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ABSTRACT Extended Field of View Ultrasound Sonography (EFOV-US) uses the existing ultrasound
images for image stitching, so as to display the shape and scope of organ occupation and the relationship
with surrounding tissues comprehensively. However, there are still some problems in Extended Field of
View Ultrasound Sonography, such as matching error and unstable quality of image stitching. In view of
these problems, we propose Dual-enhanced EFOV-US method that overcomes the limitation and produces
higher quality results. Firstly, the gray enhancement method is used to improve the image contrast and reduce
the noise interference. Then the super-resolution method based on the generative adversarial network is used
to improve the resolution of the ultrasonic image further and increase the number of feature point matching
between stitching images. The high quality ultrasound wide-range image is gotten by stitching and fusing the
double enhanced image. The experimental results show that the proposed method is effective and practical.

INDEX TERMS Extended field of view ultrasound sonography, gray enhancement, generative adversarial
network, super-resolution, image registration.

I. INTRODUCTION
Extended Field of View Ultrasound Sonography
(EFOV-US) [1], makes up for the limitation of scanning
field of conventional real-time ultrasound diagnostic equip-
ment [2]. In the examination of larger organs and lesion areas,
the scope and morphology of lesion can be visualized, and
the size of lesion areas can be obtained quantitatively [3],
[4]. At present, some wide-range imaging methods have been
implemented. Zheng et al. [5] select fewer blocks which are
regarded as the most valid blocks based on the importance
of image content in each block to reduce computational
complexity. Zheng et al. [6] estimate the moving speed of
the probe and ignore redundant image data by processed
a smaller number of frames according to a frame interval,
producing EFOV images in real-time. Yoo et al. [7] estimate

The associate editor coordinating the review of this manuscript and

approving it for publication was Kumaradevan Punithakumar .

motion and position of acquired images accurately with
respect to each other in an EFOV display format.

In the traditional ultrasonic extended field of view imaging
technology, it is an effective method to obtain wide range
images by image stitching using feature point matching [8].
The feature points in image stitching come from the pro-
cessed image obtained by certain processing of the original
image, and the matching of the original ultrasonic image is
realized by matching the feature points and their matching
relationship [9]. Based on feature points, processed image
matching relationship is calculated to match original ultra-
sound image. The more feature points, the more accurate the
image matching will be, and the better result will be [10].
However, the process of feature point extraction is affected
by noise and the lack of image clarity. The stitching is often
limited by the lack of clarity of the original image and
the lack of accuracy of image matching, resulting in poor
results [11], [12]. So we propose Dual-enhanced EFOV-US
method which can reduce noise interference and enhance the
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FIGURE 1. The process of dual-enhanced registration for field of view ultrasound images.

resolution of the image, thus improving the quality of the
ultrasound wide-range image.

First of all, due to the limitation of ultrasonic image acqui-
sition process [13], [14], there is a lot of noise interference
in the image and insufficient image contrast, resulting in a
large number of feature points being masked, which affects
the result of feature point extraction. Among the methods of
removing image noise, the denoising method based on gray
transformation is widely used in ultrasound image denoising
because of its good effect on ultrasound images [15], [16].
Gray enhancement updates the gray value of each pixel in the
original image according to a certain mathematical transfor-
mation formula, so as to display more details, improve image
contrast, highlight the characteristics of interest, and obtain
images with less interference. Therefore, the ultrasonic image
is processed by gray enhancement firstly.

Image resolution, as an important index of image eval-
uation [17], affects the extraction effect of feature points
directly. Low resolution image will lead to some feature
points which can not be displayed. In recent years, image
super-resolution methods based on deep learning have been
rapidly developed. Generative adversarial network (GAN)
[18], as a rising star in deep learning, has been widely used
in various scenarios. The main body of GAN is composed of
two convolutional neural networks: generator and discrimi-
nator. The generator outputs a high-resolution image given
a low resolution image, and the discriminator discriminate
real and fake during training. Through training generator and
discriminator against, the ability of generation and discrimi-
nation gradually improve until the training completed in this
way, and generate an ultrasound image that is difficult to
discriminate real and fake finally, so as to improve the image
resolution greatly and make the details of the reconstructed
image better. It is also widely used in medical images [19].
Therefore,we use the super-resolution method based on GAN
to enhance the image so as to increase the number of feature
points further.

