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ABSTRACT Stepped frequency continuous wave (SFCW) radar achieves wide bandwidth by synthesizing
series of monochromatic pulses in a consecutive manner. Uniform frequency sampling is often performed
with a constant frequency step, which in turn limits the maximum unambiguous range achievable by the
radar to reliably distinguish targets. Thus, a small frequency step must be selected when clutters exist at long
distances even though the target of interests is located at much closer distances. This is costly since a large
number of frequencies must be synthesized, which leads to slow acquisition speed. In this paper, a sparse
nonuniform frequency sampling method is proposed to effectively reduce the number of frequencies while
suppressing aliasing effects from clutters. The Poisson Sum Formula is utilized to derive a deterministic
formula for choosing a discrete set of frequencies within a specified frequency band. A corresponding
frequency weighting formula is added in order to maintain the same target impulse response in time-domain
as the one achieved by dense uniform frequency sampling. Numerical and experimental results are presented
to demonstrate the improved performances of the proposed sparse sampling method for SFCW radar
imaging.

INDEX TERMS Nonuniform frequency sampling, Poisson sum formula, sparse sampling, stepped frequency
continues wave.

I. INTRODUCTION
Due to large dynamic range, high phase accuracy and
stable system performances, SFCW radar is widely used in
many applications, such as through-wall radar, concealed
weapon detection and non-destructive testing [1]–[5]. Tra-
ditional SFCW scheme includes a series of amplitude-phase
measurements acquired at equally spaced frequency points,
and corresponding time-domain signal or range profile is
obtained by taking inverse Fourier transform (IFT) on the
frequency-domain data. Thus, the Maximum unambiguous
range (MUR) is limited by the frequency step 1f in SFCW

RMUR = c/21f (1)

where c is the speed of propagation. If an object is located
outside the MUR, its time-domain response will be folded
inside after IFT due to aliasing effects from insufficient
frequency sampling. This is illustrated in Figure. 1 where
objects located outside MUR appears as clutters and can
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possibly overlap with real target response. It is especially a
big problem when performing short-range imaging of targets
in a complex environment. Although the region of interests
is quite small, very fine frequency step must be used in
order to avoid the influence of background objects from far
distances. Under a constant bandwidth, finer step leads to
more frequency sampling points and long acquisition time,
which is unacceptable in many applications that requires
fast or even real-time imaging. Therefore, effective solutions
are needed to allow sparse sampling while reducing aliasing
effects.

Possible hardware solution involves employing additional
RF switch at the receiver, which can reject unwanted clutters
by time-gating. Currently the off-the-shelf solid-state switch
has a switch time on the order of 100ns. Thus, it is a
viable solution only when the separation between the target
and clutters are large enough (e.g. at least 15m). Other
strategies for increasing ambiguity range are based on random
frequency sampling. The effect of random sampling for
SFCW radar was analyzed in [6]. It is shown that the
ambiguity in range could be suppressed, however, a noise
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FIGURE 1. Illustration of aliasing effects when clutter is located outside
the maximum unambiguous range due to insufficient frequency sampling
in SFCW.

component is added to the range/Doppler sidelobes. In the
field of ground penetrating radar and SAR imaging, random
sparse sampling has been used together with compressive
sensing (CS) techniques [1], [7]. This has shown good results
in terms of reconstruction quality under specific conditions
with the cost of high computational complexity. Random
sampling was also applied with success for high-frequency
surface imaging when the range extension of the target is
smaller than the maximum unambiguous range [9]. Coprime
sampling method has been applied in signal spectrum
estimation and SAR imaging [10], [11]. A pair of coprime
arrays can be used to sample a signal sparsely, and then
reconstruct the autocorrelation at a significantly denser set
of points. Thus, all applications based on autocorrelation
can benefit from this technique. A nonuniform SFCW
approach based on quadratic frequency spacing was proposed
in [12] to reduce the maximum level of ambiguities for
short-range imaging. There are also related literatures in
the field of antenna array that addresses a similar sampling
problem. In the far-field, the array factor is related to the
array sampling via a Fourier transform. There, unequally
spaced antenna arrays are proposed to suppress the effect
of grating lobes [13], [14]. The basic theory of unequally
spaced arrays based on Poisson sum formula is established
in [16] with detailed discussion on its use in thinned array
configurations. The stationary phase method was used to
quantitatively analyze antenna patterns in different array
distributions [15]–[18].

