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ABSTRACT Video surveillance may involve the simultaneous monitoring of a large number of areas. Real-
time automatic change detection of a monitoring area (such as involving the movement of people or vehicles)
can reduce risks incurred in negligent manual observation. However, the low signal-to-noise ratio (SNR)
of dark environments can significantly corrupt camera images, making it difficult for machine learning
surveillance systems to detect small changes in monitored images. In addition, in the absence of changes
between two multitemporal monitoring images, sensor noise can lead to false alarms. The objective of this
paper is to reduce the effect of sensor noise on change detection of monitored images and the run time
of change detection algorithms. For these purposes, we proposed a novel multitemporal monitoring image
change detection algorithm based on morphological structure filtering and normalized fusion difference
image. First, the random noise in two surveillance images was removed using a multidirectional weighted
multiscale series of a morphological filter. Next, two difference images were obtained by using the
compression log-ratio operator and the mean ratio operator, and a fusion difference image was obtained
by equal-weight fusion of the two difference images. Then, the sigmoid function was used to compress
the fusion difference map to obtain a normalized fusion difference image, and a median filter was used to
obtain a final difference image. Finally, the k-means clustering algorithm was utilized to obtain the change
detection results. The experimental results demonstrate that the proposed method can accurately detect
changes in a night monitoring scene in real time. Subjective and objective evaluation of the experimental
results demonstrate that the proposed method is superior to reference algorithms in terms of change detection
accuracy, time and robustness.

INDEX TERMS Change detection, morphological structure filtering, normalized fusion difference map, low
illumination monitoring image.

I. INTRODUCTION
Surveillance cameras are widely used in the field of public
safety. Special situations may require the simultaneous mon-
itoring of dozens or hundreds of areas. Guards must watch
displays of different areas on multiple monitors at the same
time. For various reasons, abnormal situations in image may
not be noticed in a timely manner. Security personnel could
be replaced by applying change detection methods to video
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images. Generally, video image change detectionmethod is to
detect the change of the same scene image at different times.
However, there are some difficulties in practical applications.
A detection algorithm should be able to detect changes in a
monitoring scene accurately and quickly for low-illumination
monitoring areas (at night, for example) and very slow-
moving objects. Although infrared cameras produce superior
image quality under low illumination, ordinary cameras are
still typically used for cost considerations. However, video
images captured by ordinary cameras in low-illumination
environments [1], [2] have low signal-to-noise ratios (SNRs).
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Thus, image change detection must be investigated under
noise interference.

Although there is no research report based on the change
detection of twomultitemporal monitoring images, numerous
studies have been carried out on change detection of remote
sensing images under noise interference. In recent years,
several methods have been developed to reduce the noise in
change detection of remote sensing images, such as in [3] and
[4]. To better identify the changes between twomultitemporal
remote sensing images, variousmethods have been developed
to suppress the influence of noise between two multitempo-
ral remote sensing images: the mean ratio difference image
[5], the neighborhood ratio difference image [6], the log-
ratio difference image [7], and the fusion difference image
[8]. However, these methods cannot completely remove the
effect of noise in a remote sensing image during change
detection. Thus, other methods were required to performmul-
tiscale decomposition of the difference image generated by
the two multitemporal images: the nonsubsampled contourlet
transform (NSCT) [9], the discrete wavelet transform(DWT)
[10], the nonsubsampled shearlet transform (NSST) [11]. The
difference image was decomposed in the transform domain
for denoising, after which the change region was obtained
by clustering the difference image. Although these methods
improved the change detection accuracy of remote sensing
images, they also increased the running time of the change
detection algorithm. Other change detection methods, such
as the principal component analysis (PCA) [12], the Gram–
Schmidt transformation [13] and the scale-invariant feature
transformation (SIFT) [14], mapped the original image into
the feature space to label the changed areas. The evolution of
artificial intelligence has resulted in the development of deep-
learning-based change detection methods for multitemporal
remote sensing images: the self-paced learning method [15],
the principal component analysis network (PCANET) [16],
the convolutional wavelet neural network (CWNN) [17],
etc. The pixels in the difference image were pre-classified
and used to train the network. Saliency extraction has also
recently been applied in change detection [18], [19].

Most current change detection algorithms successfully
suppress the influence of speckle noise on change detection
of a remote sensing image but do not significantly affect
sensor noise in a low-illumination monitoring image. In the
past decades, plenty of methods were proposed to denoise
images, such as Markov random field [20], nonlocal self-
similarity [21], [22], and sparse representation [23]–[25].
Most of them were built on a simple noise model, i.e., the
independent and identically distributed additive white Gaus-
sion noise (AWGN). However, in the actual low illuminance
monitoring image, there are usually complex random noise
[1], [2]. In order to improve the accuracy of monitoring image
change detection under the condition of low illumination.
In this paper, a multidirectional weighted multiscale series
morphological filter is proposed to suppress the interference
of random noise on change detection. Then, the residual noise
is further removed by using the fusion log-ratio and mean

ratio difference images, while the details of the change area
are retained.