As one of the most important processes, image registration
affects the quality of ultrasound panoramic image directly.
The registration method based on image features is widely
used in panoramic stitching [20]. In many image registration
algorithms, the registration method based on feature points
which uses the local features of the image for matching, has
the advantages of simple calculation, high robustness, stable
results, etc. And it is widely used in ultrasound images [21].

Therefore, we use the registration method based on feature
points for image registration.

As follows, the contribution of this work are:

1) The Dual-enhanced EFOV-US method which can
improve the number of feature points effectively.

2) The gray transform enhancement method to reduce the
noise interference in the ultrasonic image and to solve
the problem that the feature is not obvious due to the
weak contrast of the image.

3) The super-resolution of ultrasonic image realized by
using generative adversarial network to enhance the
image display effect and achieve more accurate calcu-
lation of feature points.

The rest of this paper is organized as follows. section II
introduce the enhancement algorithm based on gray trans-
formation, the image super-resolution algorithm based on
generative adversarial network and the process of image reg-
istration. The effect of the method proposed in this paper is
verified through several groups of experiments. in section III.
Finally section IV draws conclusions.

II. METHOD
The dual-enhanced registrationmethod for field of view ultra-
sound sonography includes three parts: Image feature point
enhancement preprocessing, image super-resolution recon-
struction, and image registration and fusion. The specific
process is shown in Figure 1.
First, we use an ultrasound image enhancement method

based on grayscale transformation to denoise the ultra-
sound image sequence. Then we use the algorithm based
on GAN to process the image with super resolution. Next
we select the scale-invariant feature transform (SIFT) [22],
[23] method to perform feature point extraction and match-
ing operations, then we perform mapping model evalua-
tion to find the spatial transformation relationship between
reference images. Finally, we perform geometric trans-
formation through the spatial transformation relationship
and the super-resolution processed image to form a wide-
range image by image fusion and stitching. Section II-A
introduces the method of feature point enhancement based on
gray value transform. Section II-B introduces image super-
resolution enhancement methods based on generative adver-
sarial networks. Section II-C describes the specific method of
matching and fusion of feature points between images.
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FIGURE 2. Feature point enhancement algorithm based on gray-scale transform.

A. ENHANCEMENT OF GRAY SCALE FEATURE POINTS
Due to its principle characteristics, the ultrasound image
content is not obvious and has a lot of speckle-noise, which
leads to the formation of interference echo signals. To reduce
noise interference, Ayres et al. [24] makes improvements
based on location information to obtain choroidal tumors
images. Huang et al. [25] proposed a 2.5D ultrasound wide-
field imaging technology, successfully applying EFOV-US
technology to 2.5D ultrasound equipment.
In this paper, we propose the enhancement algorithm of

ultrasonic image feature points based on gray-scale trans-
formation to effectively solve the above problems from the
perspective of retaining effective image information. The
main purpose of this method is to delete useless informa-
tion for feature extraction and improve the effectiveness of
subsequent feature extraction and matching. The specific
process is as follows: First, we acquire ultrasound images and
then convert acquired image into grayscale images, using the
grayscale inversion transform. Inverting the image in the gray
value range [0,L − 1] requires using L − 1 minus the image
gray value and the formula is as follows.

s = L − 1− r (1)

where L is the gray range of the image, r is the gray value of
the image, and s is the gray level after the inversion. Then
we turn the image to negative for subsequent operations.
Next we build a grayscale histogram for the image, fit a two-
dimensional quadratic curve based on the specific grayscale
histogram distribution, find the minimum point where the
abscissa x is closest to 255, take its abscissa xt , and set it as
threshold. Then we map pixels with gray range in [0, xt] to
[0,255] to remove unwanted noise for feature extraction. Next
we perform the grayscale inversion transformation on the
negative film, and restore the denoised negative film image to
a normal image. Then we normalize the grayscale histogram
to enhance the contrast of the image. Finally, the processed
image is output. The detailed process is shown in Figure 2.

