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ABSTRACT Compressed sensing (CS) technologies have been widely adopted to pilot-assisted orthogonal
frequency division multiplexing (OFDM) sparse channel estimation. However, only few works have focused
on the location optimization of the pilot pattern. This paper investigates the pilot location optimization for
the measurement matrix construction based on the minimum mutual coherence (MC) rule. We consider
the design of the deterministic OFDM pilot pattern for solving a combinatorial optimization problem. The
proposed approach utilizes the advantages of the Q-bit to update the location of the OFDM pilot pattern.
The obtained results show that the proposed approach can form measurement matrix with a smaller MC and
the estimated performance can be essentially improved compared with the standard genetic algorithms or
random search method.

INDEX TERMS Channel estimation, genetic algorithm, Q-bit, pilot pattern, mutual coherence.

I. INTRODUCTION
The well-konwn orthogonal frequency division multiplexing
(OFDM) theory provides a multicarrier modulation mecha-
nism,which divides the valid spectrum into numerous parallel
orthogonal narrow-band sub-channels [1]. It can effectively
eliminate the multipath effect in wireless propagation and
reduce the receiver complexity and the power consumption.
However, the propagation paths between the receiver and
the transmitter are complex, which causes distortion in the
phase, frequency and amplitude of the received signal. The
accuracy of channel estimation is an important factor that
affects the demodulation and channel equalization [2]–[6].
Therefore, channel estimation is a key part of the OFDM
wireless systems.

Due to the innate multi-path sparse structure in the wire-
less channels, the sampled taps of the channel impulse
response (CIR) are usually close or equal to zero indicat-
ing that the CIR is a sparse signal. Therefore, numerous
sparse reconstruction algorithms have been used for OFDM
sparse channel estimate [7]–[13]. Compared to the standard
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estimation method of least squares (LS), the sparse channel
estimation effectively reduces pilot overhead and increases
the spectrum utilization [14], [15].

For further enhancing the channel estimation accuracy,
an effective mechanism is to optimize the pilot pattern.
Although the LS method uses equispaced pilot placement
in the traditional channel estimation, the random location
of the pilot can achieve good estimation performance in
sparse multipath channel. Reference [16] introduces the
optimized pilot pattern based on random search method,
in which the pattern with the smallest mutual coherence (MC)
has been chosen as the optimum pilot. The optimization
approach can generate suboptimal pilot pattern in the lim-
ited time. However, the choice of the optimal solution
depends on the range of the set. Two optimization meth-
ods, based on cross-entropy optimization [17], [18] and
discrete random approximation [19], have been used to
update the location of the pilot pattern. However, these two
methods are essentially random methods and the conver-
gence cannot be guaranteed. Therefore, it is necessary to
design the location placement for the deterministic pilot
pattern to guarantee the estimation accuracy in an OFDM
system.
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A. RELATED WORK
The location of the pilot pattern plays a critical role
for enhancing the accuracy of the channel estimation.
In [16]–[19], the optimization of the OFDM pilot pattern
has been summarized as a combinatorial problem. To over-
come the drawbacks of the random search method, various
methods have been introduced for solving the problemwithin
a limited time and generating the optimum solution. Pilot
pattern optimal methods that use genetic algorithms (GA) to
search the optimal solution have been presented [20]–[22].
Furthermore, a few evolutionary schemes have been
employed for solving the optimization problem to generat
sub-optimal pilot pattern. These algorithms include the esti-
mation of distribution algorithm (EDA) [23], particle swarm
optimization [24], [25], bat-inspired algorithm (BA) [26], and
whale optimization algorithm (WOA) [27]. However, due to
the influence of parameter setting, the convergence accuracy
and the time of the above-mentioned methods cannot be
ensured. Therefore, this paper investigates a method using
modified quantum-genetic algorithm (MQGA) to attain the
deterministic location for the OFDM pilot pattern.