On the other hand, all current multitemporal image change
detection methods use scene changes reflected by multi-
temporal images to detect the differences between images.
Scene changes increase the difference between changed and
unchanged regions, which can suppress the influence of
the difference in the sensor noise between images during
change detection. Here, we report for the first time that for
unchanging scenes in actual low-illumination video monitor-
ing, many change detection algorithms often identify differ-
ences between multitemporal monitoring images that result
in false alarms. We attribute this false detection to noise
from the camera image sensor. Evidence is provided in Fig-
ures 1 and 2 for the change detection process for changing
and unchanging scenes between two multitemporal monitor-
ing images, respectively. Additional evidence is provided by
change detection results for two datasets, experimental data
5 and experimental data 6, in part III of this paper.

The discussion above shows that existing multitemporal
image change detection algorithms cannot perform accurate
change detection for monitored images under low illumina-
tion. False alarms are easily triggered for unchanging scenes
in video monitoring. In order to accurately detect in real time,
the changes in the multitemporal monitoring image under the
condition of low illumination, and avoid false alarm when
the scene reflected by the monitoring video does not change,
we proposed a change detection algorithm for multitemporal
surveillance images under low illumination conditions. Com-
pared with the previous multitemporal image change detec-
tion work, our method offers the following contributions.

(1) Current multitemporal image change detection
schemes use a detection algorithm to determine dif-
ferences between images at different times. We report
for the first time that in actual low illumination video
monitoring, many change detection algorithms often
detect differences between multitemporal monitor-
ing images for unchanging scenes, resulting in false
alarms. We attribute this false detection to the noise
produced by the camera image sensor.

(2) Most current change detection algorithms have suc-
cessfully suppressed the influence of the speckle noise
on the change detection of a remote sensing image.
However, the sensor noise in a low-illumination mon-
itoring image is not affected. We proposed a novel
change detection method based on a multidirectional
weighted multiscale series structure filter and nor-
malized fusion difference image. This method suc-
cessfully removes the interference of sensor noise on
change detection, while retaining the details of the
change area. Compared with other reference methods,
the accuracy of change detection is improved and the
running time of change detection is reduced. Espe-
cially when the scene reflected by the multitemporal
images does not change, the occurrence of false alarm
is avoided.
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FIGURE 1. The change detection process is shown for a partial gray value for a scene change reflected by two multitemporal
monitoring images. The difference between the changed and unchanged areas of the images suppresses the corresponding difference
in the sensor noise and improves subsequent clustering performance. Here, the yellow area represents the pixel value of the changed
area, and ‘1’ and ‘0’ represent the changed and unchanged pixels, respectively.

FIGURE 2. The change detection process is shown for a partial gray value for an unchanged scene reflected by two multitemporal
monitoring images. The absence of a scene change highlights the difference in the sensor noise between the images, resulting in false
detection. However, the normalization operation of a sigmoid function can suppress the difference in sensor noise between the images
to improve subsequent clustering performance. Here, the red area represents pixels with large differences in the sensor noise between
multitemporal monitoring images, and ‘1’ represents unchanged pixels that are misclassified as changed pixels.

The remainder of this paper is organized as follows.
Section II will give the proposed algorithm framework and
introduce the method in detail. Section III will introduce the
experimental data of the different scenes, show the exper-
imental results, and verify the feasibility of the method.
Finally, the conclusions are drawn in Section IV.

II. PROPOSED METHOD
Mathematical morphology is characterized by a simple struc-
ture and convenient calculations. The edges and details of the
images obtained by morphology filters are well preserved.
Mathematical morphology is widely used in image denoising

