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ABSTRACT Key-frame extraction for first-person vision (FPV) videos is a core technology for selecting
important scenes and memorizing impressive life experiences in our daily activities. The difficulty of
selecting key frames is the scene instability caused by head-mounted cameras used for capturing FPV videos.
Because head-mounted cameras tend to frequently shake, the frames in an FPV video are noisier than those in
a third-person vision (TPV) video. However, most existing algorithms for key-frame extraction mainly focus
on handling the stable scenes in TPV videos. The technical development of key-frame extraction techniques
for noisy FPV videos is currently immature. Moreover, most key-frame extraction algorithms mainly use
visual information from FPV videos, even though our visual experience in daily activities is associated with
humanmotions. To incorporate the features of dynamically changing scenes in FPV videos into our methods,
integrating motions with visual scenes is essential. In this paper, we propose a novel key-frame extraction
method for FPV videos that uses multi-modal sensor signals to reduce noise and detect salient activities via
projecting multi-modal sensor signals onto a common space by canonical correlation analysis (CCA). We
show that the two proposed multi-sensor integration models for key-frame extraction (a sparse-based model
and a graph-based model) work well on the common space. The experimental results obtained using various
datasets suggest that the proposed key-frame extraction techniques improve the precision of extraction and
the coverage of entire video sequences.

INDEX TERMS Video summarization, multi-sensors, key-frame extraction, sparse estimation, graphmodel.

I. INTRODUCTION
First-person vision (FPV) videos captured by head-mounted
wearable cameras are useful for understanding daily life
activities [1], [2]. FPV videos often contain important scenes
worth remembering in our daily lives. Summarizing such
salient scenes is essential because FPV videos tend to be
redundant [2]. However, FPV videos are unstable and noisy
compared to third-person view (TPV) videos, and most exist-
ing methods of video summarization mainly focus on han-
dling the stable scenes in a TPV video [3]–[19]. Moreover,
the following differences between FPV and TPV videos sub-
stantially complicate summarizing FPV videos compared to
summarizing TPV videos. (i)Camera placement: FPV videos
are captured from the wearer’s viewpoint (e.g., chest and
head), whereas TPV videos are captured from a fixed point
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of view. (ii) Intention:Although TPV videos are intentionally
recorded by the photographer, FPV videos are recorded
regardless of his/her intention. This unconstrained FPV video
often contains insignificant objects, such as a ceiling or a
floor. (iii) Content: TPV videos record experiences worth
remembering through a manual operation that focuses on
specific interesting scenes. FPV videos record natural scenes
of life, which may contain repetitive video shots that are
irrelevant to our interests. (iv) Quality:Whereas TPV videos
contain stable frames, FPV videos tend to contain blurry and
shaky frames due to the wearer’s body motion. Therefore,
TPV summarization techniques applied to noisy FPV videos
perform inaccurately and even worse than uniform sam-
pling [2]. To obtain high-quality FPV video summaries,
we must address these issues.

In this paper, we present a key-frame extraction method
for FPV videos with multi-sensor signals. To reliably select
key frames, our method uses motion signals as the extra

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 122281

https://orcid.org/0000-0002-5801-4937
https://orcid.org/0000-0003-1770-471X


Y. Li et al.: Multi-Sensor Integration for Key-Frame Extraction From First-Person Videos

sensor information beyond video frames, while most existing
methods use only video information [3]–[19]. We assume
that motion information expresses the detailed hand or head
movement that visual information does not capture. To asso-
ciate their features, we embed multi-sensor data into a com-
mon vector space [20]–[27] using probabilistic canonical
correlation analysis (PCCA) [28]. The projection matrices
learned by PCCA ensure that the relevant pairs of information
are close. Moreover, we propose two key-frame extraction
algorithms that are performed on this learned space. First,
we use a sparse key-frame selection method based on a sparse
measure, the l1-norm, and extend it with multi-sensor integra-
tion. Second, we use a key-frame extraction approach based
on a probabilistic graphical model (referred to as a graph
model) employing conditional random fields (CRFs) [29]
for multi-sensor integration. We show that the proposed
multi-sensor integration is effective for key-frame extraction
from FPV videos under both sparse-based and graph-based
models.