Quantum genetic-algorithm (QGA) in [28] is an innovative
intelligent evolutionary algorithm that can combine evolu-
tionary algorithm and quantum computing. In QGA, Q-bit is
the minimum element of information representation that is
used to encode individuals in a population. Compared with
numeric and binary representations, individuals represented
with Q-bits have better diversity. Due to the diversity and
the global convergence of the QGA, it has been adopted as
an effective method to solve combinatorial problem in recent
years [29]–[32].

B. OUR CONTRIBUTION
Although the QGA is an effective scheme to solve the
optimization problem, only few works have focused on the
deterministic location design for the OFDM pilot pattern
using QGA. Therefore, in this paper, the MQGA-based
scheme is considered to generate the deterministic pilot
pattern for obtaining better estimation performance. In the
optimization process, a combinatorial problem is used to
describe the pilot pattern design by the MC minimization of
the measurement matrix. Then, theMQGAmethod is utilized
for solving the optimization problem to form the optimum
pilot. The results indicate that our proposed MQGA-based
algorithm can design measurement matrix with lower MC
and enhance the estimation accuracy by comparing with the
standard genetic algorithms and the random method.

The main contributions of this work are as follows:

1) The MQGA is proposed to enhance the QGA perfor-
mance by adjusting the update strategy of the rotation
angle in the iteration procedure. The angle is defined
as a variable related to the population generation to
dynamically adjust the search space.

2) An MQGA-based optimization scheme is presented
that combines the quantum computing and GA to

search the optimumdeterministic pilot pattern using the
minimum MC of the measurement matrix.

3) In order to evaluate the validity of the proposed scheme,
simulations are conducted by comparing its perfor-
mance with the equispaced, random search, the GA,
the modified adaptive genetic algorithm (MAGA), and
the conventional QGA.

The remainder of the paper is organized as follows. The
channel estimation model of the OFDM frequency domain
is briefly described and the location optimization of the
pilot pattern is formulized as the optimization problem in
Section II. We discuss the innovative contribution of this
work in Section III. In this part, the MQGA is applied for
solving the combinatorial problem to generate deterministic
pilot pattern. In Section IV, the effectiveness of our approach
is verified by MATLAB simulation. The conclusions of our
work are summarized in Section V.

II. CHANNEL ESTIMATION MODEL AND PROBLEM
FORMULATION
A. CHANNEL ESTIMATION MODEL
The traditional pilot-assisted channel estimation employs
LS algorithm in OFDM systems. However, these methods
require that the pilot patterns are equispaced. Wireless chan-
nel is a multi-path sparse structure [33]–[35], which means
that few only coefficients of the CIR are non-zero. There-
fore, compressed sensing (CS) technology shows that the
CIR sparse vector can be precisely reconstructed with small
amounts of measurements [36]–[38], which reduces the pilot
overhead and increases the spectrum utilization.

Suppose the transmitted OFDM symbol with K subcar-
riers, where the pilot subcarriers are L. The location allo-
cation in the pilot subcarriers depends on the pilot pattern
9 = (91, 92, · · · , 9L) (1 ≤ 91 < · · · < 9L ≤ K ). At the
receiver, the pilot symbols are represented as

R = SH+ Z = SWh+ Z, (1)

where R is the received L × 1 pilot symbols and S =
diag [S (91) ,S (92) , · · · ,S (9L)] is the transmitted pilot
matrix. H = [H (91) ,H (92) , · · · ,H (9L)] represents the
L×1 channel frequency response (CFR). h corresponds to the
K×1 sparse CIR vector between the receiver and transmitter.
W denotes the L×K sub-matrix formed by selecting the index
(91, 92, · · · , 9L) from the K ×K DFT matrix. Z stands for
the received L × 1 additive white Gaussian noise term.

We redefine the matrix product in (1)

D , SW =

S(91)w911 · · · S(91)w91K

...
. . .

...

