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ABSTRACT This paper presents a new adaptive small chattering slidingmode control (SCSMC) scheme that
uses reinforcement learning (RL) and time-delay estimation (TDE) for the motion control of free-floating
space robotic manipulators (FSRM) subject to model uncertainty and external disturbance. The proposed
sliding mode control scheme can achieve small chattering effects and improve the tracking accuracy by using
a new adaptive law for the switching gain and a RL-based robust term to handle the control inputs. In SCSMC,
the complicated multiple-input-multiple-output (MIMO) uncertain system of FSRM is transformed into
multiple single-input-single-output (SISO) known subsystems with bounded estimation errors by the TDE
technique and state feedback compensation. Subsequently, once the sliding variable is inside the designed
manifold, the derivative of the switching gain for each subsystem becomes a negative hyperbolic tangent
function of the associated sliding variable, which offers the ability to reduce chattering by decreasing the
switching gain. Moreover, the RL based robust term for each subsystem is designed to avoid the loss of
tracking accuracy caused by the aforementioned switching gain drop. The tracking errors are proven to be
uniformly-ultimately-bounded (UUB) with an arbitrarily small bound by using the Lyapunov theory. The
effectiveness of the proposed control scheme is verified by numerical simulations.

INDEX TERMS Reinforcement learning, sliding mode control, space robotic manipulator, time delay
estimation.

I. INTRODUCTION
Free-floating space robotic manipulators (FSRM) can assist
or even substitute astronauts to perform various extravehic-
ular activities (EVAs) such as capturing space debris and
maintenance of space structures [1]. To satisfyingly perform
such space missions, FSRMs should be controlled to
accurately track the desired trajectories. However, FSRMs
involve complicated dynamics because the satellite posture
(orientation and position) can be easily disturbed by the
motion of mounted robotic manipulators, which brings up
the challenges of designing the required controller [2], [3].
Moreover, high tracking accuracy (<10−3 radians) under
the presence of system uncertainties and unknown exter-
nal disturbances is also critically important in FSRMs to
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successfully guarantee the docking of space objects or estab-
lish communication links. Hence, precise motion control of
FSRMs remains a hotspot of research.

Various controllers designed for ground manipulators can
be directly applied to FSRMs if the system parameters are
exactly known [4]. Moreover, the known parameters allow
the use of kinematic control methods such as the generalized-
Jacobian-matrix based motion rate control scheme [5], [6].
Nevertheless, these parameters are difficult to measure or
are even unavailable in practice, which may be because
of dynamic mass reductions from fuel consumption [7],
unknown payload size during target capturing [8], and the
challenges in precisely modeling the physical nonlineari-
ties [9]. Furthermore, the dynamic model of FSRMs can-
not be linearly parameterized because of the free-floating
base [10], [11], which means the adaptive controllers for
linearly parameterized models such as [12] are inapplicable.
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Hence, many research articles regarding motion control of
FSRMs focus on handling nonlinear parameter uncertainties
such as [13]–[15].

Many algorithms have been proposed to cope with exter-
nal disturbances and unmodelled nonlinearities, including
neural networks (NN) [16]–[23], fuzzy logic approximators
(FLA) [7], [24]–[27] and adaptive disturbance observers
(ADO) [28]–[32]. Such algorithms have a stronger capability
for motion control of FSRMs over control schemes [13]–[15]
that can only handle parameter uncertainties. More precisely,
Jia and Shan [16] proposed a finite-time terminal sliding
mode controller for space manipulators in which a radius
basis function (RBF) neural network is used to compensate
model uncertainties. Wang et al. [25] proposed the FLA algo-
rithm for uncertain surface vehicles, which self-constructs
highly interpretable T-S fuzzy rules by using a decoupled
distance measure to manage (add or delete) the fuzzy sets in
each dimension of the fuzzy inputs. Chu et al. [7] designed
a backstepping-formed ADO based controller for FSRMs
driven by DC motors, which applied the FLA to compensate
model uncertainties and external disturbances.

The time delay estimation (TDE) technique [33]–[35] can
estimate system uncertainties and unknown disturbances by
using the system states and control inputs in the last sampling
instant. Compared to neural networks, FLAs, and adaptive
observers, TDE can be easily applied to the control of FSRMs
because it does not require any tedious preparation, such
as designing the structure of neural networks, setting the
fuzzy sets of FLAs or initializing the states of disturbance
observers. Although TDE invariably causes estimation errors
due to the delay of one sampling step, these errors as applied
on Euler-Lagrange systems (e.g. ground manipulators and
FSRMs) can be bounded by using a small sampling time and
accurate measurements on the inertia matrix [36].

Sliding mode control (SMC), which has many variants
including the fast terminal sliding mode (FTSM) [37]–[39],
the super-twisting sliding mode [40], [41] and integral slid-
ing mode (ISM) [42], is robust to system uncertainties and
unknown disturbances. Therefore, SMC can deal with the
bounded estimation errors of various estimation techniques
including TDE, neural networks, and the FLA. To achieve
the asymptotic stability under the presence of bounded
estimation errors, many SMC schemes require either a mono-
tonically increasing switching gain [43]–[45] or a conserva-
tive constant switching gain that is greater than the known
upper bound of estimation errors [46]–[48]. However, over-
estimating the switching gains will invariably lead to chat-
tering effects, which will decrease the tracking accuracy
and require the use of large actuator inputs (thus wasting
fuel). Hence, many efforts have been made to handle the
issues caused by over-estimated switching gains [49]–[54].
For example, Roy and Kar [49] designed an adaptive time-
delayed SMC scheme to alleviate the over- and under-
estimation problems of SMC. The TDE based SMC schemes
for industrial ground manipulators, which mitigate over-
estimated switching gains by considering a small vicinity

of the sliding manifold, can be found in [52] and [53] and
had significantly small chattering effects. Notably, the SMC
schemes in [49]–[54] can reduce the chattering effects by
decreasing the switching gains when the sliding variables
are inside a designed vicinity, which obtains the uniformly
ultimately bounded (UUB) tracking errors rather than asymp-
totical stable tracking errors. Although the chattering effects
are significantly mitigated, such controllers have the risks of
compromising the tracking accuracy due to the excessively
small switching gains. More precisely, the sliding variables
will leave the sliding manifold if the switching gains are
too small to handle TDE errors, so tracking accuracy is,
once again, badly affected. Thus, to achieve the chattering
reduction while retaining a good tracking accuracy, the SMC
scheme needs to maintain the advantage of existing con-
trollers [43]–[48] (reduction of chattering effects by decreas-
ing switching gain without loss of stability) while preventing
the sliding variables from leaving the manifold when the
switching gains are small.

Reinforcement learning (RL) is an artificial intelligence
technique that gradually explores the optimal policy by inter-
acting with the environment [55]. This technique imitates the
learning process of human brains and has beenwidely applied
in the field of nonlinear control [56]–[60]. The nature of RL
is to determine the optimal policy (actions) that either max-
imizes the cumulative reward or minimizes the cost during
the entire learning process. The process of RL starts with
applying an action for the initial state according to the initial
policy, and the current state is transformed into the next state
by the chosen action. Subsequently, the instant reward (or
cost) of the action from the current state will be given in the
next state to evaluate the new appropriate actions and corre-
sponding policy. This process is repeated until the optimal
state is obtained (determined by some tolerance criteria).