This paper is an extension of our conference publications
[30], [31] with significant modifications. Two major dif-
ferences are as follows: 1) We introduce a graph-model-
based method and a sparse-model-based method to extract
key frames from FPV videos. Therefore, the proposed
multi-sensor integration can improve the key-frame extrac-
tion performance across different methods. 2) We expand the
experimental results not only by adding more videos to the
dataset used in the conference papers but also by introducing
another new dataset and quantitative comparisons with the
existing methods.

II. RELATED WORKS
Key frames are a group of frame images selected from
different scenes in a video and presented in temporal
order [4], [32]. Although there are several mathematical
definitions of key frames, these definitions commonly model
key frames as the most representative and informative frames,
reflecting the most important contents in a video [4]–[6],
[14]–[16].

1) KEY-FRAME EXTRACTION
Many key-frame extraction methods have been proposed in
the literature [3]–[16]. Liu et al. [3] presented an algorithm
based on the maximum a posteriori (MAP) method to detect
key frames. Ejaz et al. [4] developed an integration scheme
to combine the image features obtained from the correlation
of RGB colour features, a colour histogram, and moments of
inertia to select the key frames. Elhamifar et al. [6] proposed
a sparse modelling representation selection (SMRS), which
is an efficient algorithm for video classification and summa-
rization. SMRS employs a sparse-coding-based framework
with the l1-norm as a sparsity constraint. However, the direct
utilization of SMRS estimated the null-information frames
because of noise and instability in FPV videos [30], [31].
The proposed technique develops SMRS for better key-frame
selection from FPV videos.

2) SPARSE REPRESENTATION
Sparse representation is undoubtedly a common model of
sparse signals [33]. There are many applications, such as
compressive sensing [34], denoising, sampling, classifica-
tion, superresolution, inpainting, and deblurring, that employ
the sparse representation theory and model as fundamentals.
In the literature, sparse representation has been further proven
to be an extremely powerful tool for representing, analysing,
and compressing signals [33], [35]. Aiming for sparsity,
most sparse representations employ the l0-norm [33], [35],
[36] or the l1-norm as the sparsity constraint [37], [38]. In this
paper, we also use the l1-norm as a sparse measure to reduce
noise and detect salient activities in first-person videos.

3) GRAPH MODEL
A graph model is a probabilistic model for which a graph
expresses the conditional dependence structure between ran-
dom variables. They are generally used in pattern recognition
and machine learning [39]. Two branches of graph mod-
els that are generally used are Markov random fields and
Bayesian networks. An increasing number of publications in
computer vision use graph-based energy minimization tech-
niques for image processing applications, such as segmenta-
tion [40], [41], image restoration [42], stereo [43], [44], shape
reconstruction [45], object recognition [46], texture synthe-
sis [47], and socialized group photography [48]. For example,
Ngo et al. [49] proposed video summarization methods and
scene detection algorithms based on graph modelling. In their
methods, a video is expressed as a complete undirected graph,
and the normalized cut algorithm is applied to globally and
optimally divide the graph into video clusters. Molino et al.
[50] used a probabilistic approach based on active inference
in CRFs, which is a type of discriminative undirected prob-
abilistic graphical model, for active video summarization.
In contrast to the existing graph-based approaches that only
use video information, our approach additionally uses sen-
sor information as well as video information for accurately
modelling daily living activities.

III. MODEL AND FORMULATION
In this work, we propose a multi-sensor integration-based
key-frame extraction method for FPV videos. First, we focus
on applying the sparse model to select key frames using
multi-sensor integration. Second, we use the graph model
to select the key frames from FPV videos. Our pro-
posed multi-sensor integration method can be applied
to any key-frame extraction algorithm. However, in this
paper, we choose two examples: sparse-model-based and
graph-model-based algorithms.