S(9L)w9L1 · · · S(9L)w9LK

 , (2)

where w = e−j2π/K . Equation (1) can be rewritten as

R = Dh+ Z. (3)

The matrix D in (3) is the measurement matrix, which
is critical to improve the sparse signal vector recovery
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probability. Clearly, the received pilot signals R and the
measurement matrixD are given to channel estimation. In the
procedure of reconstructing the sparse vector h, the pilot
location determines the structure of the D that directly infi-
uences the precision of sparse reconstruction algorithm. If the
pilot location is randomly placed, the measurement matrix D
generates random structure, which satisfies the well-known
restricted isometry-property (RIP) to promote sparse signal
vector reconstruction [39]. However, the randomOFDMpilot
is unrealistic to measure the channel state information. There-
fore, the deterministic pilot pattern is critical for enhancing
the performance and facilitating the system implementation.

B. PROBLEM FORMULATION
The sparse vector h can be successfully reconstructed with
small amounts of measurements when the measurement
matrix satisfies the well-known RIP condition. However,
there is no effective method satisfying RIP for any given
measurement matrix. An practicable method is to calculate
theMCof the givenmatrix [40]. Comparedwith RIP, the eval-
uation of the MC is simpler and more practical. For a given
pilot pattern, the MC of the measurement matrix D can be
given as

ν(D) = max
1≤m, n≤K

m 6=n

|〈dm, dn〉|
‖dm‖2‖dn‖2

, (4)

where dm and dn are any two column vectors of the given
matrix D. 〈· ·〉 represents the inner product for the different
two columns of the matrix D. We substitute (2) into (4), and
the MC is further formulated as

ν(D) = max
1≤m, n≤K

m 6=n

∣∣∣∣ L∑
i=1
|S(9i)|2e−j2π9i(n−m)/K

∣∣∣∣
L∑
i=1
|S(9i)|2

. (5)

Equation (5) reveals that the MC of the given measurement
matrix D can be jointly determined by the pilot location and
the pilot value. Assume the transmitted OFDM pilot signals
are equipower |S(91)|2 = |S(92)|2 = · · · = |S(9L)|2 = 1.
By denoting c = n−m and 1 = {1, 2, · · · ,K − 1}, We can
further simplify (5) as

ν(D) = max
c∈1

1
L

∣∣∣∣∣
L∑
i=1

e−j2π9ic/K
∣∣∣∣∣ . (6)

Equation (6) demonstrates that the coherence solution of
matrix is an optimization problem when the numbers of
subcarriers and pilots are given. In [16]–[19], the MC mini-
mization of the measurement matrix is an effective method to
achieve better estimation performance. Therefore, according
to the minimization rule of the MC, the pilot location opti-
mization is modeled as a combinatorial problem

P1 : min
9∈3

ν(D(9)), (7)

where 3 is the exhausted all pilot patterns. If the exhaustive
methods are employed to generate the optimum pilot pattern,

the number of available pilot patterns is C (K ,L), which
indicates that the optimal pilot pattern cannot be obtained
within a limited time [41], [42]. The core of deterministic
pilot pattern optimization is quickly select the L subcarriers
from the K total subcarriers, and generate the pilot pattern
with the smallest MC. Therefore, it is imperative to find
an efficient method for solving the optimization problem to
generate an optimized deterministic pilot pattern.

III. DETERMINISTIC PILOT PATTERN LOCATION
OPTIMIZATION BASED ON MQGA
Intelligent optimization algorithms are statistical search
methods based on natural selection and genetic mechanism.
These methods perform population operations on potential
solutions and gradually generate an optimal solution with
the rule of survival. The QGA is an evolutionary algorithm,
which utilizes Q-bit to encode the evolved individual. In the
QGA, the individuals with the superposition state are adopted
to increase the diversity of the population. Quantum rotation
gates are utilized to complete the update of evolution using
the information of the optimal solution to guide the evolution
process. Compared with the genetic algorithm, the QGA has
better exploitation and exploration, and has strong global
convergence using small-scale populations [43]–[47].