Inspired by the RL algorithm’s high performance, this
paper proposes to use the RL and TDE techniques to resolve
the technical limitations of the SMC. Thus, a new adaptive
small chattering sliding mode control (SCSMC) scheme is
formed to achieve motion control of free-floating space
robotic manipulators with model uncertainties and external
disturbances. In the proposed SCSMC, the complex uncertain
multiple-input-multiple-output (MIMO) system of FSRMs is
transformed into multiple single-input-single-output (SISO)
known subsystems with bounded estimation errors by the
TDE technique and state feedback compensation. In each
subsystem, the adaptive law of switching gain is positively
proportional to the absolute values of the sliding variable at
the beginning of control, which allows the sliding variable to
enter the designed vicinity of sliding manifold within a finite
time. After that, the adaptive law is switched to a negative
hyperbolic tangent function of the associated sliding variable
once it is inside the designed manifold, which offers higher
chattering reductions by decreasing the switching gains.
Subsequently, when the sliding variable leaves the vicinity
or the switching gain is no greater than 0, the adaptive law
is switched to become positive to steer the sliding variable

VOLUME 8, 2020 127049



Z. Xie et al.: New Reinforcement Learning Based Adaptive Sliding Mode Control Scheme

back into the vicinity. To mitigate the loss of tracking accu-
racy resulting from decreased switching gains, the RL based
robust term within the control inputs is designed. More pre-
cisely, on the one hand, when the sliding variable drifts away
from the sliding manifold and moves to the boundary of
the designed vicinity (the sliding variable is still inside the
vicinity) due to the decreased switching gain insufficient to
overcome TDE errors, the RL based robust term can offer the
great control input to prevent sliding variables from moving
out the given vicinity. On the other hand, when the sliding
variable is close to the manifold, the values of the robust
terms are mainly determined by RL that learns to achieve
the desired dynamics of sliding variables (chattering-free and
drifting-free). As a result, the proposed SCSMC can actively
prevent the sliding variables moving out the vicinities and
attenuate chattering effects of sliding variables near the mani-
fold, which leads to reducing the chattering and improving the
tracking accuracy. It is proven through the Lyapunov theory
that the tracking errors are uniformly ultimately bounded
(UUB), and the effectiveness is verified by numerical sim-
ulations including the comparison to the existing approaches.
The contributions of this paper are listed as follows:
(1) The novel adaptive law of switching gain mitigates chat-
tering effects by decreasing switching gains without loss of
stability. (2) The side effects of decreasing the switching
gains have been mitigated by applying the novel RL based
robust term, so a high tracking accuracy is obtained even
under extreme disturbance conditions. In other words, the
proposed control scheme has the advantage of existing con-
trol methods [49]–[54] (attenuation of the chattering effects
by decreasing the switching gain without loss of stability)
while also having a better tracking accuracy.

The rest of this paper is organized as follows. In section 2,
the preliminaries including the dynamic model of FSRMs
are introduced. In section 3, the proposed control scheme is
detailed including the stability analysis. Simulation results
are given in section 4. In section 5, the conclusion is
drawn.

II. PRELIMINARIES
A. FSRM DYNAMIC MODEL
A n-links rigid robotic manipulator mounted on a free-
floating base is considered in this paper, as shown in Figure 1.
The rigid links are connected by revolute joints, and the base
(rigid body 0) can be regarded as being connected to the
inertia frame by a free joint with 6 degrees of freedom (DOF).∑
E is the coordinate of the end-effector (EE).

∑
Bi and Ci

(i = 0, 1, ..n) respectively denote the local co-ordinate and
the centre of mass (CM) of the ith rigid body. Ji (i = 1, ..n)
is the joint of the ith rigid body. It is assumed that the CM
of the ith rigid body, which is located by ai and bi (i =
0, 1, 2, · · · , n), remains fixed in the local frame.

The dynamic model of FSRMs can be presented in the
following typical form [10], [17], [61]–[63]:

M (θ) θ̈ + C
(
θ, θ̇

)
θ̇ + d = τ (1)

FIGURE 1. The dynamic model of the free-floating space robotic
manipulator (FSRM).

where θ = [θ1, θ2, · · · , θn]T ∈ Rn×1 is the vector of joints
of the manipulator; M (θ) ∈ Rn×n is the uniformly positive
definite and symmetric inertia matrix; C(θ, θ̇ ) ∈ Rn×n is the
skew symmetric matrix; d ∈ Rn×1 is the vector of generalized
external disturbance; τ ∈ Rn×1 is the vector of control input
torques to drive the joints of the manipulator, and n is the
number of joints of the manipulator. To facilitate the design
of the controller, the dynamics model of (1) can be re-written
as follows.

θ̈ = M̂−1 (θ)
{
τ +

[
M̂ (θ)−M (θ )

]
θ̈ − C

(
θ, θ̇

)
θ̇ − d

}
= M̂−1 (θ) τ + H (2)

where the matrix M̂ is the nominal part of M . The vector
H = −M̂−1 (θ)

[
C
(
θ, θ̇

)
θ̇ + d

]
+
[
M−1 (θ)− M̂−1 (θ)

]
τ

is the lumped uncertainty consisting of model uncertainty and
external disturbance.
Remark 1: Dynamic model (2) is a Euler-Lagrange system

as defined in [36] in which the TDE technique can be applied,
and TDE errors can be bounded by appropriate M̂ and sam-
pling times.

B. FUNDAMENTAL FACT
Definition 1 [64]: Consider the nonlinear dynamic system
ẋ (t) = f (x (t)), x (0) = x0. Uniformly bounded with
ultimate bound B if there exist positive constants B and C,
as well as T = T (A,B) independent of t0 ≥ 0, for every
A∈(0,C), such that x (t0) ≤ A H⇒ x (t) ≤ B,∀t ≥ t0 + T .

III. SMALL CHATTERING SLIDING MODE CONTROL
SCHEME
A. FORMULATION
The sliding variable is defined:

s = ė+ Kse (3)

where the tracking error e = θ − θr ∈ Rn×1. θr ∈ Rn×1

is the vector of references of the manipulator joints.
Ks = diag(ks1, ks2, · · · ksn) ∈ Rn×n is the diagonal matrix
where ksi > 0 for all i = 1, 2, · · · n.
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The TDE technique is used to estimate the lumped uncer-
tainty in (2).

Ĥ (t) = θ̈ (t − Ts)− M̂−1(θ (t))τ (t − Ts) (4)

where Ts is the sampling time, and Ĥ (t) ∈ Rn×1 is the
estimated vector of H (t) = θ̈ (t)− M̂−1 (θ (t) ) τ (t) ∈ Rn×1.
The estimation errors ε therefore exist:

ε(t) = H (t)− Ĥ (t) (5)

However, the estimation errors ε = [ε1, ε2, · · · , εn]T ∈ Rn×1

can be bounded by selecting an appropriately small size for
Ts and sufficiently accurate M̂ , shown in lemma 1.
Lemma 1 [36]: The estimation errors ε in (5) will remain

bounded, which is shown in (7) for system (2) where the
uncertainty is estimated by the TDE technique (4) if the
following condition (6) holds:∥∥∥M−1 (θ) M̂ (θ)− I

∥∥∥ < 1 (6)

‖ε‖ ≤ ε̄ (7)

where I is the identity matrix with the appropriate size. ε̄ is
an unknown positive constant. It is easy to conclude from (7)
that |εi| ≤ ε̄i and ε̄i ≥ 0 holds for all i = 1, 2, · · · , n.

FIGURE 2. Block diagram of the proposed SCSMC.

Therefore, as illustrated in figure 2, the TDE equipped
SCSMC scheme is proposed as (8)-(13):

τ = M̂ (θ) (v− Ĥ + θ̈r − Ksė) (8)

where v = [v1, v2, · · · , vn]T ∈ Rn×1 is the virtual control
input, shown explicitly in (9), and β = diag(β1, β2, · · · ,
βn) ∈ Rn×1 is the diagonal matrix where βi > 0 for all
i = 1, 2, · · · , n.

vi =


−βisi −

êki

si
F
(̂
ki
)
− k̂isgn (si),

if (|si| > Di) or (̂ki ≤ 0)

−βisi −
êki

si
yi ln

(
1+
|si|

êki

)
− k̂isgn (si), else

(9)

where Di > 0 is the designed vicinity of the sliding manifold
for each subsystem (i = 1, 2, · · · , n). F

(̂
ki
)
is the switching

function that is defined in (11). yi ≥ 0 is a positive function

shown in (12). k̂i is the switching gain, and the adaptive law
is presented in (10):

˙̂ki =


γi |si| , if (|si| ≥ Di) or (̂ki ≤ 0)

−γi[µ2
i +

αi

κV
tanh

(
αi

|si| + µ2
i

)
], else

(10)

where γi > 0, αi > 0 are positive constants. µi is a small
constant close to zero. κV is a positive constant that satisfies
κV = e−(κV+1).
Remark 2: It can be concluded that k̂i ≥ 0 holds because

the non-positive value of k̂i will result in the positive deriva-
tive ˙̂ki = γi |si|.

