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ABSTRACT In this paper, a novel fixed-time nonsingular fast terminal sliding mode control incorporating
with an adaptive disturbance observer is proposed for second-order uncertain nonlinear systems to achieve
fast stabilization and robust control. Based on the theory of fixed-time convergence, a novel fixed-time stable
system is first investigated. Using this system, a novel fixed-time nonsingular fast terminal sliding mode
controller is developed, which can achieve system stabilization within bounded convergence time regardless
of initial states and provide nonsingularity and fast convergence. Moreover, an adaptive disturbance observer
is designed to improve the control performance and compensate for uncertain disturbances. The fixed-time
stability of the sliding surface and the system states under the proposed composite control scheme are
demonstrated by the Lyapunov stability theory. Both theoretical analysis and simulation results are presented
to verify the feasibility and superiority of the proposed method.

INDEX TERMS Nonsingular fast terminal sliding mode, adaptive disturbance observer, fixed-time stability.

I. INTRODUCTION
Sliding mode control (SMC) is a popular nonlinear control
method thanks to its low insensitivity and strong robustness
to system uncertainties [1]–[6], because many physical sys-
tems may suffer from various uncertainties [7], [8], such as
parameter perturbation and external disturbance. In order to
improve the convergence performance of conventional SMC,
terminal sliding mode control (TSMC) has been proposed
by using a nonlinear sliding hyperplane [9]–[12], which can
achieve a fast finite-time convergence property in the sliding
phase. Nevertheless, standard TSMCmay occur a singularity
problem. There are some modified terminal sliding surfaces
presented for nonlinear systems to deal with the singularity
problem, see, e.g., [9], [13]–[15].

It is worth noting that finite-time TSMC can force the
system states to converge to equilibrium within bounded
time related to initial states, which prohibits its application
into practical systems if the initial conditions are unknown
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in prior. As an extension of finite-time stability theory, the
fixed-time stability theory was given in [16]. Compared
to the finite-time stability, the fixed-time stability can pro-
vide the desirable convergence within bounded time without
requiring the knowledge of initial conditions. Because of the
good feature, fixed-time TSMC has been studied extensively
in recent years. The literature [17] developed a fast fixed-time
nonsingular TSMC schemewhich was used to suppress chaos
in power systems. The literature [18] constructed a new
nonsingular fast terminal sliding surface that was employed
to the fixed-time tracking control for second-order multi-
agent systems. In [19], a novel fixed-time nonsingular TSMC
method was proposed, which was applied to intercept maneu-
vering targets. The literature [20] presented a novel non-
singular terminal sliding mode manifold for the fixed-time
robust stabilization of second-order nonlinear uncertain sys-
tems. Fixed-time terminal sliding surfaces were designed
for the tracking control of the rigid spacecraft [21]–[23].
The literature [24] proposed a novel fixed-time nonsingular
TSMC strategy that was used to control a single inverted
pendulum.
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As known,TSMC is a robust control algorithm which can
suppress uncertain disturbances. Nevertheless, the robust per-
formance is closely related to the chattering frequency of
the controller. It means that large robust switching gains are
designed, which in turn may result in aggravation of the
undesired chattering.If the disturbances can be compensated
accurately, then the chattering can be substantially reduced
while guaranteeing the robustness of the system [25]–[27].
Recently, the researches on the disturbance observer-based
methods have received considerable attention. In [28], a novel
terminal sliding mode tracking control method was pre-
sented utilizing disturbance observer technique for uncertain
SISO nonlinear systems. In [29], a novel sliding surface
was constructed based on disturbance estimation for dis-
turbance suppression. The literature [30] proposed a novel
composite controller by using continuous TSMC method
and disturbance observer technique where the bounds of
disturbance derivatives were assumed to be known. In [31],
a composite controller was developed by integrating finite-
time control method and finite-time disturbance observer
technique for a class of disturbed system.The literature [32]
proposed a disturbance observer-based integral SMC strat-
egy for singularly perturbed systems with mismatched dis-
turbances. An improved SMC method using disturbance
observer was presented to control a permanent magnet syn-
chronous motor [33]. The literature [34] used an adaptive
nonsingular TSMC incorporating with a nonlinear distur-
bance observer to control a nonlinear mass-spring damper
system, where the observer error converged to a small region
near zero. In these methods, the disturbance is estimated by
a disturbance observer, and it is fed back to the control law
to compensate for its influence. Moreover, the disturbance
observer can be employed to reduce chattering in sliding
mode control.

Motivated by the above discussions, this paper is devoted to
propose a novel composite control scheme for second-order
uncertain nonlinear systems to achieve fast fixed-time con-
vergence and reduce chattering. The proposed control method
has advantages in convergence rate and chattering reduction
over the existing results of fixed-time stable control meth-
ods. The main contributions of this paper are summarized as
follows:

1. A novel fixed-time stable system is investigated.Using
this system, a novel fixed-time nonsingular fast terminal
sliding mode manifold is designed, which can guarantee the
fixed-time system stabilization regardless of initial states.
The singularity problem is avoided by introducing a new
nonlinear piecewise function.