Instead of numeric and binary representations, the QGA
employs Q-bits to represent the individuals in the popu-
lation. Consider a population with n individuals, Q(t) ={
qt1, q

t
2, · · · , q

t
n
}
, where t is the generation in the evolved

population. The Q-bit representation of the jth individual qtj
in the tth generation can be defined as

qtj =
[
αtj1 αtj2 · · · αtjm
β tj1 β tj2 · · · β tjm

]
, (8)

where m represents the Q-bits number. β and α represent a
pair of probability amplitudes satisfied the condition |β|2 +
|α|2 = 1. For a Q-bit, |β|2 and |α|2 represent the probabilities
of the Q-bit state, which may be the state 0, the state 1, or two
any superposition. Due to the state superposition, the Q-bit
individual of the MQGA provides better diversity than the
traditional binary and decimal representations.

To ensure that the evolutionary direction of the individual
is towards the optimal solution, the traditional Q-gate can be
utilized to update the population. In the iterative optimization
process, the MQGA method is proposed that uses a new
update strategy for adjusting the rotation angle to further
improve the performance. This strategy ensures that each
update will evolve towards the direction that is beneficial
for the optimal solution. In the search space, an individual
represents a pilot pattern. The Q-bit represented individual
needs to be converted into a binary representation to calculate
the fitness. In the process of evolution, Q-bits are collapsed
in the convergent state using the maximum fitness of individ-
ual. Then, the best individual in the population refers to the
optimum pilot pattern. the specific process of algorithm 1 is
used to demonstrate the MQGA-based location optimization
of pilot pattern.
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Algorithm 1 The Deterministic Pilot Pattern Location
Optimization Based on MQGA
1: t ← 0.
2: initialize Q(0) =

{
q01, q

0
2, · · · , q

0
n
}
.

3: make P(0) =
{
x01 , x

0
2 , · · · , x

0
n
}
based on evaluatingQ(0)

states.
4: calculate the fitness of P(0).
5: initialize B(0) =

{
b01, b

0
2, · · · , b

0
n
}
as the same as P(0).

6: save the optimal solutions b between B(0) and P(0) into
B(0).

7: while (not termination-condition) do
8: t = t + 1.
9: obtain P(t) =

{
x t1, x

t
2, · · · , x

t
n
}
based on evaluating

Q(t − 1).
10: calculate the fitness of P(t).
11: make Q(t + 1) with the rotation gate.
12: save the optimal solutions b between P(t) and B(t−1)

in B(t).
13: update the optimal solutions b.
14: if (migration-condition) then
15: generate the optimized pilot pattern 9opt .
16: end if
17: end while
18: The pilot pattern 9opt = (91, · · · , 9P) is the optimal

deterministic pilot pattern.

In the population initialization stage, the probability ampli-
tudes of individuals α and β are initialized by 1/

√
2. Then,

an individual q0j represented with Q-bits provides linear
superposition of all probable states based on the equal
probability ∣∣∣ϕq0j 〉 = 2m∑

k=1

1
√
2m
|Sk 〉 , (9)

where Sk is the binary string that represents the kth state of
an individual in the population.

During the individual evolution, we observe Q(0) to make
binary solution P(0), where P(0) =

{
x01 , x

0
2 , · · · , x

0
n
}
. x0j ,

j = 1, · · · , n, is m-bit binary string to represent a binary
solution. The bit of the x0j is obtained by selecting 0 or 1 with
a random probability.We randomly provide γ between (0, 1).

If
∣∣∣(α0ji)∣∣∣2 > γ , the bit of the x0j is initialized to 1, otherwise,

it is initialized to 0. Although an individual represented with
Q-bits has the linear superposition characteristic of all proba-
ble states, this representation method is unsuitable to evaluate
the individual fitness.