F
(̂
ki
)
=

yi ln
(
1+
|si|

êki

)
, if k̂i < k̄i

�i, if k̂i ≥ k̄i.
(11)

where �i > 0 is a small positive constant and k̄i > 0 is a
great positive constant.

yi = [(1− ωi)+ ωi ·9(si)]
8i

êki
Di

ln
(
1+ Di

êki

) (12a)

9 (si) =

sin
(
π |si|
2Di

)
, if |si| ≤ Di

1, if |si| > Di
(12b)

where 0 ≤ ωi ≤ 1 is a positive parameter that is determined
by the RL, which will be detailed later. The parameter8i ≥ 0
that starts at zero (8i (t = 0) = 0) is discontinuously and
monotonically increasing, and it is responsible for preventing
the sliding variable from departing the vicinity. The adaptive
law of 8i is shown as follows:

8̇i=

γi
αi

2κV
tanh

(
αi

|si|

)
5i, if (|si| ≤ Di) and (̂ki > 0)

0, else
(13)

where 5i = (1 − sgn(8i − 8
∗
i )). 8

∗
i > 0 is a positive

parameter defining the upper bound of 8i. In this paper, we
design 8∗i (t) as the value of k̂i

(
t∗i
)
+ 8i(t∗i ) in the last time

step t∗i (t
∗
i < t) when the sliding variable si enters the vicinity

(
∣∣s (t∗i )∣∣ = Di).
The MIMO system of FSRMs (2) can be transformed into

n SISO systems by applying control law (8). The derivative
of the sliding variable for each subsystem can then be written
as:

ṡi = vi + εi, i = 1, 2 · · · n (14)

Lemma 2: For subsystems i = 1, 2, · · · , n, if a period t ∈
[tin, tout ] exists such that |si (t = tin)| = |si (t = tout)| = Di
and |si (tin < t < tout)| < Di, the inequality of virtual control
input, |vi (t = tout) | ≥ |vi (t = tin) |, will hold.

Proof: According to (10) and (13), the adaptive law of
8i is opposite to that of k̂i as long as both conditions |si| < Di
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and k̂i > 0 hold. It means that the decreased value1k̂i is taken
from k̂i and allocated to 8i within the vicinity:

8i (tout)

=

{
8i (tin)+k̂i (tin)−k̂i (tout), if k̂i (tin < t < tout) > 0
8i (tin)+ k̂i (tin), else

(15)

According to (9), (12) and (15), the difference of virtual
control input between the time instants of tin and tout is:

|vi (tout) | − |vi (tin)|

=
êki(tout )

Di
yi(tout ) ln

(
1+

|Di|

êki(tout )

)
+ k̂i(tout )

−
êki(tin)

Di
yi (tin) ln

(
1+

|Di|

êki(tin)

)
− k̂i (tin)

= 8i (tout)−8i (tin)+ k̂i (tout)− k̂i (tin)

=

{
0, if k̂i (tin < t < tout) > 0
k̂i (tout) ≥ 0, else

(16)

Proof complete.
Remark 3: According to lemma2, when considering the

vicinity of the sliding manifold (|si| ≤ Di), the switching
gain k̂i decreases to reduce the chattering effects, while the
decreased value of k̂i is transferred to 8i. If the sliding
variable drifts away from the manifold, the greatest value
of yi will be obtained when the sliding variable arrives at
the boundary of the vicinity (|si| = Di) to steer the sliding
variable back into the manifold. In other words,8i preserves
the decreased value 1k̂i and returns it to the control input vi
when the sliding variable attempts to leave the designed
vicinity. Therefore, the proposed SCSMC can prevent the
sliding variable from departing the vicinity and alleviate the
problem caused by an under-estimated switching gain. This
advantage is illustrated in figure 3:

FIGURE 3. Possible dynamics of the sliding variables under the proposed
SCSMC.

Lemma 3 [65]: According to L’Ho^pital’s Rule, the func-
tion f (x) = x · ln(1+ 1

x ) is monotonically increasing as long

as x ∈ (0,+∞), and the following equation holds:

lim
x→∞

x · ln(1+
1
x
) = 1 (17)

(18) can be obtained by replacing x in (17) with: ê
ki
si

lim
|si→0|

êki

|si|
· ln(1+

|si|

êki
) = 1 (18)

Remark 4: According to (18), It is easy to conclude that
lim
|si→0|

[− êki
si
yi ln

(
1+ |si|

êki

)
] = ±yi. According to (9) and (11),

It is easy to conclude that |si| ≥ Di will hold if − êki
si
F
(̂
ki
)
=

êki
si
�i. This is because F

(̂
ki
)
= �i when k̂i ≥ k̄i > 0

that means k̂i ≤ 0 does not hold in (9), which leads
to |si| ≥ Di. Therefore, the robust terms − êki

si
F
(̂
ki
)
and

−
êki
si
yi ln

(
1+ |si|

êki

)
in virtual control input (9) will not cause

the problem of singularity when |si| → 0.
Lemma 4 [66]: the following inequality holds for any

A > 0 and for any B ∈ R:

0 ≤ |B| − B · tanh(
B
A
) ≤ κVA (19)

where κV is a positive constant that satisfies κV = e−(κV+1).
The inequality (20) can be derived from (19) by substitutingA
with |si| + µ2

i , and B with αi.

|si| + µ2
i +

αi

κV
tanh(

αi

|si| + µ2
i

) ≥
αi

κV
(20)

where αi > 0 and µi → 0 are the constants mentioned
in (10).

B. STABILITY ANALYSIS
Theorem 1: For a system of FSRMs (2) controlled by (8)-(13),
the sliding variable of each subsystem will enter into the
designed vicinity of the sliding manifold within a finite time,
|si(t)| ≤ Di, t ≥ Ti. After the sliding variable of any sub-
system enters its vicinity, the sliding variables and tracking
errors of the FSRM are guaranteed to be UUB, proven as
follows:

| |s(t)| | ≤ 2
√
R∗1 + R

∗

2, t ≥ min
1≤i≤n

{Ti} (21)

where R∗1 and R∗2 are the 2 positive constants defined as
follows.

R∗1 =max{
n
2
(δ1 + δ2)2,

n
2
·

∑n
i=1 ε̄i(Di+µ

2
i +

αi
κV
)

βmin
} (22a)

R∗2 = max{
n||ε̄||2

2γmin
+ δ3,

n
2γmin

(k̄max − ε̄min)
2
,

n
2γmin

(ln(ε̄max+
κV

αmin

∑n

i=1
ε̄i(Di+µ2

i+
αi

κV
))−ε̄i∗ )2,

n
2γmin

(ln(

∑n
i=1 ε̄i(Di + µ

2
i +

αi
κV
)

�min
)− ε̄i∗ )2} (22b)
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where δ1 > 0 is a small positive constant and δ2 = max
1≤i≤n

{Di}.

βmin = min
1≤i≤n

{βi}, γmin = min
1≤i≤n

{γi}, k̄max = max
1≤i≤n

{
k̄i
}
,

ε̄min = min
1≤i≤n

{ε̄i}, and δ3 > 0 is a positive constant. �min =

min
1≤i≤n

{�i}, αmin = min
1≤i≤n

{αi}, and ε̄max = max
1≤i≤n

{ε̄i}. i∗ is an

unknown integral between 1 and n, which will be explicitly
explained in the following proof.

Proof: Consider the first Lyapunov function for each
subsystem:

V1,i =
1
2
s2i +

1
2
(̂ki − ε̄i)2

γi
, i = 1, 2, . . . , n (23)

Taking the derivative for (23) with respect to time, the follows
can be achieved:

V̇1,i = si (εi + vi)−
1
γi

(
ε̄i − k̂i

) ˙̂ki
= siεi + si

[
−βisi −

êki

si
F
(̂
ki
)
− k̂isgn (si)

]
−
(
ε̄i − k̂i

)
|si| (when |si| > Di)

≤ −β is
2
i −

êki

si
F
(̂
ki
)

(when |si| > Di)

< −β iD
2
i < 0 (when |si| > Di) (24)

Remark 5: In the light of (24), It is clear that the sliding
variable of each subsystem si will enter into the associated
vicinity Di within a finite time Ti. After that, the sliding vari-
able could leave the vicinity because of the negative adaptive
law of switching gain. Therefore, the next step is to prove that
the sliding variables are bounded after any subsystem enters
the vicinity (t ≥ min

1≤i≤n
{Ti}).