A. VIDEO FEATURE SELECTION
First, we extract all the video frames from the raw video and
learn the deep semantic features by adopting a pre-trained
DNN (e.g., VGG). Inspired by previous work [51], we rep-
resent the input video frames as the deep semantic features of
the semantic space, and every feature corresponds to a frame.
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FIGURE 1. The graphical model for canonical correlation analysis.

This method encodes the semantic transition of videos. Thus,
it is effective for many video processing applications, such
as video description, video generation and video retrieval.
Some video clusters can be estimated, each of which is
predicted to involve similar frames. With this assumption,
we estimate a cluster of frames by solving an optimization
formulation of the video representation. We use frame deep
features learned from the DNN rather than natural video
frame images. For feature extraction, we employ a pre-trained
VGG network [52], which produces discriminative visual
features. Note that the video features in the following sections
of this paper refer to the features extracted from VGG. In this
way, we convert each video frame into a 1000-dimensional
vector. After extracting the VGG features from all N frames,
we construct a dictionary matrix, where each row represents
N frames and each column contains the 1000-dimensional
frame feature vector.

B. PROJECTION WITH MULTI-SENSOR INTEGRATION
We employ PCCA to embed the multi-sensor integration data
(video and motion) into a common space (Fig. 1) [30]. Let
Xv
= RC×N represent video data and Xs

= RC ′×N represent
motion sensor data, whereN is the number of frames,C is the
video feature dimensionality, and C ′ is the motion sensor fea-
ture dimensionality. In this paper, the sensor features consist
three-axis acceleration (the rate of change in the velocity of an
object) obtained by three-axis accelerometers, and rotational
changes ormaintaining orientation is obtained by gyroscopes.
In general, motion data do not have units of frames; more
often, they have units of seconds or another time unit. To fuse
motion data with video data, we first synchronize the two
modalities and then often perform a sampling of the motion
data in units of video frames. Linear projections Av and As

from the video and sensor domains to a common space can
be generated by the following formulation:

min
Av,As
‖AvXv

− AsXs
‖
2
F, (1)

where Av
∈ RC̃×C and As

∈ RC̃×C ′ are linear projectors
from the video feature domain and the sensor domain, respec-
tively, to the common space with the same dimension, and
‖·‖F is the Frobenius norm [53]. The optimal projection
matrices Av and As are estimated from the solutions of an
eigenvalue problem. After learning the projection matrices
Av and As, we can use them to project data vectors from
the video and the sensor domains into the C̃-dimensional
common space, where the corresponding sets of information
are similar [30]. Noting that C̃ < C and C̃ < C ′, it realizes
the reduced dimension of the common space after PCCA.

FIGURE 2. The framework of the sparse-model-based and
graph-model-based video feature selection using only video information.

FIGURE 3. The framework of the video-summarization-based sparse
model and graph model with multi-sensor integration.

The common space video features Xv
c = AvXv and the

common space sensor features Xs
c = AsXs are spliced to be

the integrated feature matrix X = [Xv
c,X

s
c].

C. SPARSE-MODEL-BASED KEY-FRAME EXTRACTION
First, we propose our multi-sensor integration model for
extracting a key frame based on a sparse model. Fig. 2 shows
the framework of our approach for video key-frame extraction
based on the sparse model. A model for signals formulates
a mathematical description of the group of signals, which
allows them to be distinguished from the remaining signal
space. A linear representation model has been developed
and has recently received appreciable attention [54], [55].
Signals can be expressed as linear combinations of the rep-
resentative signals. This can be formulated as a problem of
finding the representative signals as a sparse multiple mea-
surement matrix problem [6]. The sparse modelling method
[33], [56]–[58] is the most effective representative method-
ology of all linear representation algorithms. The aim of
sparse modelling is to approximate a natural signal by a linear
expression of dictionary atoms. The signal is then represented
as linear combinations of a few dictionary atoms. Fig. 3 shows
the proposed framework of the video summarization.