B. IMAGE SUPER-RESOLUTION BASED ON GENERATIVE
ADVERSARIAL NETWORK
Image super-resolution (SR) aims to restore a high-resolution
image (HR) from a low-resolution image (LR) or image
sequence [26]. Compared with traditional super-resolution
method based on interpolation or reconstruction, the method
based on deep learning has excellent computing power

and good processing effect [27]. Since Dong et al. [28]
propose the pioneering work of SRCNN, methods based
on deep convolutional neural network (CNN) have been
developed rapidly and gradually become mainstream.
Choi and Kim [29] propose a new network selection unit
called SelNet, selecting values from the feature map as chan-
nels between convolutional layers to improve performance
and reduce computational consumption. Zhang et al. [30]
propose a model based on simulated real image degradation
(SRMD), which uses stitched low-resolution images and their
degraded images for training to simulate real blurred images
and obtains good results. The Laplacian pyramid super-
resolution network (Lap-SRN) constructed by Lai et al. [31],
use a pyramid structure to convert the residual image of
each sub-network to the input image to generate the final
image. Generative adversarial network (GAN) as a rising
star in deep learning algorithms, operating through the con-
frontation of generators and discriminators, greatly improves
training speed and generation details, and thus is widely used
in images [32], [33]. Although these GAN based methods
work well on natural images, they are limited in medical
images. GAN based models pre-trained on natural images
may synthesise unrealistic patterns in medical images which
could affect the clinical interpretation and diagnosis. There-
fore, we make improvements in this part, which is a big
difference between Wang et al. [34] and our method. We use
grayscale ultrasound images to train a pre-trained model.
A pre-trained model close to the reality can improve super-
resolution results. The image super-resolution method we
propose in this paper mainly includes dataset enhancement,
network construction and network training. First, we organize
the collected ultrasound images, uniform image size and use
downsampling degradation methods to build a near-realistic
low-resolution image (LR) dataset. The vanilla GAN archi-
tecture may suffer from unstable training and collapse mode
that can also affect results. Wasserstein GAN (WGAN) [35],
[36] are proposed to replace the noncontinuous divergence
with the Wasserstein-distance to overcome the problems of
vanilla gan in convergence and training instability, which is
another improvement over Wang et al. [34] method. In this
work, G aims to generate SR images as realistic as possible
to fool D and D aims to distinguish the SR images from real
HR images which can be described as:

Ĝ, D̂ = min
G

max
D∈D

EIHR [D (IHR)]− EILR [D (G (ILR))] (2)
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where ILR and IHR are full size LR and HR images, and E is
the expectation of the D′s positive outputs (i.e. input is HR
ground truth). We build a GAN-based convolutional neural
network, sum the adversarial loss, pixel loss (MSE loss) and
perceptual loss [37], [38] for calculation of the loss function.
The main structure is shown in Figure 3.

FIGURE 3. Ultrasound image super-resolution enhancement based
on GAN.

The generator adversarial network (GAN) includes a gen-
erator G, a discriminator D and some assisted network. Pre-
trained HR images are randomly selected from HR images
while pre-trained LR images are selected fromMulti spectral
image database and degenerated. As a part of improvement
[32], [39], we train D in advance to ensure the discriminat-
ing ability and training speed to prevent the generation gap
caused by low discrimination ability. During the training,
we put LR images training set into G for training, and put pre-
trained LR images into SRResNet to avoid the mode collapse
caused by the difference between the abilities of generators
G and D in the early stage of training. We get the SR images
of the two network respectively. We mix generated images
with some HR images from training and put them into D
for discrimination, and the judgment result is returned to G.
Under continuous adversarial training in this way, SR images
generated by the generator become more similar to the HR
images, and the discriminator’s ability to distinguish whether
the image is SR or HR is stronger. The training is completed
until the discriminator cannot judge the authenticity.

The specific neural network structure is shown in Fig-
ure 4. We employ the basic architecture of SRResNet [32],
where most computation is done in the LR feature space.
Specifically, we use two convolutional layers with small
3 ∗ 3 kernels and 64 feature maps followed. We use para-
metricReLU [40] as the activation function, which intro-
duces a learnable parameter to help adaptively learn some
negative coefficient. Different from the generator network,
the BN layers in residual block in SRResnet are removed to
increase performance and reduce computational complexity.
The SRResnet helps generator quickly keep up with the dis-
criminator and prevent mode collapse and excessive training
gap. The discriminator network contains eight convolutional
layers with an increasing number of 3 ∗ 3 filter kernels, from

64 to 512 kernels and finally returns a probability for sample
classification.