2. A novel adaptive disturbance observer is developed,
which can achieve fast exact lumped disturbance estimation
in finite time and do not require information about the bounds
on the disturbances and their derivatives.

3. A novel composite control scheme is proposed by
integrating a novel fixed-time nonsingular fast terminal
sliding mode controller and a novel adaptive disturbance
observer. The proposedmethod is not only robust to uncertain

disturbances, but also can achieve fast fixed-time conver-
gence of the system.

This paper is organized as follows. Section II provides
some useful lemmas. In Section III, a novel composite
controller is developed for second-order uncertain nonlin-
ear systems. Simulation results illustrate the feasibility and
superiority of the proposed control method in Section IV.
Section V is the conclusion.

Throughout the whole paper, sig(x)α denotes |x|α sign(x).

II. MATHEMATICAL PRELIMINARIES
Considering a second-order system with disturbance, given
by: {

ẋ1 = x2
ẋ2 = F(x)+ B(x)u+ D

(1)

where x1 and x2 are system states. F(x) and B(x) are smooth
nonlinear functions of x, u is the control input, and D is the
disturbance.
Definition 1 [35]: Consider the following dynamic system:

ẋ(t) = f (x(t)), x(0) = x0 (2)

where x ∈ Rn, f (x) : D ∈ Rn is a continuous nonlinear
function that is on open neighborhood D ⊆ Rn of the origin,
and f (0) = 0. The origin is regarded as a fixed-time stable
equilibrium point if it is finite-time stable with bounded
convergence time function T (x0), i.e., there exists Tmax > 0
such that T (x0) < Tmax.
Lemma 1 [36]: Consider a scalar system:

ẏ = −αsig(y)ψ − βsig(y)ϕ (3)

where α > 0,β > 0,ψ > 1,0 < ϕ < 1. The system (3) is
fixed-time stable, and the convergence time T is bounded by:

T <
1

α(ψ − 1)
+

1
β(1− ϕ)

(4)

Lemma 2 [24]: Consider the following differential equat-
ion:

ẏ = −αsig(y)κ − βsig(y)ϕ (5)

where α > 0,β > 0,κ = 0.5(ψ + 1) + 0.5(ψ − 1)sign
(|y| − 1),ψ > 1,0 < ϕ < 1. The system (5) is fixed-time
stable, and the convergence time T is bounded by:

T <
1

α(ψ − 1)
+

1
β(1− ϕ)

ln(1+
α

β
) (6)

Lemma 3: Consider the following differential equation:

ẏ = −αsig(y)κ − βsig(y)γ (7)

where α > 0,β > 0,κ = 0.5(ψ + 1) + 0.5(ψ − 1)sign
(|y| − 1),γ = 0.5(ψ + ϕ) + 0.5(ψ − ϕ)sign(|y| − 1),ψ >

1,0 < ϕ < 1. The system (7) is fixed-time stable, and the
convergence time T is bounded by:

T <
1

(α + β)(ψ − 1)
+

1
β(1− ϕ)

ln(1+
α

β
) (8)
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Proof: The differential equation for the system (7) can be
rewritten as:{

ẏ = −αsig(y)ψ − βsig(y)ψ , |y| > 1
ẏ = −αy− βsig(y)ϕ, |y| ≤ 1

(9)

By solving (9), the upper bound of convergence time can
be calculated as:

Tmax = lim
y(0)→∞

(

y(0)∫
1

1
(α + β) sig(y)ψ

dy

+

1∫
0

1
αy+ βsig(y)ϕ

dy)

= lim
y(0)→∞

1− |y(0)|1−ψ

(α + β) (ψ − 1)
+

1
β(1− ϕ)

ln(1+
α

β
)

=
1

(α + β) (ψ − 1)
+

1
β(1− ϕ)

ln(1+
α

β
) (10)

The proof is completed.
Remark 1: Note that system (3) was investigated in [36].

System (5) was presented in [24], which is extended from (3)
and has faster convergence than (3). However, the conver-
gence time of system (5) is not an optimal one. In this paper,
system (7) is proposed, which can achieve faster convergence
in comparisons with (3) and (5).

