengers taking morning flights are more
likely to go to security or boarding directly as indicated by
the quick decay in the tail of the distributions.

V. MODEL AND SIMULATION RESULTS
To uncover the key mechanisms needed to reproduce
passenger’s temporal patterns, we propose the following
model to capture the stochastic nature of departure passen-
gers. We assume that (i) No passenger arrives at barding gate

TABLE 6. Model parameters for security check and boarding phase.

within 15 minutes prior to the STD; (ii) Traveling experience
measured by the number of trips mi and time pressure mea-
sured as the time difference between the STD of flight tfi and
current time ti are the two important factors that influence
passenger’s behavior. The Bernoulli process is then imple-
mented to simulate a passenger whether to perform the next
mandatory activity directly. More specifically, the probability
of a passenger i performing the next mandatory activity is
given as

pi = µ
1

ti − tfi
+ ν

1
mi
, (4)
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where µ and ν are the weights that also ensure pi ≤ 1. The
probability of the passenger i go to non-mandatory activity is
then given as 1− pi. The time of a passenger spends between
Check-in and Security, and between Security and Board-
ing are drawn from the following distributions, log-normal
distribution (directly go to security), power-law distribu-
tion, two-Gaussian distribution (directly go to boarding), and
log-normal distribution. These probability distributions are
identified from the empirical data.

The model takes flight departure times as input. We
optimize µ and ν to fit the simulated results to the empir-
ical data. In the simulation, we first tuned parameters for
check-in to security check phase. Theµ and ν are tested from
0.1: 0.9 to 0.9: 0.1, with 0.1 increment. The same process
was applied for the parameters tuning in security check to
boarding phase. Simulate results are shown in the table 5
and table 6. Based on the sum of squared errors between the
simulated data and the actual data, the optimized µ and ν for
τCS and τSB are presented 0.2:0.8 and 0.9:0.1 respectively.
The simulated data are plotted in Fig. 8. It can be seen that
during check-in to the security check phase, the main factor
that determines the passenger activity decision is passengers’
traveling experience, while during security check to boarding,
the main factor is the duration from finishing security check
to flight departure time.

VI. CONCLUSIONS AND DISCUSSIONS
Overall, our analyses on departing passenger’s data have
unrevealed three general temporal patterns underlying their
entire activities in the airport terminal. Importantly, we find
two different types of temporal patterns in passengers before
and after security, which indicate that they may adopt
different strategies. Factors ranging from passenger’s demo-
graphics and geographical residence to flight departure time
distributions are examined. It is found that traveling experi-
ence and time pressure have a potential impact on passenger’s
behavior before and after security check.

There is growing interest in ‘‘smart airport’’ both in design
and management. Our work here provides perhaps for the
first time the analysis of departure passenger’s activities in the
entire departing process. A practical implication of our study
is that it offers a unique perspective on departure flow from
passengers rather than from operators. Our study further con-
tributes to the suggestion that passengers could use different
strategies after security. This would enable airport managers
to implement new operational strategies to improve the per-
formance of the airport. Although our analyses show that the
statistical properties of passenger activities in airport terminal
may constitute a useful starting point for the application of big
data science in airport design and management, there are still
some limitations. Our focus here is given on domestic depar-
ture passengers, it is unknown whether arrival passengers
and international passengers have such general patterns. Note
that passenger’s behavior may be also affected by factors
such as airport layout and the main function of the airport
(for instance, the transfer hub airport, or the only international

airport in the region). Indeed, this requires further work to
validate the present study with empirical data collected at dif-
ferent airports. Useful extensions to the present work should
be carried out. Another promising research direction would
be to explore passenger’s temporal-spatial behavior in airport
terminal using passenger’s mobile phone’s location data.
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