[26], synthetic aperture radar (SAR) image change detec-
tion [27], image fusion [28] and color image segmentation
[29]. In [27], Liu used mathematical morphology filtering to
remove the speckle noise in a SAR image, thereby improving
the accuracy and reducing the run time of change detection.
In a low illuminationmonitoring scene, the image captured by
the camera will be seriously affected by the sensor noise due
to the lack of light. To reduce the impact of the sensor noise
on the change detection in the multitemporal monitoring
image and reduce the running time, in this paper, an unsu-
pervised change detection algorithm based on morphological
structure filtering and normalized fusion difference image
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is proposed. Let X1 = {X1 (i, j) |1 < i < h, 1 < j < w} and
X2 = {X2 (i, j) |1 < i < h, 1 < j < w} be two multitemporal
monitoring images of the same scene at different times. The
two images have the same width w and height h. The change
detection result is denoted by ω = {ωc, ωu}, where ωc and
ωu represent changed and unchanged pixels, respectively.
Figure 3 is a flow chart showing the four main steps of the
algorithm: 1) the images are denoised using multidirectional
weighted multiscale series morphological filtering; 2) two
difference images are obtained by using the compression
log-ratio operator and the mean ratio operator, and a fusion
difference image is obtained by equal weight fusion of the
two difference images; 3) the sigmoid function is used to
normalize the fusion difference image, and a median filter is
used to obtain the final difference image; 4) use the k-means
clustering algorithm, which does not require any distribution
assumption, to find the changed area and unchanged area.

FIGURE 3. Algorithm framework for change detection.

A. MULTIDIRECTION WEIGHTED MULTISCALE SERIES
STRUCTURE FILTERING
Mathematical morphology operations include two sets in
image processing: an image pixel set and a small set or image

of the structured elements (SEs). Dilation, erosion, opening
and closing are four basic operations in mathematical mor-
phology [30]. Using a combination of dilation and erosion can
yield all the morphological filters [31]. The dilation operation
and erosion operation are defined as follows, respectively.

G⊕ S (x, y) = max
(x ′,y′)∈s

{
G
(
x − x ′, y− y′

)
+ S

(
x ′, y′

)}
(1)

G2S (x, y) = max
(x ′,y′)∈s

{
G
(
x + x ′, y+ y′

)
− S

(
x ′, y′

)}
(2)

where G represents a gray image, the value of a pixel (x, y)
in G is represented by G (x, y) ; and S represents the SE,
the value of a pixel

(
x ′, y′

)
in S is represented by S

(
x ′, y′

)
.

Dilating an image is the same as finding the local maximum
and will increase the highlighted area in the image. The
erosion operation can eliminate the boundary points of the
objects, which can remove objects smaller than the structural
elements.

Dilation and erosion processes can be implemented to
obtain the open operation and the close operation, which are
defined consecutively below:

G ◦ S = (G2S)⊕ S (3)

G · S = (G⊕ S)2S (4)

The open operation is often used to remove small bright
details that are smaller than SEs, and the close operation
removes small dark details. Alternately, the open and close
operations can be used to remove the small noise components
[32]. The morphology filter is given as follows.

(G ◦ S) · S = {(G2S)⊕ S} · S (5)

To eliminate random noise in two multitemporal monitor-
ing images, the morphological structure filter in formula (5)
is used to conduct multidirectional weighted multiscale series
filtering on the two input images. A linear element is selected
for the SEs, which is defined using two lengths (a and b) and
four angles (0◦, 45◦, 90◦ and 135◦). Four types of structure
groups are considered: SE1, SE2, SE3 and SE4. The input
image is filtered in series by using structure groups with dif-
ferent angles to obtain four filtered images. These images are
weighted and summed to obtain a smooth image after removal
of the random noise. Let X = {X (i, j) |1 < i < h, 1 < j < w}
be the input image, where h and w represent the height and
width of the input image, respectively. Therefore, the input
gray image X is filtered by the multidirectional weighted
multiscale cascade structure to obtain a smooth image Y,
which is defined as follows:

Y =
4∑
i=1

Wi × Xi (6)

where X1, X2, X3 and X4 are the images filtered by the input
image X through SE1, SE2, SE3 and SE4, respectively. Here,
W1, W2, W3 and W4 are the number of times that SE1, SE2,
SE3 and SE4 insert images divided by the total number of
insertions, respectively:

Wi = (ai + bi)÷ sum (7)
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where ai and bi are the number of times that filters of sizes
a and b in SE i are inserted into the image (where i = 1, 2,
3 and 4); sum is the total number of insertions of SE1, SE2,
SE3 and SE4. The ai and bi values are calculated as follows:

a1 = (w− a+ 1)× h (8)

b1 = (w− b+ 1)× h (9)

a2 = (h− a+ 1)× (w− a+ 1) (10)

b2 = (h− b+ 1)× (w− b+ 1) (11)

a3 = (h− a+ 1)× w (12)

b3 = (h− b+ 1)× w (13)

a4 = a2 (14)

b4 = b2 (15)

sum =
4∑
i=1

(ai + bi) (16)

where h represents the height of the input image X, and w
represents the width of the input image X.