We consider the second Lyapunov function for the entire
system:

V2 =
1
2

∑n

i=1
V1,i =

1
2
sT s+

1
2

∑n

i=1

(̂ki − ε̄i)2

γi
(25)

Taking the derivative for (25) with respect to time, the follows
can be obtained by using (14):

V̇2 = ST
(
M̂−1τ + H + Ksė− q̈r

)
−

∑n

i=1

1
γi
(ε̄i − k̂i)

˙̂ki

≤

∑n

i=1
|si|ε̄i+

∑n

i=1
sivi−

∑n

i=1

1
γi
(ε̄i − k̂i)

˙̂ki (26)

Next, the subsystems (i = 1, 2, · · · , n) are separated into
2 sets of integers in which the elements are arranged in
numerical order:

Ep = {p
∣∣ ∣∣sp∣∣ > Dp or k̂p ≤ 0} (27a)

Eq = {q
∣∣ ∣∣sq∣∣ ≤ Dq and k̂q > 0} (27b)

The number of elements in Ep is defined as n1, and the
number of elements in Eq is defined as n2. p0 and q0 are
defined as the first element in Ep and Eq respectively. It is
clear that n = n1 + n2 holds because the set {1, 2 · · · , n} is

fully composed of Ep and Eq. As a result, combining with (9)
and (10), (26) can be further written as:

V̇2 ≤
∑n1

p=p0
[
∣∣sp∣∣ε̄p + spvp − 1

γp

(
ε̄p − k̂p

) ˙̂kp]
+

∑n2

q=q0
[|sq|ε̄q + sqvq −

1
γq

(ε̄q − k̂q)
˙̂kq]

==

∑n1

p=p0
[−βps2p − ê

kp · F
(̂
kp
)
+
(
ε̄p − k̂p

)
(
∣∣sp∣∣

−

˙̂kp
γp

)]+
∑n2

q=q0
[−βqs2q − ê

kq · yq ln

(
1+

∣∣sq∣∣
êkq

)

+ (ε̄q − k̂q)(
∣∣sq∣∣− ˙̂kq

γq
)]

=

∑n1

p=p0
[−βps2p − ê

kp · F
(̂
kp
)
]+

∑n2

q=q0
[−βqs2q

− êkq · yq ln

(
1+

∣∣sq∣∣
êkq

)
]+
∑n2

q=q0

(
ε̄q−k̂q

)
[
∣∣sq∣∣+µ2

q

+
αq

κV
tanh(

αq∣∣sq∣∣+ µ2
q
)]

≤

∑n1

p=p0
[−βps2p−ê

kp ·F
(̂
kp
)
]+
∑n2

q=q0

(
ε̄q−k̂q

)
[
∣∣sq∣∣

+µ2
q+

αq

κV
tanh(

αq∣∣sq∣∣+ µ2
q
)] (28)

At the beginning of control (t = 0), the sliding variables of
all subsystems are outside the designed vicinity (|si| > Di,
for all i = 1, 2, . . . , n), which means the adaptive laws of
switching gains for all subsystems are positive as according
to (10). Therefore, the set Eq is empty with n2 = 0 while set
Ep is {1, 2, . . . , n} with n1 = n, (28) can be written as:

V̇2(t) ≤
∑n

i=1
[−βis2i (t)− ê

ki(t) · F
(̂
ki (t)

)
] < 0

(when 0 ≤ t < min
1≤i≤n

{Ti}) (29)

Clearly, (29) holds until any subsystem enters the vicinity.
After that, V̇2 < 0 cannot hold because of the negative
adaptive law of switching gain according to (10). Therefore,
the Lyapunov function V2(t) shall be bounded when t ≥
min
1≤i≤n

{Ti}. To achieve this goal, we assume a sufficiently

large number of the second Lyapunov function (25), namely,
V2 = V ∗2 . Clearly, a sufficiently large number V ∗2 requires

at least one of the terms in 1
2 s
T s and 1

2

∑n
i=1

(̂ki−ε̄i)2
γi

to be
sufficiently large. Hence, we consider 2 cases.
Case 1: The term 1

2 s
T s has a sufficiently large number R∗1,

namely, 1
2 s
T s = R∗1.

Lemma 5: If the term 1
2 s
T s has a sufficiently large

number R∗1, the maximum element |sp∗ | in the vector
[|s1| , . . . , |sn|]

T
∈ Rn×1 shall be no less than the positive

number: ∣∣sp∗ ∣∣ = max
1≤i≤n
{|si|} ≥

√
2R∗1
n

(30)

The proof of Lemma 5 is given in the appendix.
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Now, let R∗1 be no less than a positive number:

R∗1 ≥
n
2
(δ1 + δ2)2 (31)

The definitions of δ1 and δ2 are given in the sentence
below (22). According to (30) and (31), It is clear that

∣∣sp∗ ∣∣ ≥
δ1 + δ2 > δ2. Therefore, the sliding variable sp∗ is outside
the vicinity Dp∗ , which means the set Ep is not empty with
n1 ≥ 1 because p∗ ∈ Ep. Combining (27b) and the fact that
tanh (·) < 1, (28) can be further written as:

V̇2 ≤ −βp∗s2p∗ − ê
kp∗ · F

(̂
kp∗
)
+

∑n2

q=q0

(
ε̄q − k̂q

)
[
∣∣sq∣∣

+µ2
q +

αq

κV
tanh(

αq∣∣sq∣∣+ µ2
q
)]

< −βp∗s2p∗ +
∑n2

q=q0
ε̄q(Dq + µ2

q +
αq

κV
)

< −βmins2p∗ +
∑n

i=1
ε̄i(Di + µ2

i +
αi

κV
) (32)

According to (32), V̇2 < 0 holds as long as |sp∗ | is no less
than the positive number:

|sp∗ | ≥

√∑n
i=1 ε̄i(Di + µ

2
i +

αi
κV
)

βmin
(33)

Combining (28), (31) and (33), it is concluded that V̇2 < 0
can hold by a sufficiently large number R∗1 of the term 1

2 s
T s

to satisfy the following condition:

R∗1 ≥ {max
n
2
(δ1 + δ2)2,

n
2
·

∑n
i=1 ε̄i(Di + µ

2
i +

αi
κV
)

βmin
} (34)

Case 2: The term 1
2

∑n
i=1

(̂ki−ε̄i)2
γi

has a sufficiently large

number R∗2. Namely, 1
2

∑n
i=1

(̂ki−ε̄i)2
γi
= R∗2.

Lemma 6: If the term 1
2

∑n
i=1

(̂ki−ε̄i)2
γi

has a sufficiently

large number R∗2, the maximum element (̂k i∗−ε̄i∗ )
2

2γi∗
in the

vector [ (̂k1−ε̄1)
2

2γ1
, . . . ,

(̂kn−ε̄n)
2

2γn
]T ∈ Rn×1 will be no less than

the positive number:

(̂k i∗ − ε̄i∗ )
2

2γi∗
= max

1≤i≤n
{
(̂k i − ε̄i)

2

2γi
} ≥

R∗2
n

(35)

The proof of Lemma 6 is the same as that of Lemma 5.
It is clear that (35) leads to 2 possible solutions:

k̂i∗ ≥ ε̄i∗ +

√
2γi∗ · R∗2

n
≥ 0 (36a)

ε̄i∗ ≥ k̂i∗ +

√
2γi∗ · R∗2

n
≥ 0 (36b)

Now, let R∗2 be no less than such a positive number:

R∗2 ≥ max{
n||ε̄||2

2γmin
+ δ3,

n
2γmin

(k̄max − ε̄min)
2
} (37)

The definitions of γmin, k̄max , ε̄min, and δ3 are given in the
sentence below (22).