FIGURE 4. Generator, SRResnet, discriminator network.

C. IMAGE REGISTRATION
Image registration is a method of mapping one image to
another by looking for a spatial transformation relationship,
corresponding the points in the same position under the same
spatial coordinate system in two images to achieve infor-
mation fusion. Image registration is the core part of EFOV-
US technology and the processing result directly affects the
quality of the final output wide-range ultrasound image [41].
In this paper, we use feature point-based method, Scale-
invariant feature transform (SIFT), for feature point extrac-
tion. The matching process includes three important steps:
feature extraction, feature description, and feature matching
and fusion. As shown in Table 1, according to the verifica-
tion of the effects of Li [41], Routray et al. [42], and Juan
and Gwon [43] on multiple image matching methods, SIFT
has the largest number of successful matches both in scale-
invariant and rotation-invariant. The stable processing of the
gray-scale image and the accurate extraction of feature points
by SIFT algorithm are suitable for our image registration.

1) FEATURE POINT EXTRACTION
Feature point extraction using SIFT is specifically divided
into three steps: constructing scale space, spatial extreme
point detection, and key point positioning and direction
assignment.

a: CONSTRUCTING SCALE SPACE
We convolve the original image with a two-dimensional
Gaussian function at different scales can generate multiscale
Gaussian space, and the mathematical formula is expressed
as follows.

L(x, y, σ ) = G(x, y, σ ) ∗ I (x, y) (3)
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TABLE 1. Correct matches of feature detection algorithms.

FIGURE 5. An example of Gauss pyramid and Gauss difference pyramid.

where L(x, y, σ ) represents multiscale Gaussian space,
G(x, y, σ ) represents Gaussian kernel function, I (x, y) repre-
sents image matrix, ∗ represents convolution operator, and σ
represents scale space factor.

First, we take the input image for downsampling and
Gaussian blur at different scales and establish multiple sets
of multi-scale space sequences to form the image Gaus-
sian pyramid. Then we subtract adjacent images in each set
of scale-space sequences, forming a difference of Gaussian
pyramid(DOG) [44].

The mathematical expression is as follows.

D(x, y, σ ) = (G(x, y, kσ )− G(x, y, σ )) ∗ I (x, y) (4)

Which leads to:

D(x, y, σ ) = L(x, y, kσ )− L(x, y, σ ) (5)

b: KEY POINT EXTRACTION
key point is the local extreme point of DOG. To form a local
three-dimensional space, we compare the pixel at the core
position with 8 neighboring points of same surrounding scale
and 9∗2 different scale points in upper and lower neighboring
points. Then we set the maximum or minimum point in each
local stereo space as key point, fit DOG function in scale
space and remove key points with poor stability.

D(X ) = D+
∂DT

∂X
X +

1
2
X τ
∂2D
∂X2X (6)

X = (x, y, σ )T and the offset of extreme points is shown as
follows.

X̂ = −
∂2D
∂X2

∂D
∂X

(7)

X̂ = (x, y, σ )T represents the offset from the interpolation
center. When the offset is greater than 0.5, which means that
the interpolation center has shifted, we need to change the
current keypoint position and find the principal curvature
through Hessian matrix to eliminate unstable edge response
points.

c: KEY POINTS DIRECTION ASSIGNMENT
In Gaussian pyramid image, we calculate the gradient modu-
lus and direction of all pixels in a circular area with a radius of
3σ around each key point, use which as a reference to assign
a reference direction for each key point. The magnitude and
direction of the gradient are calculated respectively, using
formula:

m(x, y)

=

√
(L(x+1, y)−L(x−1, y))2+(L(x, y+1)−L(x, y−1))2

(8)

θ (x, y)

= tanh−1
L(x, y+ 1)− L(x, y− 1)
L(x + 1, y)− L(x − 1, y)

(9)

θ (x, y) represents the gradient direction angle of the feature
point (x, y), m(x, y) represents the gradient modulus of the
feature point (x, y), and L(x, y) is the pixel value of the feature
point (x, y) in the Gaussian pyramid. We set feature point as
the center, and keep the main direction at zero degrees. Then
we use the gradient histogram to count the above information.
We divide the gradient direction into 36 columns, and each
column is divided by a span of 10 angles as abscissa, gradi-
ent magnitude as ordinate. The largest gradient amplitude is
taken as the main direction.