B. GENERATION OF DIFFERENCE IMAGE
The denoising of X1 and X2 by multidirectional weighted
multiscale series morphological filtering produces the images
Y1 and Y2. FL and FD are generated by the compressed log-
ratio operator and the mean ratio operator as follows:

FL = α ∗

∣∣∣∣lbY1 (i, j)+ βY2 (i, j)+ β

∣∣∣∣ (17)

FD = 1−min
(
µ1 (i, j)
µ2 (i, j)

,
µ2 (i, j)
µ1 (i, j)

)
(18)

where lb represents a logarithmic transformation; and
Y1 (i, j) + β and Y2 (i, j) + β are used instead of
Y1 (i, j) and Y2 (i, j), respectively, to prevent cases in which
Y1 (i, j) or Y2 (i, j) have zero pixel values. Here, α is to
compress the difference between the gray values of the log-
ratio difference image and to better suppress the sensor noise.
In this paper, α is taken as 0.5. After using the compressed
log-ratio operator, we normalize FL to the range [0, 4]. Here,
µ1 (i, j) and µ2 (i, j) are the mean values of all the pixels in a
3×3 neighborhood of pixel (i, j) in Y1 and Y2, respectively.

The quality of the difference image determines the perfor-
mance of the change detection results. The advantage of the
log-ratio operate is the ability to convert multiplicative coher-
ent noise to additive noise, and the background information
of the difference image obtained by the log-ratio operate is
relatively flat. The disadvantages are that the log-ratio operate
compresses the variation range of the difference image, and
has the characteristics of enhancing the low intensity pixels
to weaken the high intensity pixels, and cannot reflect the real
change trends to the maximum extent, which may lead to the
loss of the changed area. However, the mean ratio operate
does not have such problems. The mean ratio difference
image can effectively enhance the contour of the change
area and changes in a small area, and can also prevent the
loss of change information. Therefore, the fusion of log-ratio

and mean ratio difference images can effectively remove the
noise, while retaining the change area. Some scholars have
improved the accuracy of change detection by fusing different
difference images in transform domain [33], [34]. However,
this approach is relatively complicated to implement and can
increase the run time. Inspired by [11], we use simple equal-
weight fusion to compress the log-ratio and mean ratio differ-
ence images, thereby improving the quality of the difference
image and the change detection accuracy while reducing the
run time. A simple equal weight fusion difference image R
can be obtained by the following formula (19):

R (i, j) = 0.5FL (i, j)+ 0.5FD (i, j) (19)

C. NORMALIZED FUSION DIFFERENCE IMAGE
As previously explained, an image change detection algo-
rithm identifies the change area between two images of
the same scene at different times. Changes in multitem-
poral images increase the difference between changed and
unchanged areas. This difference suppresses noise interfer-
ence in change detection to some extent. However, in the
actual low illumination video monitoring, the scene reflected
by the video does not change. In this case, the difference
in the sensor noise between the two multitemporal images
interferes with image change detection. Thus, the absence of
change scenes reflected by multitemporal images highlights
differences in the sensor noise. In this paper, we use the
sigmoid function to normalize the fusion difference image
to the range [0.2, 1.2]. Our objective is to compress the
difference between unchanged and changed pixels caused by
sensor noise. This approach can suppress noise and improve
subsequent clustering performance to some extent. The nor-
malized fusion difference image can be obtained by formula
(20).

ZR (i, j) =
1

1+ e−(R(i,j)−3)
+ 0.2 (20)

D. K-MEANS CLUSTERING ALGORITHM
Extraction of the change region from the final fusion differ-
ence image divides the final difference image into changed
and unchanged areas. Common segmentation algorithms that
can be used for this purpose include threshold algorithms
[35] and clustering algorithms [36]. Threshold algorithms
must establish a statistical model for the difference image.
The complexity of the statistical features makes it difficult
to build an accurate model. Unlike the threshold algorithm,
clustering algorithms effectively complete image classifica-
tion without considering image statistical characteristics. The
k-means clustering algorithm offers the advantages of a short
calculation time and simple operation, effectively reducing
the run time of the change detection algorithm [27]. In this
paper, we use the k-means algorithm to cluster the obtained
difference image.

According to the Euclidean distance based on formula (21),
we can acquire the change detection image C. The following
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process is performed:

C (i, j) =

{
1,

∣∣ZR′ (i, j)− Vc∣∣ ≤ ∣∣ZR′ (i, j)− Vu∣∣
0, otherwise

(21)

where Vc represents the mean feature vectors for the changed
class and Vu represents the mean feature vectors for the
unchanged class, and Vc and Vu can be obtained by random
initialization. Here, ‘1’ and ‘0’ represent the changed pixel
and the unchanged pixel, respectively.