Remark 6: It is clear that R∗2 >
nε̄2i∗
2γi∗

holds when (37) is

satisfied because n||ε̄||2
2γmin
+ δ3 >

nε̄2i∗
2γi∗

, which contradicts (36b).
As a result, (36a) is the only solution of (35) when (37) is
satisfied. Subsequently, combining (37) with (36a) leads to
k̂i∗ ≥ k̄i. Therefore, according to (11), F

(̂
ki∗
)
= �i > 0

holds when (37) is satisfied.
Now, we consider 2 situations of case 2 when (37) is

satisfied: i∗ ∈ Ep or i∗ ∈ Eq.
When i∗ ∈ Ep, the term Ep is not empty with n1 ≥ 1.

Combining (27b) and the fact that tanh (·) < 1, (28) can be
further written as:

V̇2 ≤ −βi∗s2i∗ − ê
ki∗ · F

(̂
ki∗
)
+

∑n2

q=q0

(
ε̄q − k̂q

)
[
∣∣sq∣∣

+µ2
q +

αq

κV
tanh(

αq∣∣sq∣∣++µ2
q
)]

≤ −êki∗ ·�i∗ +
∑n2

q=q0

(
ε̄q − k̂q

)
[
∣∣sq∣∣+ µ2

q

+
αq

κV
tanh

(
αq∣∣sq∣∣+ µ2

q

)
]

< −êki∗ ·�i∗ +
∑n2

q=q0
ε̄q(Dq + µ2

q+
αq

κV
)

< −êki∗ ·�min +
∑n

i=1
ε̄i(Di + µ2

i+
αi

κV
) (38)

According to (38), V̇2 < 0 holds as long as k̂i∗ is not less than
the positive number:

k̂i∗ ≥ ln(

∑n
i=1 ε̄i(Di + µ

2
i+

αi
κV
)

�min
) (39)

Combining (36a), (37) and (39), It is concluded that V̇2 < 0
can hold by a sufficiently large number R∗2 of the term
1
2

∑n
i=1

(̂ki−ε̄i)2
γi

satisfying (40) when i∗ ∈ Ep.

R∗2 ≥ max{
n||ε̄||2

2γmin
+ δ3,

n
2γmin

(k̄max − ε̄min)
2
,

n
2γmin

(ln(

∑n
i=1 ε̄i(Di + µ

2
i+

αi
κV
)

�min
)− ε̄i∗ )2} (40)

When i∗ ∈ Eq, the term Eq is not empty with n2 ≥ 1. Notably,
(36a) implies that ε̄i∗ − k̂i∗ ≤ 0. Combining with (20), (27b)
and that tanh (·) < 1, (28) can be further written as:

V̇2 ≤
∑n2

q=q0

(
ε̄q − k̂q

)
[
∣∣sq∣∣+ µ2

q+
αq

κV
tanh(

αq∣∣sq∣∣+ µ2
q
)]

=
(
ε̄i∗ − k̂i∗

) [
|si∗ | + µ2

i∗ +
αi∗

κV
tanh

(
αi∗

|si∗ | + µ2
i∗

)]

+

∑n2−1

q=q0

(
ε̄q−k̂q

)
[
∣∣sq∣∣+µ2

q+
αq

κV
tanh

(
αq∣∣sq∣∣+µ2

q

)
]

≤
αi∗

κV

(
ε̄i∗ − k̂i∗

)
+

∑n2−1

q=q0
ε̄q(Dq + µ2

q+
αq

κV
)

≤
αmin

κV

(
ε̄max − k̂i∗

)
+

∑n

i=1
ε̄i(Di + µ2

i+
αi

κV
) (41)

The definitions of αmin and ε̄max are given in the sentence
below (22). According to (41), V̇2 < 0 holds as long as k̂i∗ is
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not less than the positive number:

k̂i∗ ≥ ε̄max +
κV

amin

∑n

i=1
ε̄i(Di + µ2

i+
αi

κV
) (42)

Combining with (36a), (37) and (42), It is concluded that
V̇2 < 0 can hold by a sufficiently large number R∗2 of the

term 1
2

∑n
i=1

(̂ki−ε̄i)2
γi

satisfying (43) when i∗ ∈ Eq:

R∗2 ≥ max{
n||ε̄||2

2γmin
+ δ3,

n
2γmin

[ln(ε̄max

+
κV

amin

∑n

i=1
ε̄i(Di + µ2

i+
αi

κV
)]− ε̄i∗ )

2
} (43)

In the light of (34), (40) and (43), it is shown that V̇2 < 0
can hold by a sufficiently large number V ∗2 =

1
2 s
T s +

1
2

∑n
i=1

(̂ki−ε̄i)2
γi
= R∗1 + R∗2. R

∗

1 and R∗2 are defined in (22).
As a result, V2 will not exceed V ∗2 because V̇2 < 0 holds as
long as V2 ≥ V ∗2 , and all terms including sT s in V2 will not
be greater than V ∗2 , namely:

| |s| | ≤ 2
√
V2 ≤ 2

√
R∗1 + R

∗

2 (44)

Proof of theorem 1 complete
Remark 7: According to (12), on one hand, the sliding

variable will either arrive at the boundary of the vicinity
(|si| = Di) or leave the vicinity (|si| > Di), and the latter
will result in the greatest value of yi regardless of the value of
wi (remark 3). On the other hand, when the sliding variable
is inside the vicinity and close to the manifold, wi plays an
important role to determine the value of yi. More precisely,
the condition wi → 0 leads to an increase in yi, which offers
the ability to converge the sliding variable but with the risk
of increasing the chattering effects, while wi → 1 brings up
the decrease of yi that offers the ability to reduce chattering
effects with the risk of sliding variable drifting away from the
manifold.

As a result, an optimal wi exists to achieve the
drifting-free and chattering-free dynamics of sliding vari-
ables between 2 consecutive sampling times of TDE (eg.
si (t) − si (t − Ts) = −0.1si(t − Ts)). To achieve this goal,
a reinforcement learning (RL) based adaptive law for wi is
designed as:

wi (t) =


[1− σi (t)]wi (t − Ts),
if si (t − Ts)

[
1si (t)−1s∗i (t)

]
> 0

[1− σi (t)]wi (t − Ts)+ σi(t), else.

(45)

where 0 ≤ σi (t) ≤ 1, 1si (t) = si (t) − si (t − Ts) and
1s∗i is the desired variance. In this paper, we set: 1s∗i =
−0.1si(t−Ts).wi (t) starts at zero during the control, namely,
wi (t = 0) = 0.
Remark 8: (45) implies that wi increases towards 0 to

speed up the convergence of the sliding variables if
1si (t) does not meet the desired variance 1s∗i , namely,
si (t − Ts)

[
1si (t)−1s∗i (t)

]
> 0. Otherwise, wi decreases

towards 1 to slow down the convergence of the sliding vari-
able to attenuate the chattering effects. A greater value of

|1si (t)−1s∗i (t) | indicates a greater σi (t) is required to tune
the value of wi (t).
It is hard to determine the appropriate values of σi (t)

because of the unknown disturbances and model uncertain-
ties. Hence, instead of manually tuning σi (t), we apply the
reinforcement learning-based fuzzy logic inference that can
learn the optimal σi (t) during the control.

σi (t) = FI (01,i(t), 02,i(t)) (46)

where FI (·, ·) refers to the fuzzy logic inference (FLI), and
01,i and 02,i are 2 fuzzy inputs for the ith subsystem. In this
paper, 01,i(t) = |si(t)| and 02,i (t) = sgn (si (t − Ts))
(1si (t)−1s∗i (t)).
Remark 9: The risk of losing stability caused by the bad

policies determined from the RL during the initial stage of
learning as discovered by [60] is not of significant concern.
It is because the proposed control scheme (8)-(13) guarantees
the UUB errors by the bounded sliding variables regardless
of the value of wi, shown in (44). As a result, the proposed
SCSMC scheme provides RLwith a safe environment to learn
optimal policies.