2) FEATURE POINT DESCRIPTION
To perform feature matching, a feature vector needs to be
defined as the feature descriptor of each feature point as a
unique ‘‘label’’ for each feature point. We choose Gradient
location and orientation histogram (GLOH) [45], [46] as
feature descriptor, as shown in the Figure 6. The experi-
mental results of Mikolajczyk and Schmid [47] prove the
advantages of choosing GLOH: GLOH has a higher suc-
cessful matching rate, and compared with PCA-SIFT and
standard SIFT descriptors, GLOH has better results on edge
features. GLOH also performs better with smooth images
and blurred images, and has less dependence on sample
ultrasound images. GLOH descriptors use a logarithmic polar
hierarchy to replace the 4-quadrant traditional descriptor pro-
posed by Lowe [48]. Take a radius of 6, 11, 15 in space, and
divide it into 8 intervals in angle (except for the middle area),
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FIGURE 6. GLOH features descriptor.

and we can get 136 (17 ∗ 8) dimensional vector as the final
feature vector.

3) FEATURE POINT MATCHING
We calculate the Euclidean distance between the feature vec-
tors corresponding to each pair of feature points, using which
to determine the correspondence. The closer the Euclidean
distance between two point feature vectors is, the greater the
chance of successful matching is. The formula for calculating
the Euclidean distance in n-dimensional space is as follows.

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (10)

The specific method of feature point matching is as follows.
First, we select the feature point B in the image to bematched.
We find the feature point with the smallest Euclidean distance
from B in the reference image and record it as B′. Then we
find the nearest feature point C and the second nearest point
D to point B′ in the reference image. Next we calculate the
ratio of the distance between points B and C to the distance
between points C and D. The specific formula is as follows.

d(B,C)
d(B,D)

< Threshold (11)

When the ratio is less than the given threshold (According
to the experimental conclusion of Lowe [48] and the com-
parison of different thresholds we make in Table 2), where
Threshold = 0.9, the match succeeds, otherwise it fails.
An example of the feature point matching effect is shown
in Figure 7.

TABLE 2. Threshold value selection.

4) MAPPING MODEL EVALUATION AND MATCHING
After feature matching, we select random sample consensus
(RANSAC) [49] to evaluate themappingmodel, and calculate
the spatial geometric transformation relationship between the
image to be matched and the reference image. We get the
transformation relationship between adjacent frames in two
steps. First, we use a recursive formula to find the transforma-
tion relationship between each frame image and the reference

FIGURE 7. Feature point matching effect.

image. We assume that the first frame of the image sequence
is the reference image, and Ti is the spatial transformation
matrix between the i(i > 1) frame image and the i+ 1 frame
image. According to the following formula,

T = T1 × T2 · · · Ti−1 × Ti (12)

We calculate the spatial transformation matrix between the
i+ 1 frame image and the reference image. According to the
transformation relationship, we map all pixel points (x, y) in
the i+1 frame image to the corresponding (x ′, y′) position in
the reference image. Then we use the weight average method
for fusion and stitching on all images to form an ultrasound
image with a wider range.

III. EXPERIMENTS
A. DATA AND TRAINING DETAILS
The training images of our GAN-based super-resolution
network come from Multi spectral image database, which
contains 420 grayscale images. The pre-trained HR images
are randomly selected from database while the pre-trained
LR images are randomly selected and gotten bicubic inter-
polation degradation. The ultrasound image datasets used
in experiments for test are obtained clinically from sig-
nal processing laboratory. The database contains 84 images
of common carotid artery (CCA) of ten volunteers (mean
age 27.5 ± 3.5 years) with different weight (mean weight
76.5 ± 9.7 kg). All images are taken by the specialists with
five-year experience with scanning. Taking the average num-
ber of the feature points of the volunteers as result, the train-
ing loss curve of the generator is shown in the figure below.
All the implementation uses Python 3.5 with TensorFlow and
TensorLayer, which are now widely used in solving various
medical image analysis problems. All the experiments are
performed with one NVIDIA TITAN X Pascal GPU. All
neural networks are trained and tested on theGPU.All experi-
ments use the same initial learning rate of 10−4, which decays
to 10−5 at the midpoint of the training. The model is trained
for 200 epochs to establish a fair comparison. The specific
generator loss function curve is shown in figure 8.