In the MQGA, the fitness can describe the suitability of an
individual in the population. The fitness function is a kind of
the mathematical function, which is employed to determine
the fitness of each individual in the population. We can define
the fitness function f (x) as

f (x) =
1

ν (D)
. (10)

During the optimization process, the weaknesses and
strengths of an individual can be evaluated by the fitness func-
tion. After the fitness is calculated, B(0) =

{
b01, b

0
2, · · · , b

0
n
}

is initialized as the P(0), and the optimal solutions b is also
saved into B(0).

The optimization algorithm of the deterministic pilot pat-
tern enters the iterative loop process. P(t) can be attained
based on evaluating Q(t − 1). The binary solution x tj of
P(t) represents a deterministic pilot pattern. Since the pilot
location determines the design of a measurement matrix,
we can calculate the MC of the matrix corresponding to the
pilot pattern when the solutions x tj are given.
The optimum solutions can be formed by selecting

between B(t) and P(t), where B(t) =
{
bt1, b

t
2, · · · , b

t
n
}
. The

fitness of bt−1j and x tj can be evaluated between B(t − 1) and
P(t) to select the optimum solutions b saved inB(t).When the
generated optimal solutions are better than b inB(t), the saved
solutions are updated by the new optimum solutions.

We employ quantum rotation gate for evolving the popula-
tion from Q(t) to Q(t + 1), which can be expressed as

G (φi) =
[
cos (φi) −sin (φi)
sin (φi) cos (φi)

]
, (11)

where φi represents the rotation angle to determine the state
of the Q-bit. G is adopted for updating each Q-bit of the
individuals with rotation operation. The updated

(
α′ji, β

′
ji

)
of

the Q-bit can be expressed as[
α′ji
β ′ji

]
= G (φi)

[
αji
βji

]
. (12)

The rotation angle φi is given as

φi = s(αtji, β
t
ji)1φi. (13)

Table 1 demonstrates a look-up table of φi that provides the
specific direction of φi in the optimization process. In [28],
1φi stands for the change of φi, which affects the optimiza-
tion convergence velocity. In order to dynamically adjust the
search space,1φi is given a variable related to the generation
of the evolutionary process that can be expressed as

1φi = 0.05πe−t/tmax , (14)

where t represents the current generation in the population
and tmax defines the maximum population generation.

TABLE 1. Look-up table of the φi .
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s(αtji, β
t
ji) can be used to describe the rotation angle direc-

tion that can guarantee the convergence of the optimization
procedure. Fig. 1 shows the rotation process of Q-bit when
it is stayed in the first quadrant. The updated mechanism can
be described by comparing the btji fitness with the x tji fitness.
x tji and b

t
ji represent the ith bit of the binary solution and the

optimal solution, respectively. If evaluate result, f
(
btj
)
<

f
(
x tj
)
, is false and btji and x

t
ji are 0 and 1, the φi value can be

set−1 to enhance the |0〉 probability. Otherwise, the φi value
can be set +1 to enhance the |1〉 probability. Fig. 2 shows
the update rotation process of Q-bit when it is stayed in
the second quadrant. If evaluate result, f

(
btj
)
< f

(
x tj
)
,

is false and btji and x
t
ji are 0 and 1, the φi value can be set +1

to enhance the |0〉 probability. Otherwise, the φi value can be
set −1 to enhance the |1〉 probability.

FIGURE 1. The update process of a Q-bit is described when it is stayed in
the first quadrant.

FIGURE 2. The update process of a Q-bit is described when it is stayed in
the second quadrant.

Notably, the traditional genetic operators including
crossover and mutation are not adopted to evolve individual

in the MQGA. Although these operators can affect the obser-
vation probability of the individual’s linear state, the Q-bit
individual essentially has a linear superposition state. There-
fore, these genetic operators are unnecessary in the MQGA.
During the iterative optimization process, the pilot pattern
optimization algorithm will terminate and obtain the optimal
solution when the termination conditions are satisfied.