In this paper, a deterministic sparse frequency sampling
method is proposed to suppress aliasing effects from clutters.
By imposing a flat ambiguity plateau and unchanged impulse
response, a weighted square-root frequency distribution can
be derived based on the established method of Poisson
sum formula [16]. Both numerical and measurement results
illustrate that this method is effective in reducing the
influence of clutters outside the maximum unambiguous
range. It is particularly effective in achieving high quality
imaging with sparse frequency sampling under a complex
environment.

The rest of this paper is organized as follows. Section II
formulates the treatment of range ambiguity in frequency
sampling and introduces the proposed sampling method as
well as related frequency weighting formula. Numerical
and experimental results are presented and analyzed in
Section III. Finally, Section IV summarizes the results and
conclusions of this paper.

II. FORMULATIONS
In this section, the proposed sparse nonuniform frequency
sampling distribution is formulated. AssumingN frequencies
are acquired by a SFCW radar, the received signal in
frequency-domain at the nth frequency from a point-like
target can be formulated as

s [n] = σ · I [n] e−j2π f [n]τ (2)

where σ and τ are the reflectivity and time delay of the target,
and f [n] and I [n] represent the frequencies and amplitudes
of the SFCWmeasurements. The corresponding time-domain
signal can be obtained via discrete inverse Fourier transform
(IDFT)

s (t) =
1
N

N∑
n=1

s [n]ej2π f [n]t (3)

Under conventional SFCW, the frequencies are equally
spaced, then f can be expressed as

f [n] = fs + (n− 1)1f (4)

with fs represents the starting frequency, and 1f is the step
between neighboring frequencies. Substituting (4) into (2)
results in

s [n] = σ · I [n] e−j2π [fs+(n−1)1f ]τ (5)

Equation (5) shows that under periodic sampling when the
time-delay of the target τ equals the integer times of 1/1f , the
acquired frequency-domain data would exhibit ambiguities
due to phase wrapping.

To avoid this, controlled aperiodicity should be introduced.
In order to arrive at a deterministic formula for the
nonuniform frequency distribution, the Poisson sum formula
is utilized to connect discrete sums with continuous integrals.
The Poisson sum has the following form [19]

∞∑
n=−∞

h [n] =
∞∑

m=−∞

∫
∞

−∞

h(v)e−j2πmvdv (6)

Thus we rewrite (3) as

s (t) =
∑∞

m=−∞
sm (t) m = 0,±1,±2, · · · (7)

where

sm (t) =
1
N

∫
∞

−∞

s (v) ej2π [f (v)t-mv]dv

=
σ

N

∫
∞

−∞

I (v)ej2π [f (v)(t−τ)−mv]dv (8)
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Note that the frequency distribution f (v) vanishes for v ≤ 0
and v > N . Equation (8) gives the formula to relate the
continuous Fourier transform with the discrete samples of
the SFCW data. Under this formulation, the samples of sm(t)
represent different parts of the time-domain response, with
s0(t) corresponding to the main pulse from the actual target
and sm(t) corresponding with the mth ambiguity plateaus.
Equation (8) can be reformulated as

sm (t) =
σ

N

∫
∞

−∞

I [v] ejϕ(v)dv (9)

where

ϕ (v) = 2π f (v) (t − τ)− 2πmv (10)

The integral in (9) can be expressed using the method of
stationary phase (MSP) [20] as

sm (t) =
σ

N
I (v̄)

√
2π
ϕ
′′ (v̄)

ejϕ(v̄)e−j
π
4 (11)

where v̄ are the points of stationary phase fulfilling the
following equation

ϕ′ (v̄) = 2π f ′ (v̄) (t − τ)− 2πm = 0 (12)

The envelope of the ambiguity plateau in (11) can be
expressed as

|sm (t)| =
σ

N
I (v̄)

√
2π
ϕ
′′ (v̄)
=
σ

N
I (v̄)

√
f ′(v̄)
mf ′′ (v̄)

(13)

Equation (13) provides the relationship between the
envelope of the resulting time-domain response or range
profile and the first/second derivatives of the frequency
distribution function at the points of stationary phase.