To incorporate sparse representation into key-frame
extraction, a modification was considered for to the
dictionary learning problem, which first addresses the opti-
mization of local minimum due to the generation of two
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unknown matrices, namely, the sparse coefficient and the
dictionary matrices. This enforces learning sparse representa-
tions from natural signals [6]. For this purpose, the formula-
tion of sparse-representation-based key-frame extraction can
be written as follows:

min
H
‖X− XH‖2F s.t. ‖H‖0q < s. (2)

Here, the `0q norm is expressed as:

‖H‖0q =
N∑
i=1

I(‖hi‖q > 0). (3)

Here, hi is the ith row of the matrix H, and I is the indicator
function. Generally, q = 2 is the l2 norm. ‖H‖0q counts the
rows of nonzeros in the sparse coefficientmatrixH. The index
of the nonzero rows of H corresponds to the index of the
columns of X, which is selected as the signal representation.
The indices of the zero rows ofH are redundant frames, which
are neighbours of key frames. We select nonzero rows to
represent key frames and discard the redundant and irrelevant
frames. It is preferable that the extraction of the representa-
tion is invariant with respect to the global translation of the
signal. Thus, we enforced the affine constraint 1TH = 1T.
Because the problem of the l0 norm isNP-hard, we introduced
the l1 norm as a relaxation of this NP-hard problem. The l1
norm is the sum of the elements of a vector. The proposed
objective formulation can be written as:

min
H
‖X− XH‖2F + α‖H‖1q s.t. 1TH = 1T. (4)

Here, ‖H‖1q is expressed as:

‖H‖1q =
N∑
i=1

‖hi‖q. (5)

To normalize the rows of H as the l2 norm, we take q = 2.
The final objective formulation can be written as:

min
H
‖X− XH‖2F + α‖H‖1,2 s.t. 1TH = 1T, (6)

where

‖H‖1,2 =
N∑
i=1

‖hi‖2. (7)

D. FACTOR-GRAPH-BASED KEY-FRAME EXTRACTION
Second, we propose our multi-sensor integration model
for extracting key frames based on graph models. The
frameworks using only video information and multi-sensor
integration are shown in Fig. 2 and Fig 3. Methods that
solve complex global functions of variables always employ
the given function’s factor as an output of ‘‘local’’ functions,
and each function depends on a subset of the variables. This
factorization can be expressed by a structure graph, which is
called a factor graph [59].

Let s = {0, 1}N be a vector with binary values that
represent the summary of frames from the FPV video, where
si is equal to 1 when the ith frame is selected as a key frame

FIGURE 4. Energy interactions in the four-frame graph model. Ui and Pij
are shorthand for Uθ (si ) and Pθ (si , sj ), respectively.

and 0 when the ith frame is NOT selected as a key frame.
p(s|θ ) is denoted as the probability density distribution of how
likely the selected frame s is to be selected as a key frame.
We select the frames of si = 1 and omit the frames of si = 0
to discard the redundant and irrelevant frames. We modelled
this distribution by CRF, and θ = [θ0, θ1, α, γ, β] are the
values of its parameters to be defined later in this subsection.

A CRF models the probability density with a Gibbs
distribution [50], [60]. Thus, p(s|θ ) can be expressed as
the normalized exponential of an energy function, which is
denoted as Eθ (s): p(s|θ ) ∝ exp{−Eθ (s)}. The summary of the
key frames, denoted as s?, is generated by solving the MAP
as follows:

s? = arg max
s

p(s|θ ) = arg min
s

Eθ (s). (8)

We define the energy function as follows:

Eθ (s) = λ
∑
i

Uθ (si)+
∑
i,j

Pθ (si, sj). (9)

Here, the unary potential Uθ (si) enforces the selection of
static frames, the pairwise potential Pθ (si, sj) encourages
frames with diverse semantic content, and λ > 0 is a parame-
ter that weights the unary and pairwise potentials. Taking four
frames (s1, s2, s3, s4) as an example, we illustrate the unary
and pairwise interactions as a graph in Fig. 4.