IV. SIMULATION RESULTS
The deterministic pilot patterns are provided to evaluate
the estimation performance with different modulations. The
parameters of the digital radio mondiale (DRM) [48] are used
to complete the simulations, which are shown in Table 2. The
sparse reconstruction methods have been adopted to OFDM
sparse channel estimate. The orthogonal matching-pursuit
(OMP) [49]–[51] is a typically adopted the reconsitution
algorithm to reconstruct the sparse vector h since it is themost
widely used in various sparse recovery systems [52]–[56]. For
comparison, the equispaced pilot patterns are provided for the
standard LS estimation approach.

TABLE 2. System parameter.

Channel 3 in the DRM is adopted as a sparse multi-
path channel since it is a typical multipath channel model.
Table 3 lists the specific parameters of channel 3. For the
coefficients of channel response, four non-zero taps are ran-
domly provided, where the gain of the taps satisfies an inde-
pendent Gaussian distribution. It can be observed from the
DRM parameters that the designed subcarrier channel is a
frequency non-selective and slow fading channel. Therefore,
the wireless channel will generate the same influence on each
transmitted OFDM symbol, which reduces the complexity of
channel estimation.

TABLE 3. Sparse channel parameter.

To initialize the population, n = 1000 and t = 10000
are set. These populations are used in the genetic algo-
rithms. For the optimization methods of QGA and MQGA,
the individual probability amplitudes are initialized to 1/

√
2.
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Same parameters are set for the random search optimiza-
tion method [16]. Table 4 lists the deterministic pilot pat-
terns generated by different optimization methods. It can be
observed from Table 4 that the MC value of the generated
measurement matrices by the various pilot patterns decreases
from 0.2418 and 0.2936 to 0.1234 and 0.1382. Obviously,
the MQGA-based optimization method provides the smallest
MC, which proves that the proposed optimization method
substantially improves the design of measurement matrix.

TABLE 4. The optimized various pilot patterns.

The estimation performance can be evaluated with the
optimized various pilot patterns by 1000 Monte Carlo tri-
als. Figs. 3 and 4 show the mean-square-error (MSE) and
bit-error-rate (BER) curves of various pilot patterns over
channel 3 under robust mode B, respectively. The results
show that the MQGA-based optimization method outper-
forms the other methods such as random search scheme and
the conventional genetic algorithms. Since the measurement
matrix determined with the equispaced pilot patterns has a
larger MC, which reduces the reconstruction performance of
the sparse recovery algorithms.

It is shown from Fig. 3 that the performance curves
obtained by the genetic algorithms are better than the ran-
dom search approach. We can observe that the MQGA-based
approach has the best MES performance since this scheme

FIGURE 3. Performance comparisons of MSE versus SNR by various pilot
patterns over channel 3 under robust mode B, which is modulated
with QAM.

can obtain a measurement matrix with a smaller MC. This
reveals that random pilot patterns do not always ensure per-
formance and it is important to optimize the pilot location
using the minimum coherence rule. It can be observed from
Fig. 4 that BER of the optimization method using the MQGA
approach is lower than the other optimization schemes.

FIGURE 4. Performance comparisons of BER versus SNR by various pilot
patterns over channel 3 under robust mode B, which is modulated
with QAM.

Figs. 5 and 6 depict the MSE and BER performance
curves obtained from various pilot patterns over channel 3
under robust mode C, respectively. Comparing the consid-
ered optimization methods, the pilot pattern optimized based
on MQGA achieves the best performance that verifies the
effectiveness of the proposed scheme. We can observe from
the Fig. 6 that the gain of the MQGA shceme is 5dB higher
than the random search scheme when BER= 0.001. The
channel coding at the receiver can eliminate bit errors when
the BER is lower than 0.01. Therefore, for exploiting the
channel sparsity, theMQGA-based pilot optimizationmethod
outperforms the other methods.

Furthermore, in order to evaluate the validity of the gen-
erated pilot pattern for higher modulations, the MSE and
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FIGURE 5. Performance comparisons of MSE versus SNR by various pilot
patterns over channel 3 under robust mode C, which is modulated
with QAM.