C. FUZZY Q REINFORCEMENT LEARNING TO
DETERMINE σ i
Q learning can explore the optimal policies by learning the
relationship between interval-values states (discrete states)
and applied actions. Fuzzy Q learning is the extension of
Q learning, which allows the application of Q learning on
continuous systems such as FSRMs.
Intuitively, the following possible linguistic rules to deter-

mine σi (t) according to remark 7 and remark 8 can be given
as examples:
IF 01,i(t) is small AND 02,i(t) is negatively big, THEN

σi (t) is small.
IF 01,i(t) is big AND 02,i(t) is closely zero, THEN σi (t)

is medium.
IF 01,i(t) is big AND 02,i(t) is negatively big, THEN σi (t)

is big.
The above terms of small, medium and big are linguistical

descriptions for variables01,i,02,i(t) and σi (t). Fuzzification
is required to apply such linguistic descriptions on numerical
variables. More precisely, numerical variables 01,i and 02,i
are fuzzified to a series of firing rates of fuzzy rules by the
triangular membership function shown in figure 4. Subse-
quently, the actual numerical values of σi (t) is calculated by
the fuzzy reasoning based on the firing rates of the rules and
the numerical values of the applied actions.
The fuzzy sets for fuzzy inputs, which present linguistic

variables in a numerical form (firing rate), are shown in Fig-
ure 4 and are detailed as follows:

Lin
(
01,i (t)

)
=

{
ζ
(i)
1,1, . . . , ζ

(i)
1, , . . . , ζ

(i)
1,A

}
, = 1, 2, . . . ,A

(47a)

Lin
(
02,i (t)

)
=

{
ζ
(i)
2,1, . . . , ζ

(i)
2, , . . . , ζ

(i)
2,B

}
, = 1, 2, . . . ,B

(47b)
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FIGURE 4. Membership functions of fuzzy inputs of the i th subsystem.

where A is the number of fuzzy sets (ζ1, ) for the fuzzy input
01,i, and B is the number of fuzzy sets (ζ1, ) for the fuzzy
input 02,i.
The relationship between the th fuzzy rule and the can-

didates of action as well as the q-values evaluating those
candidates for the ith subsystem is defined:

R ,i: IF S1,i isL1,i and S2,i is L2,i and . . . . . .and S ,i is L ,i,

THEN ui ∈ Ui, that ui = ui,1 with qi ( , 1) or ui = ui,2
with qi ( , 2) or ui = ui,3 with qi ( , 3), . . . ., ui = ui,p
with qi ( , p), . . . ., ui = ui,P. with qi ( ,P). (48)

where Ui, = {ui,1, . . . , ui,P} is the set of action candidates
for the parameter σi in the rule R ,i. Si = {S1,i, . . . ,S ,i} is
the set of fuzzy inputs for the ith subsystem at the moment .
Li = {L1,i, . . . ,L ,i} is the set of linguistic variables of
fuzzy inputs. Each action ui,p is evaluated by the associated
q value.

Fuzzy inputs are initially fuzzified by the triangular mem-
bership function shown in Figure 4 with the fuzzy sets (47)
and then matched with the rule antecedents (48), which
gives the set of firing rates for fuzzy rules ϕ

(
Si
)
={

ϕ1(Si ), . . . ., ϕN(Si )
}
where N is the number of fuzzy rules.

After that, the numerical values of σi can be calculated by
the set of firing rates and the actions selected in the light of
q-values.
Remark 10: Notably, the current time instant t is equal to

the current instant in RL because of the discrete nature of
TDE. Similarly, t−Ts is equal to −1, and t+Ts is equal to
+1 where Ts is the sampling time of the TDE. For example,

σi( ) is equal to σi(t) and σi( + 1) is equal to σi (t + Ts) .
The action with the greatest q-value is considered as the

most optimal choice among all candidates of action:

u∗i = arg max
ui ∈Ui,

qi ( , p) (49)

To alleviate the problem of the local optimum in the learning
process, a greed mechanism is used:

ûi =

{
u⊥i , with probablity 3
u∗i with probablity 1−3

(50)

where u⊥i is a random action among Ui, . ûi . 0 < 3 < 1 is
the probability to explore potentially better actions.

The numerical value of σi is calculated by firing rates and
the selected actions:

σi(t) =

∑N
=1 ϕ (Si )̂ui∑N
=1 ϕ (Si )

(51)

The q-values are updated according to the obtained rewards,
which therefore can learn the optimal actions that can achieve
higher rewards. To avoid the fuzzy rules from being influ-
enced by the incoherent reinforcements, which is caused
by their interactions with other rules, the modified fuzzy Q
learning [61] is used.

The Q value of the ith subsystem at the instant can be
calculated as follows:

Q
(
Si
)
=

∑N
=1 ϕ

(
Si
)
[
∑P

p=1 φp, (σi( ))qi ( , p)]∑N
=1 ϕ (Si )

(52)

where [φ1 (σi( )), φ1 (σi( )), . . . ., φ1 (σi( ))] is the set of
firing rates of the aggregated action σi( ) in the rule R ,i,
which is calculated by the triangular membership function
shown in figure 5 with fuzzy sets (53).

Lin (σi) = {ui,1, ui,2, . . . , ui,P} (53)

FIGURE 5. Membership function of action σi among the action
candidates.

It is noticed that the fuzzy sets in (53) fully consist of the
action candidates in the rule R ,i.
The target value is calculated as:

V
(
Si
)
=

∑N
=1 [ϕ (Si ) · max

1≤p≤P
{qi ( , p)}]∑N

=1 ϕ (Si )
(54)

When the system transitions from the state Si to S +1i ,
the temporal difference (TD) error is calculated in the light
of reward obtained:

1Qi = ri + ηiV
(
S +1i

)
− Q

(
Si
)

(55)

where ri is the reward defined in (56), and ηi ∈ [0, 1] is
the discount factor reflecting the contribution of the current
action to obtain the future reward.

ri = ri(t) = e−
[1si(t)−1s

∗
i (t)]

2

ςi(t) (56a)

ςi(t)=


−[0.9si(t − Ts)]2

ln(0.1)
, if |1si (t)| > |0.1si(t − Ts)|

−[0.1si (t − Ts)]2

ln(0.1)
, else.

(56b)
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Clearly, the action obtaining the more desired variance of the
sliding variable will be given a higher reward and vice versa.
Equation (56a) implies that the action to achieve 1si (t) =
1s∗i (t) will be given the highest reward with the value of 1.
Equation (56b) then indicates that the variance of the sliding
variable having either a quicker convergence than−si(t−Ts)
or a slower convergence (including divergence) than 0 will
result in the reward becoming less than 0.1.

Finally, the adaptive law of q-values is:

q +1i ( , p) = qi ( , p)+ λi ·1Qi ·
ϕ
(
Si
)∑N

=1 ϕ
(
Si
)

·
φp, (σi( ))∑P
p=1 φp, (σi( ))

(57)

where λi ∈ [0, 1] is the learning rate.
The steps of selecting parameters of the proposed SCSMC

scheme are given as follows. The detailed method of
determining the values of each parameter are provided in
remark 11∼remark 19.
Step (1): Selecting the appropriate values of ¯ i, �i and µi

in the light of remark 14.
Step (2): Selecting proper values of βi and γi in the light

of remark 11 to achieve a satisfyingly fast convergence of
sliding variables toward the sliding manifold.

Step (3): Selecting appropriate values of Di in the light of
remark 13 to ensure the sliding variables can enter the vicinity
before the decline of switching gains.

Step (4): Selecting appropriate values of αi in the light of
remark 12 to achieve the satisfying attenuation on chattering
effects.

Step (5): If an unacceptable discontinuity of virtual con-
trol signal occurs due to the switch function F(̂ i) during
step (2)∼step (4), the procedure should go back to step (1)
to increase the values of ¯ i and �i.

Step (6): Selecting the appropriate values of fuzzy sets (47)
in the light of remark 15.

Step (7): Selecting the appropriate values of action group
Ui, = {ui,1, . . . , ui,P} in the light of remark 16.