Based on this formulation, we can pursue a nonuniform
frequency distribution that can fulfill requirements placed
on the time-domain response. The first requirement is that
the ambiguity plateau should be as flat as possible without
any slope. This is useful since a flat background will be less
likely to be recognized as target reflections. This requires the
envelope to be a constant, thus

|sm (t)| =
σ

N
I (v̄)

√
f ′(v̄)
mf ′′ (v̄)

= Am (14)

The second requirement is to maintain the same main
impulse response for the actual target under sparse nonuni-
form frequency sampling as the one obtained from dense
uniform sampling. From (8), we can perform a change of
variable while setting m = 0. This results in

s0 (t) =
σ

N

∫
∞

−∞

I (v)
dv
df
ej2π f (v)(t−τ )df

=
σ

N

∫
∞

−∞

I (v)
f ′(v)

ej2π f (v)(t−τ )df (15)

Under uniform frequency sampling, the derivative of the
sampling function is a constant, as f ′ (n) = 1f . But this is

not the case for nonuniform sampling. Therefore, in order
to obtain the same impulse response, the weighting of the
frequencies should be introduced that satisfy the following
relation

I (v) = f ′(v) (16)

This will cancel out the influence of the nonuniform
frequency sampling on the main impulse response of the
target.

Combining (16) with (14), we obtain the following
equation

A2mN
2mf

′′

(v̄)− σ 2 [f ′ (v̄)]3 = 0 (17)

The solution to (17) can be written in the following form

f (v̄) = fs +
B

γ − 1

√(γ 2 − 1
)
v̄+ N

N
− 1

 (18)

where fs is the start frequency, B is the bandwidth and γ
is a coefficient. And the amplitude of the frequencies based
on (16) should be

I (v̄) = f ′ (v̄) =
B(γ + 1)

2N

√
N(

γ 2 − 1
)
v̄+ N

(19)

From (18), we could also derive the formula for f
′′

(v̄)

f
′′

(v̄) =
B (γ + 1)2 (γ − 1)

−4N 2

[
(γ − 1)2 v̄+ N

N

]− 3
2

(20)

Using (14), we could derive the height of the ambiguity
plateau under this nonuniform sampling scheme

|sm(t)| =

√
1

2mN
·
γ + 1
γ − 1

(21)

We name the nonuniform sampling scheme in (18)
and (19) as weighted square-root frequency sampling due
to its square-root relation with frequency index v̄ and
the corresponding requirement on the amplitude of the
frequencies.

From (12) we can obtain the relation between t−τ and the
stationary points

t − τ =
m
f ′(v̄)

(22)

Thus, the expected extend of the mth ambiguity plateau can
be expressed as [9]

m
[f ′(v̄)]max

≤ t − τ ≤
m

[f ′(v̄)]min
(23)

To ensure the smooth connection between the 1st and 2nd

plateaus, the following condition must be met

1
[f ′(v̄)]min

≤
2

[f ′(v̄)]max
(24)

This leads to the solution for the coefficient γ ≤ 2.
Therefore, under the condition that the first and second
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ambiguity plateau are smoothly connected (γ = 2),
the resulting frequency sampling scheme is further reduced
to

f (v̄) = fs + B

(√
3v̄+ N
N

− 1

)
(25)

I (v̄) =
3B
2N

√
N

3v̄+ N
(26)

As the proposed frequency sampling is nonuniform,
the time-domain response shall be calculated by IDFT or
more efficiently by the Nonuniform Fast Fourier Transform
(NUFFT) [21], [22] that combines the classical FFT with
fast multipole method to achieve the O (N · logN ) com-
putational complexity. The results obtained in this paper
uses the NUFFT kernel provided by an open-source Python
implementation [23].

FIGURE 2. Flow chart illustration for the application of the proposed
weighted square-root sampling method in SFCW sensing and imaging.

Figure 2 illustrates the use of the proposed nonuniform
sampling scheme in SFCW sensing and imaging. Beginning
with application requirements such as the needed down-range
resolution, appropriate bandwidth and number of frequencies
can be selected. Then equations (25) and (26) can be used
to derive the list of frequencies and corresponding ampli-
tudes under the proposed weighted square-root sampling
scheme. After this, SFCW measurements can be carried
out on the specified frequencies and amplitudes to achieve
high-resolution sensing and imaging of targets with reduced
aliasing effects from sparse sampling.