A directed weighted graph includes a group of nodes and
a group of directed edges that connect the nodes. Generally,
the nodes represent pixels, frames, or other features. A graph
normally contains two special nodes referred to as the source
s and the sink t; thus, it is called an s-t graph. In the context
of vision, terminals correspond to the group of labels that can
be assigned to pixels [61]. In our situation, we will focus on
the case of the graph with two terminals: the key frame and
not a key frame, which is expressed in Fig. 5.

The unary potential, Uθ (si), defines the baseline to be
selected as a key frame. We model

Uθ (si) = θqI [si = 1]+ θpI [si = 0], (10)

where I [Q] is an indicator function. I [Q] = 1 if Q is true and
I [Q] = 0 otherwise, and θq and θp are constants that balance
the ratio of key frames and other frames.

The pairwise potential, Pθ (si, sj), is defined between each
pair of similar frames and enforces selecting frames with
diverse contents. Let d(ψ i,ψ j) be the Euclidean distance
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FIGURE 5. The s-t graph for key-frame selection by the min-cut/max-flow.

between the features of two frames i and j, expressed as
follows:

d(ψ i,ψ j) = ‖ψ i − ψ j‖2. (11)

The pairwise potential enforces that similar frames should not
be selected for the summary. For this purpose, we define a
potential that is weighted by the distance between features,
shown as follows:

Pθ (si, sj) = exp{−d(ψ i,ψ j)}P
′

θ (si, sj). (12)

Here, P′θ (si, sj) suggests that both frames si, sj should not
be selected at the same time, and the term exp{−d(ψ i,ψ j)}
reduces the effort of P′θ (si, sj) when the frames are dissimilar.
The value of the potential, Pθ (si, sj), is smaller when the
frames si, sj are dissimilar. Specifically, P′θ (si, sj) is defined
as follows:

P′θ (0, 0) = θ0α, P′θ (0, 1) = γ, (13)

P′θ (1, 0) = γ, P′θ (1, 1) = −θ0β. (14)

Thus, the optimal solution for key-frame extraction can be
obtained by minimizing the potential as follows:

s? = arg min
θ

Eθ (s)

= arg min
θ

λ
∑
i

Uθ (si)+
∑
i,j

Pθ (si, sj)

= arg min
θ

λ
∑
i

(θqI [si = 1]+ θpI [si = 0])

+

∑
i,j

exp{−d(ψ i,ψ j)}P
′

θ (si, sj) (15)

We use a general optimization framework of
trust-region-based local submodular approximations
(LSA-TR) [62] to solve problem (15). The local submodular
approximations (LSA) approach constructs an approxima-
tion model without additional variables and uses a more
accurate approximation. Trust region (TR) methods are a
class of iterative optimization algorithms. The model is only
accurate within a small region around the current solution
called the ‘‘trust region’’, and the approximate model is

Algorithm 1 Sparse-Model-Based Key-Frame Extraction
(SMFE)
Require: SignalmatricesXv fromVGGandXs from sensors

1: Normalize the columns of the signal Xv and Xs to a unit
l2-norm.

2: Embed into a multi-information matrix by PCCA.
3: Set the regularization parameters.
4: Initialize H as a random matrix.
5: Execute SMRS [6] with ADMM to estimate the indices

of the key frames from the FPV video.

Algorithm 2 Graph-Model-Based Key-Frame Extraction
(GMFE)
Require: Data matrices Xv from VGG and Xs from sensors
1: Normalize the columns of the data Xv and Xs to a unit
l2-norm.

2: Embed into a multi-information data matrix by PCCA.
3: Calculate the size of the 2 × N array of unary terms (N

is the number of frames in the video).
4: Calculate the size of the M × 6 array, which is

a list of M arbitrary pairwise potentials. Each
row in this pairwise potential list is of the format
[i, j,P′θ (0, 0),P

′

θ (0, 1),P
′

θ (1, 0),P
′

θ (1, 1)], where i and
j are neighbours and the four coefficients define the
interaction potential.

5: Execute LSA-TR [62] to estimate the indices of the key
frames of the FPV video.

then globally optimized within the trust region to obtain a
candidate solution.