III. EXPERIMENTAL ANALYSIS
To verify the superiority of the proposed method, image data
of different scenes were selected to perform experiments.
Subjective and objective indicators were used to compare the
detection results obtained using the proposedmethod and five
other methods: NSST [11], PCA-K-means [12], PCANET
[16], CWNN [17] and NR-ELM [6]. The experimental envi-
ronment includes an Intel Core i7-7700@3.60 GHz processor
with 8 GB of memory, and the software used was MAT-
LAB2016 (64 bit). The objective indicators analysis of the
change detection results is set as follows: the false negatives
(FN) (changed pixels that are undetected) and the false pos-
itives (FP) (unchanged pixels wrongly detected as changed)
should be calculated. The overall error (OE) is the sum of FN
and FP [37]. The percentage correct classification (PCC) and
the run time (T).

In this paper, we study the subtle change of multitemporal
monitoring image under low illumination. Most of the pixels
in the multitemporal monitoring image are unchangeable,
which will lead to the imbalance of positive and negative
sample distribution. Therefore, PCC cannot fully represent
the change detection effect of various methods. Kappa coef-
ficient and F1-score are two better evaluation metrics for
change detection. The Kappa statistic is a measure of the
accuracy or agreement based on the difference between the
error matrix and the chance agreement [38]. And F1-score is
the harmonic average of precision and recall.We calculate the
F1-score as follows:

F1− score =
2 ∗ TP

2 ∗ TP+ FN + FP
(22)

where TP is short for true positives, which is the number
of pixels that are detected as in a changed area in both the
reference image and the result. TN is short for true negatives,
which is the number of pixels that are detected as in an
unchanged area in both the reference image and the result.

A. COMPARATIVE ACCURACY ANALYSIS OF CHANGE
DETECTION METHODS
To verify the accuracy of the proposed method, three groups
of multitemporal image data of different scenes were selected
to perform experiments. Subjective and objective indicators
were used to compare the detection results obtained using
different methods.

The first set of multitemporal monitoring images is shown
in Figure 4 (a) and (b), where the camera was positioned

FIGURE 4. Change detection results of experiment data 1: (a) Original
image, (b) Image after change, (c) The reference image, (d) PCANET,
(e) NSST, (f) NR-ELM, (g) PCA-K-means, (h) CWNN, (i) Proposed.

TABLE 1. Performance measures for the experiment data 1.

to take two images of the same scene one second apart.
In the two images, only the position of the black car has
changed slightly. The two images are 256× 256 pixels in size.
Figure 4 (c) shows the change reference image. The white
pixels represent the changed area in Figure 4 (c).

The experimental data 1was used to test the accuracy of the
proposed change detection method and to compare it with the
currently in use five other methods. The experimental results
are shown in Figure 4. Compared with other algorithms,
the image generated by our proposed method is closer to the
reference image. This result is obtained because of the con-
siderable sensor noise in the two multitemporal monitoring
images taken by the camera in the absence of light. Sensor
noise typically includes random and coherent noise. In the
proposed algorithm, the multidirectional weighted multiscale
series structure filter removes the random noise, and the
fused difference image is compressed to remove the coherent
noise. Figure 4 (d) and (e) show that the change detection
results of PCANET and NSST generate false alarm due to
the presence of random noise; Figure 4 (f), (g) and (h) show
that the change detection results of NR-ELM, PCA-K-means
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and CWNN reduce the noise but lose the details of the
change area. In Table 1, the performances of the six methods
are given quantitatively. Compared with PCANET, NSST,
NR-ELM and CWNN (we only calculated the test time of the
CWNN algorithm, and the training time was approximately
550 seconds), our proposed method has better performance
based on the OE, PCC, Kappa coefficients and F1-score
and requires less time. Although the time of the PCA-K-
means algorithm is shorter than that of our algorithm, theOE,
PCC, Kappa coefficients and F1-score of our algorithm are
obviously better than those of PCA-K-means.

A second set ofmultitemporal monitoring images of indoor
scenes with an intrusion scenario was considered. The camera
was positioned to take the original image and the image
changed by the intrusion, as shown in Figure 5 (a) and (b),
respectively. The two images are 256 × 256 pixels in size.
Figure 5 (c) shows the change reference image.

FIGURE 5. Change detection results of experiment data 2: (a) Original
image, (b) Image after change, (c) The reference image, (d) PCANET,
(e) NSST, (f) NR-ELM, (g) PCA-K-means, (h) CWNN, (i) Proposed.