III. EXPERIMENTAL VERIFICATION
In this Section, simulation and measurement results are
presented to verify the proposed formulations and sparse
sampling technique.

A. NUMERICAL SIMULATIONS
Numerical simulations are performed first to verified the
effectiveness of the proposed nonuniform sampling scheme.

FIGURE 3. Comparison among time-domain impulse responses from
uniform, quadratic and the proposed weighted square-root frequency
sampling. (a) impulse responses of a single target at 0.5m distance,
(b) the zoomed-out target impulse response. The simulated frequency
band is 10 ∼ 20GHz with total frequency number N = 501.

Different sampling schemes are compared under the same
number of frequencies using the same processing method.
Figure 3 compares the time-domain signals obtained from
uniform, quadratic and the proposed weighted square-root
frequency sampling. The frequency band is from 10∼20GHz
with the same 501 sampling points. A single point-like target
is simulated at the distance of 0.5m from the radar. Under this
setup, the frequency step for uniform sampling is 20MHz,
resulting a MUR (maximum unambiguous range) of 7.5m.
This is visible in Fig.3(a) where replications of the target
response periodically appear and are separated by the MUR
under uniform sampling. Both quadratic and the proposed
sampling scheme provides a much lower ambiguity plateau
at the level of −25dB from the maximum response from the
target. As designed, the ambiguity plateau from weighted
square-root is flat while the quadratic scheme exhibits a
slop along the range distance. Fig.3(b) further compares the
main impulse response for the target among three sampling
methods. Quadratic sampling exhibits a higher sidelobe level
and shallower depth of nulls. In comparison, the proposed
method can deliver the same impulse response as the one
provided by uniform sampling.

Due to larger maximum frequency step within the
weighted square-root sampling under this scenario (30MHz
vs. 26.7MHz), the separation between its ambiguity plateau
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FIGURE 4. Study on the influence of coefficient γ . (a) frequency
distributions under different choices of γ (e.g. γ = 1.5, 2 and 3), (b)
time-domain impulse responses under different choices of γ .

and the target response is slightly smaller comparing with
quadratic sampling. This can be adjusted by decreasing the
coefficient γ . Figure 4 shows the influence of γ on the
time-domain signals. Under the condition that 1 < γ <

2, there is no overlap between the first and second order
plateaus, and more separation between the first plateau and
the target response can be created. As γ becomes larger,
the envelope of the first-order plateau decreases while more
overlap occurs among higher-order plateaus. Therefore, γ
can be selected based on application requirements. When
maximum separation to the target response is required, then
γ should be configured to be close to 1. If a connected
ambiguity plateau is needed, then γ should be equal or
slightly smaller than 2 (e.g. 1.7∼2.0) to create acceptable
mainlobe/plateau separation with connected flat ambiguity
plateau.

FIGURE 5. The variation of maximum amplitude of the ambiguity plateau
with the number of frequency points N, when γ = 1.5, 2 and 3.

Figure 5 further plots the variation of the maximum
amplitude of the ambiguity plateaus with the total number
of frequency points under a fixed bandwidth for different

choices of γ . It confirms the impact of γ on the max-
imum plateaus level. Furthermore, it shows the proposed
nonuniform sampling method can still maintain a relative
low level of ambiguities under small number of frequencies.
A range ambiguity of −20dB can be achieved with only
100 frequency sampling points. This makes it a very effective
sparse frequency sampling technique for fast SFCW sensing
and imaging. It is worth noting that under a fixed frequency
band, as the total frequency number increases, the maximum
frequency interval decreases accordingly, which causes the
ambiguity plateaus to move farther away from the target
response in time-domain.