Step (8): Selecting the proper values of probability of
mutation 3, discount factor ηi, learning rate λi in the light
of remark 17, remark 18 and remark 19 respectively.
Step (9): If the tracking performance is unsatisfied, the pro-

cedure should go back to step (6).
Remark 11: The large values of βi can result in the fast

convergence of sliding variables towards zero, but at the
expense of large control inputs that increase the chattering
effects and fuel consumption. Similarly, large values of γi
can also lead to a fast convergence in the sliding variables by
quickly increasing the value of the switching gain. Although
large values of the switching gain can increase the risk of
chattering effects, the switching gain can decrease inside the
vicinity so that the problem of over-estimated switching gain
is alleviated. Therefore, βi and γi should be set to start from
a small value, and it should be allowed to gradually increase

until the satisfyingly fast convergence of the sliding variables
is achieved.
Remark 12: The large values of αi can result in a fast

decline of the switching gain to zero, which means a
significant chattering effect reduction at the cost of the
under-estimated switching gain. In the proposed SCSMC,
the under-estimated switching gain is not of concern because
of the usage of the RL-based robust term that actively pre-
vents the sliding variables from leaving the manifold due to
the insufficient switching gain. Therefore, the value of αi
should initially be small and then gradually increase until the
satisfying attenuation of the chattering effect is obtained.
Remark 13: Di is the vicinity of the sliding manifold.

A large value of Di could compromise the tracking accuracy
because of the insufficient increase of the switching gain.
In contrast, a small value of Di could lead to the failure of
the proposed SCSMC if the sliding variable cannot enter the
small Di because of the limited computation ability of the
hardware. As a result, it is suggested that the trials of selecting
Di should start at a big value (but no more than the initial
value of the sliding variable |si (t = 0) |) and then allow it to
gradually decrease until a good tracking accuracy is achieved
without the sliding variables failing to enter into the vicinity.
Remark 14: k̄i and �i are used to avoid great values of the

virtual control signal by offering a small value to the robust
term when the value of switching gain is great. As a result,
�i should be selected as a small value. To avoid the dis-
continuity of the virtual control signal caused by the switch
function F(̂ki), the threshold k̄i should be a big value. The
term µi is used to derive the inequality (20) and should be a
small number close to zero.
Remark 15: Fuzzy sets (47) are imperative because they

transform the numerical values of the fuzzy inputs into the
group of firing rates corresponding to linguistic variables,
which enables the fuzzy reasoning. Hence, we suggest ζ (i)1,A
and ζ (i)2,B to be given large valueswhile ζ (i)1,1 and ζ

(i)
2,1 to be given

small values for covering the range of all the possible values
of 01,i and 02,i during the control process. Moreover, to well
map the relationship between fuzzy outputs and fuzzy inputs,
the ζ (i)1, and ζ (i)2, are suggested to be evenly distributed among

the ranges [ζ (i)1,1, ζ
(i)
1,A] and [ζ (i)2,1, ζ

(i)
2,B] respectively with the

sufficiently large integral numbers A and B. However, large
integral numbersA and Bwill increase the computation load,
so we suggest thatA and B start at small values, and it should
increase until the satisfying performance of fuzzy reasoning
is obtained with an acceptable computation load.
Remark 16: Action group Ui, = {ui,1, . . . , ui,P} deter-

mines the dynamics of sliding variables inside the vicinity
by adopting the values of the robust term. ui,1 should be of
small values and ui,P should be big values to ensure the opti-
mal action can be calculated by the given candidate actions.
However, the significant difference between candidate
actions could result in the chattering calculated actions. As a
result, the trials of selecting ui,P (ui,1) is suggested to start at a
big (small) value and then be gradually decreased (increased)
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until the satisfyingly less-chattering calculated actions are
achieved. The remaining members [ui,2, . . . , ui,P−1] are sug-
gested to be evenly distributed among between ui,1 and ui,P.
Although the great values of the integral number P could
increase the possibility of successfully calculating optimal
actions by the sufficient action candidates, it will bring up
the computation load and the difficulty on the convergence
of q values in RL, and therefore P should be given a small
value between 1∼10.
Remark 17:The probability ofmutation3means the trade-

off between the exploration for potentially better policies and
the exploitation of learned policies. It is widely suggested
in RL applications that 3 should be large (e.g. 0.4) at the
beginning of learning and be small (e.g. 0) during the later
stage of learning.
Remark 18:Discount factor ηi reflects the attention paid on

the effects of current action on the future performance. In this
paper, the designed reward is given according to the variance
of sliding variables. The current variance of sliding variables
mainly depends on the current control signal, thus ηi should
be a small value (e.g. 0.1).
Remark 19: The learning rate λi means the efficiency of

memorizing the new knowledge and forgetting the old knowl-
edge. A large value of λi could achieve a fast convergence
of the q values, which means a high learning efficiency.
In contrast, a small value of λi could achieve the robustness
of learning by keeping the old knowledge. Therefore, we sug-
gest medium values (eg 0.4∼0.6) for λi.
Remark 20: The sufficiency of both the fuzzy rules

(equally, a large integral numbersA and B in (47)) and action
candidates (equally, a large integral number P in Ui, =
{ui,1, . . . , ui,P}) is important to the performance of reinforce-
ment learning because of the reasons detailed in remark 15
and remark 16. However, the complexity increases when the
numbers of fuzzy rules and the candidates in the action group
increase because of the increased number of q-values that
are being updated during the learning process, which brings
up the great computation load. Therefore, there is a trade-off
between the complexity and the learning performance of RL.
As a result, it is suggested that the fuzzy rules and action can-
didates should be sufficient (by selecting the large numbersA,
B, and P) if the computation capability is sufficient, while the
number of fuzzy rules and action candidates should decrease
(by selecting small numbers A, B, and P) if the computation
capability is insufficient.

IV. SIMULATION RESULTS
In this section, the numerical simulation for a 2-rigid-links
FSRM is executed to verify the effectiveness of the proposed
control scheme. The sampling time of the FSRM simulation
is set at 1 × 10−3s, and the sampling time of the controller
and TDE is set as Ts = 0.02s to show the discrete nature of
the controller in practices. The details of the used dynamic
equations of a 2-rigid-links FSRM shown in figure 6 can
be found in [63]. The parameters of the dynamic model are
detailed in table 1.

TABLE 1. Parameters of dynamics model of FSRM.

FIGURE 6. 2-rigid-links free-floating space robotic manipulator.

The initial angles and angular velocities of the 2 manip-
ulator joints are [θ1, θ2]T = [θ̇1, θ̇2]

T
= [0, 0]T . The ini-

tial position and attitude of the base and their derivatives
are [x0,y0, θ0]T = [ẋ0, ẏ0, θ̇0]

T
= [0, 0, 0]T . Similar

to [7], [10], the desired trajectories of the joints are selected
as the sine and cosine functions, as given below:

θ1,r = −0.6 sin
(π
5
t
)
+
π

8

θ2,r = 0.6 cos
(π
5
t
)
−
π

8

(58)

Similar to [7], [10], [16], the external disturbances d =
[d1, d2]T are selected as the combination of the sine and
cosine functions, which are used to verify the robustness of
proposed SCSMC.

d1 = 7.8 sin
(π
3
t +

π

4

)
+ 0.65sin(

π

10
t +

π

4
)

d2 = 5.85 cos
(π
3
t +

π

4

)
+ 0.91sin(

π

10
t +

π

4
)

(59)

Apart from the disturbance, model uncertainty is also intro-
duced into the simulation. The proposed control scheme does
not require the estimation of C

(
θ, θ̇

)
, the nominal M̂ (θ) =[

0.8347 1.1478
0.8079 1.0124

]
·M (θ ). The difference between M (θ ) and

M̂ (θ) demonstrates the system uncertainty used to verify the
robustness of the proposed SCSMC.