For experimental data 2, Figure 5 shows the final change
detection results obtained using the proposed method and
five comparative methods. PCANET and NR-ELM perform
relatively poorly, as evidenced by many white spots in the
corresponding change detection results. In Figure 5 (e) and
(h), the final change image obtained by the NSST and CWNN
methods results in many false alarms from random noise.
As shown in Figure 5, the proposed method and PCA-K-
means complete the change detection task well. However,
looking at Figure 5 (g), we found that PCA-K-means lost
some details in the detected changed area. The quantitative
analysis in Table 2 confirms this result. The proposed method
has an FN of 11, which is slightly lower than that of PCA-K-
means. The proposed method takes 0.04 seconds longer than

PCA-K-means but has the best OE, PCC, Kappa coefficients
and F1-score. In addition, our method has another advantage
in that it can result in lower FP.

TABLE 2. Performance measures for the experiment data 2.

FIGURE 6. Change detection results of experiment data 3: (a) Original
image, (b) Image after change, (c) The reference image, (d) PCANET,
(e) NSST, (f) NR-ELM, (g) PCA-K-means, (h) CWNN, (i) Proposed.

A third set of multitemporal monitoring images for an
outdoor abnormal change scene was considered. Figure 6 (a)
and (b) are two multitemporal monitoring images of the same
scene at different times. The two images are 256× 256 pixels
in size. Figure 6 (c) shows the change reference image.

Experimental data 3 is an outdoor scene, the background is
more complex than the indoor scene, and the sensor noise in
the two images captured by the camera hasmore serious inter-
ference during the change detection. As seen from Figure 6,
the performance of PCA-K-means, PCANAT and CWNN
is poor because of the obvious misclassification. There are
many false alarms in the results of NR-ELM and NSST due
to random noise. It can also be seen that (d), (e), (f), (g) and
(h) present a large area of white, which occurs because the
light of the same scene changes slightly at different times,
resulting in a gray difference between the two images. How-
ever, ourmethod uses the normalized fusion differencemap to
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suppress the subtle gray differences caused by the subtle light
changes. The quantitative analysis is given in Table 3. The FN
of the othermethods is 0 because of their poorFP. In addition,
the OE, PCC, Kappa coefficients and F1-score show that the
proposed method outperforms the other methods. And the
time required is only approximately 0.5 seconds, whichmeets
that it meets the requirements of real-time.

TABLE 3. Performance measures for the experiment data 3.

B. ANALYSIS OF EXPERIMENTAL PARAMETERS
In the process of multidirectional weighted multiscale series
morphological filtering, the sizes of the linear SEs, a and
b, must be appropriately chosen to obtain accurate change
detection results. Small SEs preserve detail but are suscepti-
ble to noise. Large SEs blur details while removing noise. The
size of a linear SE should be larger than that of a noisy image
but smaller than that of a non-noisy image. In this paper,
the lengths of a and b are chosen as 3 and 5, respectively. The
two types of linear SEs are connected in series. Subsequent
filtering of the multitemporal monitoring images removes the
influence of sensor noise on change detection, while retaining
the details of the change area. Figure 10 shows the change
detection results of single-scale structure filtering and multi-
scale series structure filtering based on experimental data 1,
2 and 3.

FIGURE 7. Change detection results of single-scale structure filtering and
multiscale series structure filtering.

As shown in Figure 7, the change detection results of
experimental data 1 and experimental data 2 are different
after filtering at different scales. For single-scale structure
filtering with a= 3, some false alarms are generated because
of the incomplete removal of the random noise. This result

TABLE 4. The relationship between parameter β and objective index.

is obtained because a small linear SE preserve the details of
the change area but is easily affected by noise. For the single-
scale structure filtering with b= 5, some details are lost in the
detected change area. This result is obtained because a large
linear SE eliminates noise but blurs details. By comparison,
multiscale series structure filtering with linear SE lengths
a = 3 and b = 5 improves the change detection results,
by removing noise while retaining the details of the change
area. For experimental data 3, the same change detection
results are obtained by different scale filtering.

FIGURE 8. Change detection results of different parameters β based on
experimental data 1 and 2.

In generating a log-ratio difference image, proper selection
of the parameter β is very important to obtain accurate change
detection results. In this paper, β was set to 0.1, 1, 10 and
100 in the change detection experiments. The experimen-
tal results show that the best change detection results are
obtained for a β of 1. Figure 8 shows the change detection
results for different β values using experimental data 1 and
2. In addition, we used 50 sets of multitemporal monitoring
images to experiment with using different β values. The
relationship between the objective index of the average exper-
imental results and β is shown in Table 4.