Figure 6 compares different sampling strategies under a
typical near-field sensing scenario with clutters. A single
target is located at 1m away from the radar, while clutters
consisting ofmultiple point-like targets are distributed around
6m distance. The frequency band is between 10GHz and
20GHz with 351 sampling points. Four sampling strategies
including uniform, random, quadratic and the proposed
weighted square-root sampling are applied and compared
with dense uniform sampling with 1001 sampling points.
Because the MUR is 5.25m in uniform sparse sampling case,
clutters appears symmetrically on both sides of the target
with strong aliasing effects, as shown in Fig.6(a). All three
nonuniform sampling strategies are able to effectively reduce
the ambiguities from sparse sampling. The suppression of
ambiguity is the weakest from random sampling with only
1.8dB reduction comparing with uniform sparse sampling.
The proposed weighted square-root sampling provides the
lowest ambiguity plateau among different sampling methods.
Because of its property in terms of flat ambiguity plateau,
weighted square-root sampling is able to maintain a relatively
flat ambiguity plateaus even when many clutters exist. This
is preferable under complex sensing scenarios. Quantitative
comparison is further shown in Table 1. It is clear that the
proposed method provides better sidelobe level (SLL), null
depth and reduced ambiguity level than the other nonuniform
sampling strategies.

TABLE 1. Quantitative comparison among different sampling methods.

To further verify the effectiveness of the proposed method,
near-field imaging simulation with point-like targets are
performed. Figure 7 illustrates the target scenario used in the
numerical simulation. The point-like targets are located on
a cross-shaped grid with an interval of 0.05m, and placed at
1m distance from the antenna. Meanwhile, another cluster of
targets are placed at 3.1m to simulate the effect of unwanted
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FIGURE 6. Comparison of sparse sampling strategies under strong
clutters. A single point-like target is located at 1m from the radar, and the
clutters are distributed between 5.95 to 6.55m. Dense uniform sampling
(N = 1001) is used for comparison. Impulse responses from (a) uniform
sampling, (b) random sampling,(c) quadratic sampling, and (d) the
proposed weighted square-root sampling are compared.

clutters. A transmit/receive antenna pair scans across a planar
aperture of 1m×1m with 1cm step. The antenna is assumed
to be omnidirectional. Classical synthetic aperture radar
imaging algorithm for rectilinear configuration is applied to
obtain 3D images of the targets [24]. The frequency ranges
from 10GHz to 24GHz with a total of 201 frequency points.

FIGURE 7. Illustration of simulated near-field imaging scenario with
point-like targets located at 1m distance while clutters exists at 3.1m
from the antenna aperture.

Under this configuration, the corresponding MUR is 2.143m
under uniform frequency sampling. Therefore, the response
from the target cluster at longer distance will overlap in
time-domain with the one in front, and influence its imaging
quality.

Figure 8 compares the imaging results of the targets at
1m distance between the uniform and the proposed weighted
square-root frequency sampling. Both front and top views
of the 3D images are created by maximum projection.
The applied frequency sampling and weighting distributions
are also shown. Although the ambiguous responses from
clutters are mostly out-of-focus at target distances, it is
visible that the result from uniform sampling is severely
affected by objects outside the MUR with high background
artifacts. In contrast, the images from the proposed sampling
method show no degradation from clutters despite the sparse
sampling condition.

B. MEASUREMENT RESULTS
The performances of the proposed nonuniform frequency
sampling method are further verified by near-field SFCW
imaging experiments using vector network analyzer (VNA).
A ZVA24 VNA from Rohde & Schwarz is used to carry
out the SFCW measurements. NI-VISA (Virtual Instrument
Software Architecture) standard interface is used to control
the VNA and to measure the specified sampling frequencies.
The transmitted power and IF bandwidth of the VNA
during experiment are 3dBm and 10KHz, respectively.
Under this setting, the measurement time per frequency
is approximately 0.5ms. Antipodal Vivaldi antennas are
used as transmit/receive antennas that has an operational
bandwidth from 2 to 26.5GHz and a 3dB beamwidth of
about 75◦(@15GHz) [25]. In the first experiment, the SFCW
data from a standard metal sphere is acquired. The sphere is
located at 0.68m in front of the antenna. The measurement
frequency band is from 10GHz to 20GHz, the total frequency
number is 501. Thus, the frequency step1f is 20 MHz under
uniform sampling, and the corresponding ambiguity range is
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FIGURE 8. Comparison of imaging results of point-like targets under
sparse frequency sampling. (a) reconstruction from uniform frequency
sampling, (b) reconstruction from weighted square-root frequency
sampling, (c) applied frequency distributions and (d) amplitudes for
uniform and weighted square-root frequency samplings.

about 7.5 m. As shown in Figure 9, the ambiguity plateau of
the weighted square-root sampling is approximately −25dB
lower than uniform sampling. Its ambiguity plateau is almost
flat as required. And the main target impulse response
matches well between the uniform and nonuniform frequency
distributions.