IV. ALGORITHMS
A. SPARSE MODEL
This section describes the proposed algorithm for
summarization from FPV videos with multi-sensor inte-
gration based on SMRS [6]. The coding matrix of SMRS
is computed using data self-representativeness (the dictio-
nary is set by the video signals themselves) adopting block
sparsity regularization. We employ the alternating direc-
tion method of multipliers (ADMM) optimization scheme.
The corresponding algorithm is described in Algorithm 1:
Sparse-model-based key-frame extraction (SMFE). We used
the existing implementation of SMRS1 for our method.

B. GRAPH MODEL
Next, we summarize the proposed algorithm for summarizing
an FPV video through multi-sensor integration based on a
graph model. We employ a min-cut/max-flow optimization
framework to optimize the corresponding objective function.
The corresponding algorithm is described in Algorithm 2:
Graph-model-based key-frame extraction (GMFE). We use

1http://www.ccs.neu.edu/home/eelhami/codes.html
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Gorelick et al. [62]’s implementation of local submodular
approximations-trust region (LSA-TR).2

V. EXPERIMENTAL SETTINGS
We evaluate our proposed key-frame extraction methods
using human activity datasets captured in a house. In the
following section, we present these datasets in detail.

A. DATASETS
1) CMU-MMAC
The Carnegie Mellon University Multimodal Activity
(CMU-MMAC) database [63] is designed to overcome
some of the previous limitations by collecting multi-modal
(e.g., video, audio, motion capture, and accelerations) signals
of human activity. To collect human activity in an environ-
ment that is as natural as possible, researchers have installed
a nearly fully operable kitchen and collected the preparation
of some meals from the beginning to the end. A Firewire
camera, FL2-08S2C, is worn on the head of the subject.
Accelerometer and gyroscope information is collected with
MicroStrain’s 3DM-GX1 inertial measurement units.

There are five datasets that consist of cooking five different
recipes in the CMU-MMAC database: brownie, salad, pizza,
scrambled eggs, and sandwich. Because only the brownie
dataset has labels, we use the brownie dataset in our paper.
There are 13 videos in the brownie dataset, from B07 to B24.

2) DAILY ACTIVITIES
We used another non-public dataset collected by
Miyanishi et al. [64], which we call the daily activities
dataset in this paper. This dataset collects the daily activities
of 8 persons (not the researchers), whose ages ranged from
21 to 26 years (mean = 23.13, SD = 1.69). These subjects
wore wearable motion sensors containing a wearable camera,
three-axis accelerometers, and gyroscopes. The subjects exe-
cuted 20 daily actions at various locations following written
instructions on a worksheet without direct supervision from
the experimenters. For instance, he/she ‘‘washes dishes’’ in
the kitchen and ‘‘drinks tea’’ in the living room. For each
person, there are several sessions containing different actions
performed. The recorded sensor signals consist of 17-h videos
and motion data of approximately 20 actions. The proposed
algorithm selects key frames from these FPV videos using
not only video but also motion information [64].

The order of locations where subjects performed their daily
activities is shuffled in each session. There is a room layout of
the experimental environments and lists the 20 daily activities
at each location performed by the subjects in each session
of the with-object task. A single session averaged 10.86 min
(SD = 1.14) among the subjects. The sessions were repeated
12 times (including two initial practice sessions), and short
breaks were allowed. There was no researcher to supervise
the subjects while collecting data under the semi-natural col-
lection protocol. The researchers used the motion and video
data from the 3rd to 12th sessions of the with-object task

2http://vision.csd.uwo.ca/code/

FIGURE 6. Two cases for the same accuracy value.

as the search target. After the with-object task, to collect
gesture motions for retrieving past activities, the subjects
were asked to remember and repeat 20 activities that they
did in the with-object task experiments as gesture motions,
which are used for queries. The second experiment is called
a without-object task. Its activities are slightly different from
the with-object task activities and required completing each
activity during specified times. For example, the activity is
to ‘‘pour hot water’’ and ‘‘stir a cup of coffee’’ rather than to
‘‘make coffee.’’ The subjects then repeated the 20 activities;
at this time, there was no object, and they were in a new
environment.