C. ARTIFICIAL IMAGE CHANGE DETECTION
Experimental data 4 consists of multitemporal monitoring
images generated by manual addition of a change area. Fig-
ure 9 (a) shows an image at a specific time in an outdoor

FIGURE 9. Manually adding the changed multitemporal monitoring
images data: (a): original image; (b): image after adding the change; (c)
The reference image.
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scene to which a changed area is manually added to produce
Figure 9 (b). The two images are 256 × 256 pixels in size.
Figure 9 (c) shows the change reference image.

We investigated how the noise (random component) level
affects change detection in two multitemporal monitoring
images. We added random noise with a uniform distribution
with a zero mean and a standard deviation δ to Figure 9
(b). Figure 10 shows the final change detection results of the
proposed method and five comparative methods.

FIGURE 10. Change detection results of manually added random noise.

TABLE 5. Performance measures for the δ = 80.

As seen from Figure 10, the proposed method and NSST
obtain the best change detection results under the interfer-
ence of different levels of random noise. However, with the
increase of δ, there are more false alarms in the change detec-
tion results of NSST than in the change detection results of
our method. The worst change detection results are obtained
for PCANET, which produces many false alarms even in the
absence of random noise (δ = 0). NR-ELM and PCA-K-
means produce good change detection results for small δ.
However, increasing δ produces significant disturbances from
random noise in the NR-ELM and PCA-K-means results. For
δ = 0 and δ = 20, CWNN completes the change detection
taskwell. However, some change areas are lost for δ = 40 and
δ = 60, and continuously increasing δ produces significant

disturbances from random noise. Table 5 is a quantitative
analysis of the results of the six considered methods for δ =
80. Compared to NSST, the proposed method has a lower
Kappa coefficient but a clearly better PCC, OE and run time
T . Although PCA-K-means have the shortest running time T ,
the performance based on FP, OE, PCC, Kappa coefficients
and F1-score is poor. The lower FN of PCANET, NR-ELM,
PCA-K-means and CWNN are due to their higher FP.

D. ROBUSTNESS ANALYSIS OF CHANGE DETECTION
METHOD
In many actual video surveillances, the scene reflected by two
multitemporal monitoring images collected by the camera
does not change, only the sensor noise interference image
change detection. In this case, the considerable interference
of sensor noise in the change detection results in a false alarm.
To verify the robustness of the proposed method, experiments
were conducted on experimental data 5 and 6.

FIGURE 11. Change detection results of experiment data 5: (a) Original
image, (b) Image after 1 second, (c) The reference image, (d) PCANET, (e)
NSST, (f) NR-ELM, (g) PCA-K-means, (h) CWNN, (i) Proposed.

The fifth set of multitemporal monitoring images selected
an indoor situation without real changes. The camera was
positioned to take two multitemporal images of the same
scene one second apart, as shown in Figure 11 (a) and 11
(b). The two images are 256 × 256 pixels in size. Figure 11
(c) shows the change reference image. To further verify the
hypothesis in Section II.C, we removed the real changes
(the intrusion) from the two multitemporal images in exper-
imental data 2 to produce experimental data 6, as shown
in Figure 12 (a) and 12 (b). The pixel size of the cropped
images is 193 × 193. Figure 12 (c) shows change reference
image. Experimental data 5 and 6 were used to carry out
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the change detection experiment, and the results are shown
in Figures 11 and 12 respectively.

FIGURE 12. Change detection results of experiment data 6: (a) Original
image, (b) Image after change, (c) The reference image, (d) PCANET, (e)
NSST, (f) NR-ELM, (g) PCA-K-means, (h) CWNN, (i) Proposed.

TABLE 6. Performance measures for the experiment data 5.

TABLE 7. Performance measures for the experiment data 6.

It can be seen from Figures 11 and 12 that when there is no
change in the scene reflected by the two multitemporal mon-
itoring images, the change detection performance of PCA-
K-means, PCANET and CWNN is poor. This finding occurs
because there is no real change that makes the difference
between the sensor noise in the two images obvious. PCA-K-
means uses the subtraction operator to obtain the difference

image of two images, and then, it uses principal component
analysis to obtain the feature vector of each pixel. Therefore,
PCA-K-means mistakenly classifies noisy pixels into change
pixels. Pre-classification by PCANET and CWNN results in
noisy pixels being misclassified as change pixels. The change
detection results are not accurate because the training samples
are not ideal. The final image obtained by NR-ELM and
NSST havemany false alarms because of the existence of sen-
sor noise. However, the proposed method uses the multidirec-
tional weighted multiscale series filter to remove sensor noise
and the sigmoid function to normalize the difference map.
Thus, the interference from the difference in the sensor noise
is suppressed, and the subsequent clustering performance is
improved. The results of the quantitative analysis are shown
in Tables 6 and 7. Compared with other methods, the method
based on the OE and PCC has better performance and takes
less time. Since there is no change pixel in the reference
image of change detection, Kappa coefficient is meaningless.
The F1-score of the six algorithms is 0 because TP is 0.