The parameters of the proposed SCSMC are carefully
tuned in the light of remarks 11∼19 and detailed as follows:
In the part of SMC, β1 = β2 = 0.65, ks1 = ks2 = 1, γ1 =
γ2 = 2.5, α1 = 2, α2 = 3, D1 = D2 = 0.0005, k̄1 = k̄2 =
100, �1 = �2 = 0.01, µ1 = µ2 = 0.0001, κV = 0.2758.
In the part of RL, P = 5, A = B = 11, η1 = η2 = 0.1,
λ1 = λ2 = 0.6, 3(t < 20s) = 0.3, 3(t ≥ 20s) = 0.1. The
sets of the fuzzy input 1 of the 2 subsystems (01,1 and 01,2)
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are:
[
ζ
(1)
1,1 , ζ

(1)
1,2 , . . . , ζ

(1)
1,A

]
=

[
ζ
(2)
1,1 , ζ

(2)
1,2 , . . . , ζ

(2)
1,A

]
=

[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]× 0.0005. The
sets of fuzzy input 2 of the 2 subsystems (02,1 and 02,2) are:[
ζ
(1)
2,1 , ζ

(1)
2,2 , . . . , ζ

(1)
2,B

]
=

[
ζ
(2)
2,1 , ζ

(2)
2,2 , . . . , ζ

(2)
2,B

]
= [−1,−0.8,

−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8, 1] × 0.00002. The
action group for each rule is given as: Ui, ={
ui,1, . . . , ui,P

}
= {0.01, 0.02, 0.03, 0.04, 0.05}.

To verify the effectiveness of the proposed SCSMC,
the ASMC [54] and conventional SMC with monotonically
increasing switching gain are used as comparisons. The
details of the ASMC [54] and SMC are shown in Table 2:

TABLE 2. Parameters of ASMC [54] and conventional SMC.

We consider 2 situations for the control of FSRMs, which
are the uncertain system with the external disturbance of (59)
and the uncertain system without any external disturbance
(d1 = 0, d2 = 0).

The sliding variables without any external disturbance are
shown in Figure 7. The proposed SCSMC achieved the small-
est chattering among 3 control schemes, which is followed by
the ASMC [54] and the conventional SMC. Notably, ASMC
obtains the fastest convergence of sliding variables to the
manifold because of the big value selected for the propor-
tional gain βi in ASMC.

The tracking errors for 2 joints of FSRM without any
external disturbance are presented in Figure 8. It is observed
that both the ASMC and SCSMC have good tracking accu-
racy over the conventional SMC, and there is a negligible
difference between the ASMC and SCSMC. Figure 9 shows

FIGURE 7. Dynamics of sliding variables without the disturbance (d1 = 0,
d2 = 0): (a). s1 (b). s2.

FIGURE 8. Tracking errors without any external disturbance (d1 = 0,
d2 = 0): (a). the 1st joint θ1. (b) the 2nd joint θ2.

the control inputs generated by conventional SMC, ASMC
and SCSMC for the system of FSRM without any external
disturbance. The smoothest control signals with the smallest
chattering are achieved by SCSMC though the difference
on control signals between SCSMC and ASMC is small.
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FIGURE 9. Control torques driving the manipulator without the external
disturbance (d1 = 0, d2 = 0): (a). the 1st joint. (b). the 2nd joint.

Both of SCSMC and ASMC are less chattering than con-
ventional SMC. The performance of control signals by the
3 control schemes corresponds to their performances with the
sliding variables.

Although the proposed SCSMC is superior to the conven-
tional SMC in terms of tracking accuracy and smoothness
of control signals, the SCSMC algorithm shows a slight
advantage compared to ASMC in the absence of external
disturbances. However, the story is different when the system
of FSRMs is subject to external disturbances that bring up
greater TDE errors.

Figure 10 presents the dynamics of the sliding variables
with external disturbances. Clearly, the sliding variables in
the proposed SCSMC achieve lower chattering effects over
the conventional SMC. Moreover, less drifting is observed
by these sliding variables when compared to the ASMC [54].
Although the significant chattering reduction is achieved by
the ASMC [54], the sliding variables under ASMC [54]
repetitively travel inside and outside the vicinity because of
the excessive decrease in the switching gain to handle the
TDE error, which results in the declined tracking accuracy.
In the proposed SCSMC, the sliding variables travel outside
the vicinity during the initial stage of control (e.g. t < 5s
and t = 21s), which could be caused by either the bad action

FIGURE 10. Sliding variables with the disturbance of (59): (a). s1 (b). s2.

candidates tried by Q learning or the 8i that have not been
accumulated to a large enough value to handle TDE errors.
However, the sliding variables stay inside the vicinity with
less drifting effects and chattering effects after t > 21s, which
means a high tracking accuracy.

Figure 11 shows the switching gain k̂i and the parameter of
the robust term 8i with the presence of external disturbance.
It is clear that the values of switching gain are all transferred
into the robust parameter 8i. More precisely, the switching
gain k̂i increases to overcome the TDE error and 8i remains
unchanged when the sliding variables are outside the vicinity.
The switching gain k̂i decreases to reduce chattering effects
and 8i preserves the values forsaken by k̂i when the sliding
variables are inside the vicinity. As a result, k̂i eventually
declines to zero (t > 23s) and 8i inherits the ability to
overcome the TDE errors.

Figure 12 presents the tracking errors. Although the pro-
posed SCSMC show greater errors in t = 22s than
ASMC [54] and conventional SMC because of the sliding
variables moving out the vicinities, the smallest tracking error
after t = 22s is achieved by SCSMC. Therefore, the proposed
SCSMC is superior to ASMC [54] and the conventional SMC
in terms of steady state error (SSE).

The smallest tracking errors mean the best performance
on tracking trajectories among 3 control schemes, shown
in Figure 13.

Figure 14 shows the control torque that is applied to the
joints of the space robotic manipulator, subject to external
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FIGURE 11. Switching gain k̂i and robust parameter 8i with external
disturbance: (a). i = 1. (b). i = 2.

FIGURE 12. Tracking errors with the external disturbance of (59): (a). the
1st joint θ1. (b) the 2nd joint θ2.

disturbance. Clearly, both the proposed SCSMC and
ASMC [54] can achieve smoother control torques over the
conventional SMC, which corresponds to the mitigated chat-
tering effects on the sliding variables. The difference in the
smoothness of control torques between the proposed SMC
and ASMC is small. In other words, the proposed SCSMC

FIGURE 13. Tracking performance with external disturbance of (59):
(a). the 1st joint θ1. (b) the 2nd joint θ2.

FIGURE 14. Control torques driving the manipulator with the external
disturbance of (59): (a). the 1st joint. (b). the 2nd joint.

has a similar high tracking accuracy of the conventional
SMC while also having a high control torque smoothness
characteristic of the ASMC.
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V. CONCLUSION
This paper proposed a new adaptive sliding mode control
scheme with the aid of TDE and RL techniques for motion
control of free-floating space robotic manipulators subject
to model uncertainty and external disturbances. The novel
adaptive law of switching gain can reduce chattering effects
and the RL based robust term can prevent the sliding variables
from drifting away from the manifold, which minimizes the
chattering effect and improves the tracking accuracy. The
tracking errors are proven to be UUBwith an arbitrarily small
bound and regardless of the optimal fuzzy rules, which not
only ensures a high system stability, the RL could also operate
in a safe environment to learn optimal policies. Simulation
results have shown that the proposed SCSMC algorithm
could obtain a smaller steady-state tracking error (< 2×10−4

radians) than the other algorithms while retaining a smooth
control torque characteristic of the ASMC algorithm.

VI. FUTURE WORK
Future work includes the development of the proposed
SCSMC scheme where the FSRM system actuators have
saturation limits, as demonstrated in [16] and [42]. Also,
the strategy to enable the proposed SCSMC to handle mea-
surement noise will be studied. Moreover, the research on
designing observers of system states, such as [68] and [69],
is included because it can allow the proposed control method
to work even when the measurement devices fail.

APPENDIX
Proof of Lemma 5: The term of sliding variables in

Lyapunov function (24) has a sufficient large number,
namely:

1
2
sT s = R∗1 (A1)

We assume the maximum element |sp∗ | in the vector s =
[v1, v2, · · · , vn]T is less than such a positive number:∣∣sp∗ ∣∣ = max

1≤i≤n
{|si|} <

√
2R∗1
n

(A2)

According to (A2), the following inequality can be derived:

1
2
sT s =

∑n

i=1
s2i ≤

n
2

∣∣sp∗ ∣∣2 < R∗1 (A3)

(A3) is contradict to (A1), which implies (A2) does not hold.

Therefore, the maximum element |sp∗ | is not less than
√

2R∗1
n ,

namely: ∣∣sp∗ ∣∣ ≥ √2R∗1
n
. (A4)
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