B. EXPERIMENT DESIGN AND RESULTS
In this part, we compare dual-enhanced registration method
for the field of view ultrasound sonography proposed in
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TABLE 3. Vertical conoral experiment evaluation index.

FIGURE 8. Training loss of generator.

this paper with some other EFOV-US based algorithms.We
divide the evaluation methods of EFOV into two categories.
(1) Number measurement using quantitative differences to
measure algorithm performance. For example, Yerli and
Eksioglu [50] determine the performance of EFOV by detect-
ing the number of lesions. (2) Distance measurement use
the offset in the distance to measure the performance of the
algorithm, such as [51], [52], Silbernagel et al. [53] who
analyze with the intraclass correlation coefficient (ICC) and
compare an injured tendon with the same subject’s healthy
tendon. Our method is the same as the above method in
comparison with the gold standard. Compared to the previous
methods, the feature point evaluation criteria we use are more
intuitive and quantified, avoiding distance calculations and
complex markings to reduce calculation complexity, reduce
the calculation time to 3 seconds and thus achieve better
results. We also use several evaluation indicators to evaluate
and compare our method with several other classic EFOV
methods mentioned above to judge the pros and cons.

1) FEATURE POINT ENHANCEMENT ALGORITHM
EXPERIMENT
In this set of experiments, we first perform feature point
extraction and matching operations on reference images
and images to be matched. Then we evaluate the effect of
denoised methods on image feature point extraction and fea-
ture matching by comparing the number of feature points and
the number of successfully matched feature points.

As shown in Table 3, after the denoising enhancement
processing the number of feature points of reference image
increases from the original 309 to 1203, which is higher than
median filter of 586 and Gaussian filter of 853, an increase
of 289%. The number of feature points of the image to be

matched increases from the original 329 to 1232, an increase
of 274%. The above results show that our method performs
better than several other traditional filtering methods in the
number of feature points extracted. Median filtering is bene-
ficial to preserve the sharpness of the edges but it will wash
away the texture in the uniform medium area. Gaussian filter
is effective for noises that follow a normal distribution, but it
does not work well for other noises. In particular, compared
with other methods, the number of successfully matched
feature points by our method increases more, reaching 367.
The number of feature points that are successfully matched
will effectively improve the accuracy of the mapping model
evaluation and the quality of image matching.

2) ULTRASOUND IMAGE SUPER-RESOLUTION EXPERIMENT
In this part, we compare images processed with a super-
resolution algorithm with original images, in the number of
feature points extracted and the effect of successful matching
to evaluate the superiority of the algorithm [54]. The ref-
erence group performs feature point extraction and feature
matching on the reference image and the image to be matched
without super-resolution processing. The control group uses
super-resolution processing based on Bicubic interpolation
(BIC) and GAN (ours), then we perform feature point extrac-
tion and feature matching respectively. Finally we compare
and analyze the number of successfully matched feature
points number and the matching effects.

From the results in Figure 9 and Table 4, after denoising
and super-resolution processing based on bicubic interpola-
tion, the number of feature points in the reference image has
increased directly from the original 1203 to 3582, an increase
of 197.8%,while themethod based on bicubic interpolation is
1784. Besides, the number of feature points of the image to be
matched increases from the original 1232 to 3373, an increase
of 173.8%. Bicubic interpolation method increases 48.4%
to 1829. And the number of feature points of the reference
image and the image to be successfully matched increases
from the original 367 to 496, an increase of nearly 35%. The
specific matching results are shown in Figure 10. As men-
tioned earlier, feature points which successfully matched
will directly affect the accuracy and quality of subsequent
image matching. This experiment can show that the super-
resolution enhancement method of ultrasonic image based
on the generative adversarial network proposed in this paper
is helpful to increase the number of feature points and the
number of feature points that are successfully matched. With
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TABLE 4. Super resolution experimental evaluation index.