Two-dimensional synthetic aperture radar experiments
are performed using a single transceiver pair mounted

FIGURE 9. The measured time-domain impulse response of a metal
sphere from uniform frequency sweep and the proposed weighted
square-root sweep.

on a mechanical scanner. The test scenario is illustrated
in Figure 10. Two resolution test patterns are measured at
the distance of 1.2m from the antenna while having a wall
2.3m behind the targets. The acquired frequency band is
between 10∼24GHz and the total number of frequencies
is 201. The transmit/receive antennas synthesize a planar
aperture of 1m×1m with a scanning step of 1cm. Classical
synthetic aperture radar imaging algorithm for rectilinear
configuration is applied using the acquired data to obtain 3D
reconstructions of targets [24].

Figure 11 shows the obtained 1D range profiles of the two
test targets from both uniform and the proposed nonuniform
sampling method. With 201 frequency points, the MUR
is 2.143m. Under uniform sampling, the ambiguity caused
by the clutters from the wall appears at 1.4m, very close
to the reflections of the targets. In contrast, the proposed
weighted square-root sampling is able to significantly reduce
the aliasing effects from clutters with no apparent response
close to the target reflection. A flat ambiguity plateau caused
by the targets starts to appear from 2.6m at the level of−20dB
in comparison with the 0dB peak at 3.34m from uniform
sampling. Under this sparse sampling scenario, the proposed
nonuniform sampling method is able to drastically reduce the
influence from clutters at larger distances while maintaining
a relatively low level of ambiguities.

Figure 12 and 13 show the imaging results from the
two targets under both uniform and nonuniform sparse
sampling. Front and top view images are created by taking
maximum values along the range and cross-range directions.
In both cases, the ambiguity caused by the wall behind
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FIGURE 10. Experimental setup and measured test patterns. (a) The
illustration of the measurement scenario where a wall is about 2.3m
behind the test patterns, (b) the photo of the two test patterns. (test
pattern 1 has slots with 1 ∼ 30mm width and separation, and the widest
slot on target 2 is 2.5cm), (c) picture of the VNA and Vivaldi antennas
used for the experiment.

FIGURE 11. The measured 1D range profiles from uniform SFCW sweep
and weighted square-root SFCW sweep.

the target creates a strong response close to the object
under imaging. Since clutters are not controllable in real-life
scenarios, it could easily overlap with the target response.
In contrast, the proposed nonuniform frequency sampling
strategy is very effective in suppressing ambiguities. The ratio
between the responses from the targets and the clutters in the
images is enlarged from 15dB to 30dB, while the resolution
and image quality of the target are maintained without
compromises.

FIGURE 12. Comparison of imaging results of test pattern 1. (a),(b) show
the front and top views from uniform frequency sampling, and (c),(d)
show the front and top views from weighted square-root frequency
sampling.

FIGURE 13. Comparison of imaging results of test pattern 2. (a),(b) show
the front and top views from uniform frequency sampling, and (c),(d)
show the front and top views from weighted square-root frequency
sampling.

IV. CONCLUSION
In this paper, we propose a sparse nonuniform frequency
sampling method which can effectively suppress range
ambiguity from clutters in SFCW radar. A deterministic
formula is derived using Poisson Sum formula for the
purpose of choosing a discrete set of frequencies within
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a specified frequency band. The corresponding frequency
weighting formula is also formulated to maintain the same
target impulse response in time-domain as the one achieved
by uniform sampling. Both simulated and measurement
results demonstrate the effectiveness of the proposed sparse
sampling method in reducing aliasing effects under sparse
sampling conditions. A ten-times reduction in the number
of frequencies can be achieved with the proposed sparse
sampling technique without visible compromise in the
sensing and imaging performances. The proposed technique
has the potential to significantly reduce acquisition time
in SFCW, which is a key step in achieving real-time
microwave/millimeter wave imaging.
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