B. METRICS
To evaluate the key-frame extraction performances of
different algorithms, we introduced two metrics: accuracy
and entropy.

We use accuracy (A) to evaluate the effectiveness of the
proposed methods for key-frame extraction from FPV videos
with multi-sensor integration, which can be described as
follows:

A =
NCorrect

NWhole
, (16)

whereNCorrect denotes the number of selected key frames that
are correctly selected with respect to the label and NWhole is
the total number of key frames selected by the methods. Note
that the labels correspond to different actions in the video;
there are start frames and end frames in each label. If the
selected key frame is between the start frame and end frame
of the label, we consider the key frame to be correctly chosen.

However, the metric of A cannot integrally measure the
quality of a key-frame extraction. As shown in Fig. 6,
cases (a) and (b) have the same accuracy value of 5/6. The
results of the key-frame extraction are different. In the case of
(a), the selected frames are all focused on event 4. However,
in the case of (b), the selected key frames are dispersed
(events 1, 3, 4, 5, and 6). Generally, the result of case (b) is
better than that of case (a).

To evaluate the information content of different actions
in the video, we introduced entropy as a metric for the
experimental results, which can be described as follows:

S = −
∑
i=1

pi log2 pi. (17)

Here, pi is the probability of each event extracted by the
proposed algorithm. This metric will be maximum if all
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FIGURE 7. The framework of cross-validation.

Algorithm 3 Cross-Validation-Based Parameter Settings
Require: Video sequences V1,V2,V3, . . . ,Vn
1: for i = 1 to n do
2: Choose Vi as validation data and the others as training

data.
3: for α = α1 to αM do
4: Apply SMRS to the training data.
5: Calculate the entropy over the training data.
6: Average the entropy.
7: end for
8: Draw the entropy curves versus the different values of

α.
9: Choose the optimal value of α.
10: Apply SMRS to the validating data with the optimal α.
11: end for

FIGURE 8. The average entropy values of the training dataset for
various α (daily activities).

extracted events are equally likely. Thus, a higher entropy
value means a better key-frame extraction result. In Fig. 6,
the entropy of (a) is 0, and the entropy of case (b) is 2.3219.
Thus, the entropy of (b) is higher than that of (a), whichmeans
that the key-frame selection result of (b) is better.

C. CROSS-VALIDATION-BASED PARAMETER SETTINGS
To obtain the appropriate parameter α in SMFE, we use
cross-validation. We used all videos from the brownie dataset
to determine the optimized parameter. At first, we took
one brownie dataset video as validation data and the other
videos as training data, which is illustrated in Fig. 7. Then,
we changed α to different values and calculated the entropy
of the training data and averaged the entropy results. From
the curves of the average entropy versus the value of α,
the optimal choice of α can be determined, which yields the
highest entropy value. We describe the steps in Algorithm 3.

TABLE 1. The entropies and accuracies (%) for various types of
information by SMFE (CMU-MMAC).

TABLE 2. The entropies and accuracies (%) for various types of
information by GMFE (CMU-MMAC).

VI. EXPERIMENTAL RESULTS
We applied our proposed algorithms separately to the
CMU-MMAC dataset and the daily activities dataset. The
experimental results are presented in this section.

A. SPARSE MODEL
First, we conducted experiments using the sparse-model-based
key-frame extraction algorithm. We performed experiments
on the CMU-MMAC dataset with multiple information:
video and motion information. To investigate the effects of
different values of regularization parameter α on the qual-
ity of selected representatives, we considered the brownie
dataset as political debate videos. We ran our proposed
algorithm with α = 8, 8

√
2, 16, 16

√
2, 32, 32

√
2, 64, 64

√
2

to investigate the optimal α with respect to different brownie
dataset videos from 07, 08, . . ., to 24. Fig. 9 displays the
cross-validated entropy with various values of α. Then,
we select the optimal α with the highest entropy value.
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TABLE 3. Entropies and accuracies (%) for various information by SMFE (daily activities).