E. TIME COMPLEXITY OF THE PROPOSED METHOD
The running time of each change detection algorithm depends
on the size of the input images, with the increase of input
images size, the time requirement of each algorithm also
increases. The experiment data 5 and 6 are 256× 256 and 193
× 193 pixels in size, respectively. As shown in Tables 6 and
7, as the input images size increased, the time required to
run the proposed algorithm increased by 12%, compared to
36%, 64%, 65% and 18% for the PCANET, NSST, NR-
ELM and PCA-K-means algorithms, respectively. The time
requirement of the CWNN algorithm was increased by 4%
because we only calculated the testing time of the CWNN
algorithm. The small time increment of the proposed algo-
rithm was due to its simple framework.

Next, we will talk about the time complexity of the pro-
posed algorithm. As illustrated in Figure 3, there are a total
of five steps in the proposed algorithm: multidirectional
weighted multiscale series morphological filtering, fusion
difference image generation, sigmoid function normalization
operation, median filtering and k-means clustering. There-
fore, the time complexity of the proposed algorithm is the
sum of time complexities of these different processes. Let n
represents the total number of pixels of the input image; l
is the number of pixels in the largest linear SE; the window
sizes of the mean ratio operator and median filtering are
represented by ru and rm; k represents the number of cluster
centers and is set to 2; and d is the distance calculation
complexity. The k-means iteration is represented by t . The
time complexity of each step in the proposed algorithm is
shown in the following table.

For the proposed morphological structure filtering method,
first, the time complexity of single direction multiscale series
structure filtering is O (ln). Then, multiscale series structure
filtering is applied to four different directions of two multi-
temporal images, respectively. Therefore, the time complex-
ity of the proposed morphological structure filtering method
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TABLE 8. Time complexity of each process of the proposed method.

is O (8ln). Because ru, rm are much smaller than 8l and dt ,
as shown in Table 8, the complexity of the proposed algorithm
is O (8ln+ kndt).

F. ANALYSIS OF THE AVERAGE EXPERIMENTAL RESULTS
Due to the limited space of the paper, we used 50 sets of
multitemporal monitoring image data to test and calculate
the average results of the six algorithms discussed in the
previous section. Each of the 50 sets of images includes
two images taken at different times of the same scene and
a manually analyzed reference detected changed area image.
The test of each group of data was run 10 times to obtain the
average change detection result, as shown in Table 9. These
average results show that the proposed method has the best
performance based on the OE, PCC, Kappa coefficients and
F1-score compared with the other five methods. The pro-
posed method outperforms the PCANET, NR-ELM, NSST
and CWNN methods in terms of the detection time.

FIGURE 13. The relationship between the average accuracy (PCC) of the
proposed method and the standard deviation δ of random noise.

In addition, we used 100 groups of artificially generated
image data to test the effect of different random noise levels
on image change detection. Figures 13 and 14 show the
relationship between the average accuracy (the PCC) and
the average Kappa coefficient and δ of the random noise,
respectively, for the proposed method.

IV. CONCLUSION
The objective of this study is to reduce the effect of sensor
noise on change detection in monitored images and decrease
the run time of the change detection algorithm. We proposed
a novel multitemporal monitoring image change detection
algorithm based on morphological structure filtering and

FIGURE 14. The relationship between the average Kappa coefficient of
the proposed method and the standard deviation δ of random noise.

TABLE 9. Average performance measures for the experiment data.

normalized fusion difference image. First, the random noise
in two multitemporal monitoring images was removed by
a multidirectional weighted multiscale series structure fil-
ter. Next, two difference images were obtained by using a
compression log-ratio operator and a mean ratio operator
respectively, and a fusion difference image was generated
by simple equal weight fusion. The residual noise in two
monitoring images was further removed, while the details of
the changed area were retained. When the scene reflected by
the two multitemporal monitoring images does not change,
the difference in the sensor noise between the multitem-
poral monitoring images is obvious. We used the sigmoid
function to normalize the fusion difference map, thereby
suppressing the sensor noise between the two images and
improving the subsequent clustering performance. Finally,
the k-means clustering algorithm was utilized to obtain the
change detection results. Subjective and objective evaluations
of the experimental results demonstrate that the superiority of
the proposed method over most popular reference algorithms
in terms of change detection accuracy, time and robustness.
Future work is planned to explore algorithms that encode
changes in pixels over consecutive times as spikes and then
using a spiking neural network to detect the overall changes
in the scene [39].
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