FIGURE 6. Performance comparisons of BER versus SNR by various pilot
patterns over channel 3 under robust mode C, which is modulated
with QAM.

BER performances are compared by various pilot patterns
over channel 3 under robust mode B that is modulated
with 64QAM. Figs. 7 and 8 show the MSE and BER of
six pilot optimization methods, respectively. Clearly, the LS
method achieves the worst evaluated estimation performance.
As the SNR increases, the proposed MQGA-based optimiza-
tion scheme obtains the best performance in terms of BER
and MSE.

Figs. 9 and 10 exhibit the performance curves of
the sparse reconstruction by various pilot patterns over
channel 3 under robust mode C. As it can be shown from
the figures, the LS method with equispaced pilot patterns
yields the worst reconstruction performance. The supe-
rior performance of the MQGA-based optimization method
demonstrate its feasibility and effectiveness. In MQGA algo-
rithm, the generated measurement matrix provides lower MC
using individual optimization, which can effectively improve
the recovery accuracy for OMP reconstruction algorithm.
It means that even though the order of modulation is esca-
lated from QAM to 64QAM, the optimized pilot pattern can

FIGURE 7. Performance comparisons of MSE versus SNR by various pilot
patterns over channel 3 under robust mode B, which is modulated
with 64QAM.

FIGURE 8. Performance comparisons of BER versus SNR by various pilot
patterns over channel 3 under robust mode B, which is modulated
with 64QAM.

provide its performance superiority on both MSE and BER.
Therefore, the MQGA-based optimized method is also effec-
tive for OFDM sparse channel estimation with higher modu-
lation. The above-mentioned results demonstrate and validate
that the proposed MQGA-based optimization method outper-
forms random scheme, GA, MAGA and QGA with forming
superior performance measured by MSE and BER.

The computer runtimes for various pilot optimization
schemes are listed in Table 5. The simulation environment
utilizes the MATLAB R2018b with 8 GB memory and a
quad-core 3.9 GHz CPU. As it can be shown from the Table 5,
the MQGA-based optimization method takes less time than
the random search. Quantum algorithms consume more time
than the traditional genetic algorithms. Although the individ-
ual represented by Q-bit enhance the diversity of population,
this representation approach is unsuited to evaluate individual
fitness. In the QGA, the Q-bit represented individual needs
to be converted into a binary representation to calculate
the fitness, which greatly influences the convergence time.
Hence, the update strategy of the rotation angle is adjusted
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FIGURE 9. Performance comparisons of MSE versus SNR by various pilot
patterns over channel 3 under robust mode C, which is modulated with
64QAM.

FIGURE 10. Performance comparisons of BER versus SNR by various pilot
patterns over channel 3 under robust mode C, which is modulated with
64QAM.

TABLE 5. The various schemes runtimes.

in the MQGA. The rotation angle of the MQGA is defined
as a variable related to the population generation, which
effectively reduces the update time compared to QGA.

It is worth mentioning that the OFDM pilot signal design
is offline achieved at the transmitter. The performance of
channel estimation is the most critical part for an OFDM
system. Therefore, the recommended location design of the
deterministic OFDM pilot pattern is entirely feasible.

V. CONCLUSION
In this paper, the location optimization of the deterministic
pilot pattern is investigated using the minimum MC rule to
design themeasurement matrix. The design of the determinis-
tic OFDM pilot pattern can be summarized as an combinato-
rial problem. The convergence time of the QGA is improved
by adjusting the update strategy of the rotation angle. The
proposed MQGA-based optimization method employs indi-
vidual evolution to realize the update and optimize the pilot
position. The obtained results shown that our approach can
form excellent measurement matrix with a smaller MC and
provide better estimation performance compared with the
genetic algorithms and random search method. In future,
the authors plan to focus on pilot pattern optimization rule and
intelligent search methods. In addition, intelligent channel
estimation method employing deep learning in the wireless
communication will be investigated.
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