To evaluate the performance of our proposed multi-sensor
integration, with the optimal α = 64, we compared the
entropies and accuracies using multi-sensor information and
pure video and pure motion information. Table 1 presents the
evaluation results, from which we can find that the perfor-
mance using multi-sensor information is better than the ones
using pure information in most cases.

Then, we also performed experiments on the daily
activities dataset with multiple types of information: video
and motion information. To obtain the optimal regularization
parameter, α, in terms of the quality of selected key frames,
we ran the proposed algorithm from α = 4 to 64 with

a multiplicative step of
√
2 to investigate the optimal α with

respect to different objects from 09, 11, . . ., to 17. Each object
has 10 repeated sessions. We averaged the results of each
object and plot the results in Fig. 8, fromwhichwe can choose
the optimal α with the highest entropy value.

With the optimal α, we compared the entropies and
accuracies using multiple types of information and pure
video and motion information. Table 3 displays the
evaluation results, from which we can observe that
multiple types of information achieve better results. Thus,
our proposed multi-sensor integration achieved better
performance.
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FIGURE 9. The average entropy values of the training dataset for various α (CMU-MMAC).

FIGURE 10. The number of each event by SMFE from brownie 08.

B. GRAPH MODEL
We conducted experiments using the graph-model-based
key-frame extraction algorithm. We also applied our
key-frame extraction algorithm based on the graph model to
the CMU-MMAC and daily activities datasets. The parameter
settings refer to those in [50]. Similar to the sparse model,
we first presented results using the CMU-MMAC dataset,
and we performed experiments with multiple information:
video and motion information. The parameters were set to
λ = 1, θ1 = 20, α = 5, γ = 1, β = 1. The remaining
parameter θ1 controlled the number of selected key frames.
Table 2 shows the results of the entropies and accuracies from
various pure information and multiple information. From the
experimental results, we inferred that multiple information
performs better than only video or motion information.

Now, we will describe the experimental results achieved
with the daily activities dataset. We took object 09 as
a representative case. The parameters were set to λ = 1,
θ1 = 20, α = 5, γ = 1, β = 1. We adjusted θ1 to control
the number of selected key frames. As shown in Table 4,
the experiments with multiple sensors achieved better
results.

C. COMPARISON BETWEEN THE TWO MODELS
To compare the performances of SMFE and GMFE,
we present the results of computational time consumption.
The algorithms are run on a computer with an Intel Core
i7 CPU under the Microsoft Windows 10 operating sys-
tem. GMFE (averaged 700 s) costs us much less time than

TABLE 4. The entropies and accuracies (%) for various types of
information by GMFE (daily activities).

SMFE (average 2550 s). If we take the computational time
consumption as a principal consideration, then GMFE will
be a better choice than SMFE.

Then, we calculated the number of key frames selected by
our methods for each event in the videos. Let us take brownie
08 as an example. Fig. 10 and Fig. 11 show the results,
from which we can find that the key frames using proposed
algorithms that use multi-information represent the events
better than those using only pure information.

From the above discussion, the SMFE algorithm has
fewer parameters (only one parameter) than the GMFE algo-
rithm. Thus, SMFE is easier to adjust and more robust
with respect to different videos. However, GMFE has less
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FIGURE 11. The number of each event by GMFE from brownie 08.

computational time consumption. Thus, GMFE is more
efficient in high-dimensional situations.

VII. CONCLUSION
We proposed novel frameworks for key-frame extraction
from FPV videos based on sparse modelling and graph mod-
elling by multi-sensor integration. The deep features from a
pre-trained DNN rather than raw video frames are used for
key-frame extraction. The index of the key frame was then
estimated by the proposed algorithms, which are proven to
be more informative and elegant when extracting the key
frames from FPV videos. The experimental results indicate
that the proposed approaches can achieve a modest enhance-
ment over pure video data. The accuracy and entropy results
demonstrate the effectiveness of the proposed algorithms.
Moving forward, we will develop our approach by incor-
porating other non-video information, including text, audio,
electromyograms, and heart rate signals.
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