TABLE 5. Image matching quality evaluation.

FIGURE 9. The contrast results of ultrasonic image super-resolution
experiment, (a)(b) is original, (c)(d) is bicubic interpolation and
(e)(f) is GAN-based method(ours).

the same feature point extraction method such as SIFT, our
method captures more effective successful matching fea-
ture points as extra feature points. Compared with the BIC
method, our method has slight improvement in the number of
successfully matched feature points. However, the effective
matching feature points extracted by different methods are
not inclusive. Our method has a small increase in quantity,
but the extra successful matching feature points play a key
role in the quality of wide-range ultrasound images, which is
clearly reflected in the following quality evaluation indicators
experiment.

FIGURE 10. Matching results of image feature points processed by super
resolution.

3) ULTRASOUND WIDE-RANGE IMAGE MATCHING
EXPERIMENT
We use the following evaluation indicators for comparison.

a: INFORMATION ENTROPY
The stable value means that the fused image has no extra
information. The specific definition is as follows, where p(i)
represents the probability value of gray value i

IE = −
L∑
i=0

p(i) log2 p(i) (13)

Our method is as stable as the images generated by other
methods.

b: AVERAGE GRADIENT
Average Gradient can objectively reflect the clarity of the
image. If the value of average gradient is larger, the resulting
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AG =

∑M−1
i=1

∑N−1
j=1

[(
(f (i, j)− f (i+ 1, j))2 + (f (i, j)− f (i, j+ 1))2

)
/2
] 1
2

(M − 1)× (N − 1)
(14)

fusion image will be clearer and the visual effect will be
better. The specific definition is as follows. M and N rep-
resent the length and width of the image respectively, f (i, j)
represents the pixel value at position (i, j) in (14), as shown
at the top of this page.

Our method has a nearly double improvement in the aver-
age gradient compared with other methods, which means
better visual effect and clearer image.

c: CROSS MUTUAL INFORMATION
Cross mutual information represents the interactive informa-
tion of the fused image F and original images A and B. The
larger the value of cross mutual information is, the more
source image information the fused image contains. Our
method is slightly improved compared to other methods.

d: STANDARD DEVIATION
The standard deviation index reflects the degree of dispersion
between the pixel value and the average of the image. The
larger the standard deviation is, the better the image quality
and the richer details contain in the image. The specific
definition is as follows.

SD =

√√√√√ M∑
i=1

N∑
j=1

(
f (i, j)2 − f̄

)2
/(M × N ) (15)

M and N represent the length and width of the image respec-
tively, f (i, j) represents the pixel value at position (i, j) in
image, and f̄ is specifically defined as follows.

f̄ =

∑M
i=1

∑N
j=1 f (i, j)

(M × N )
(16)

Our method performs nearly doubled in average standard
deviation compared with other methods, which means better
wide-range image quality and richer details.

According to the result in Table5, we can find that our
DRFOV-US method based on the dual enhancement has
first-class image quality and stability. Our method is also
richer in image details and retains more information with
higher matching accuracy than other models. Particularly,
the results of the GAN-enhanced and BIC-enhanced ultra-
sound images are shown in Figure 11, in the case where other
parts are consistent, our GAN-based method has a significant
improvement in detail and clarity compared to method based
on BIC. Doctors can compare wide-range images obtained
by these algorithms. Our improved DRFOV-US algorithm
obtains better result, clearer texture, less noise interference
than several other EFOV-US methods. The higher quality
wide-angle images are more helpful for doctors’ observation
and diagnosis.

FIGURE 11. Final ultrasound wide-range imaging result.

IV. CONCLUSION
In this paper, we present a dual-enhanced registration method
for the field of view ultrasound sonography. We first use
feature point enhancement algorithm based on gray-scale
transform to reduce noise in image preprocessing, and then
conduct ultrasound image super-resolution enhancement
based on generative adversarial network. We combine these
two innovations to further improve the effect of feature point
extraction, the image matching, the fushion accuracy, and
therefore get high quality wide-range ultrasound images.
Experiments show that the method proposed in this paper
has achieved good results, greatly improved the quality of the
final wide-range image, and can effectively help doctors.
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