III. THE COMPOSITE CONTROLLER DESIGN
A. NOVEL FIXED-TIME NONSINGULAR FAST TERMINAL
SLIDING MODE
According to Lemma 3, a novel fixed-time terminal sliding
surface can be constructed as:

s = x2 + α1sig(x1)κ1 + β1sig(x1)γ1 (11)

where α1 > 0,β1 > 0,κ1 = 0.5(ψ1 + 1) + 0.5
(ψ1 − 1)sign(|x1| − 1), γ1 = 0.5(ψ1 + ϕ1) + 0.5
(ψ1 − ϕ1)sign(|x1| − 1),ψ1 > 1,0 < ϕ1 < 1.
The time derivative of the sliding surface s defined by (11)

can be obtained:

ṡ = ẋ2 + α1κ1 |x1|κ1−1 x2 + β1γ1 |x1|γ1−1 x2 (12)

In (12), it can be easily observed that if x1 = 0 and x2 6= 0,
the singularity may occur due to ϕ1 − 1 < 0.
In [37],to avoid singularity problem, a nonlinear function

was presented as:

ω0(x1) =

{
sig(x1)ϕ1 , |x1| > δ

$0x1 + σ0sig(x1)2, |x1| ≤ δ
(13)

where 0 < δ < 1,$0 = (2− ϕ1)δϕ1−1, σ0 = (ϕ1 − 1)δϕ1−2.
To speed up the convergence rate in the region x1 ∈ [0, δ],

the following nonlinear function is introduced as:

ω1(x1) =

{
sig(x1)ϕ1 , |x1| > δ

$1 sin(x1)+ σ1sig(x1)θ , |x1| ≤ δ
(14)

FIGURE 1. The comparison of convergence speed.

where $1 =
ϕ1δ

ϕ1−θδϕ1

δ cos(δ)−θ sin(δ) ,
σ1 =

ϕ1δ
ϕ1−1−$1 cos(δ)
θδθ−1 ,

0 < δ <

1,1 < θ < 2. It is worth noticing that the nonlinear function
is continuous and derivable.

The parameters in functions ω0(x1) and ω1(x1) are set as
δ = 0.1, ϕ1 = 0.6, and θ = 1.2. The convergence speed
response curves of ω0(x1) and ω1(x1) in the region x1 ∈ [0, δ]
are illustrated in Fig.1. It can be seen clearly from Fig.1
that the function ω1(x1) has the faster convergence rate than
ω0(x1).
Combining the nonlinear function, a novel fixed-time non-

singular fast terminal sliding mode manifold can be put for-
ward as follows:

s = x2 + α1sig(x1)κ1 + β1ω(x1) (15)

with

ω(x1) =

{
sig(x1)γ1 , |x1| > δ

$ sin(x1)+ σ sig(x1)θ , |x1| ≤ δ
(16)

where$ = ϕ1δ
ϕ1−θδϕ1

δ cos(δ)−θ sin(δ) ,
σ =

ϕ1δ
ϕ1−1−$ cos(δ)
θδθ−1 .

Eq.(15) is equivalent to the following form:

s =


x2 + α1sig(x1)ψ1 + β1sig(x1)ψ1 , |x1| > 1
x2+α1x1+β1sig(x1)ϕ1 , δ< |x1|≤1
x2 + α1x1 + β1($ sin(x1)+ σ sig(x1)θ ), |x1| ≤ δ

(17)

According to (17), the proposed sliding mode manifold is
divided into three separate parts, which can achieve a fast
convergence rate either far from or close to the equilibrium
point. The singularity problem is avoided since the sliding
mode manifold is switched into the general sliding mode
manifold when x1 enters into the region |x1| ≤ δ, as shown in
Fig.2.

B. ADPTIVE DISTURBANCE OBSERVER
In practical application, it is usually difficult to require the
prior information about the disturbance D. In this section,
an adaptive disturbance observer is developed for system (1)
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FIGURE 2. The proposed sliding surface on the phase plane.

to compensate the disturbance, so that the system control
performance can be improved.
Assumption 1: The uncertain disturbance D in system (1)

is continuous. The first and second derivatives of D exist as∣∣Ḋ∣∣ < D1,
∣∣D̈∣∣ < D2,where upper bound D1 and D2 are

unknown positive constants.
To estimate the disturbance for system (1), a new form of

adaptive disturbance observer is designed as:
e = φ − x2
3 = ė+ α3sig(e)ψ3 + β3sig(e)ϕ3

φ̇ = F(x)+ B(x)u+ D̂− α3sig(e)ψ3 − β3sig(e)ϕ3
˙̂D = −α4sig(3)ψ4 − β4sig(3)ϕ4 − υ(t)sign(3)

(18)

where α3, β3, α4, β4 > 0,ψ3, ψ4 > 1,0 < ϕ3, ϕ4 < 1, and
υ(t) is an adaptive gain.
Theorem 1: Using the designed observer in (18), when the

condition υ(t) >
∣∣Ḋ∣∣ is satisfied in finite time, then the

disturbance estimation error will converge to zero in finite
time.
Proof: According to (18),the first derivative of e is given

by:

ė = φ̇ − ẋ2 = D̂− D− α3sig(e)ψ3 − β3sig(e)ϕ3 (19)

Substituting (19) into (18),one can obtain3 = D̂−D, then
the time derivative of 3 is

3̇ =
˙̂D− Ḋ

= −α4sig(3)ψ4 − β4sig(3)ϕ4 − υ(t)sign(3)− Ḋ (20)

Consider the Lyapunov function V1 = 0.532, then its time
derivative is

V̇1 = 33̇

= −α4 |3|
ψ4+1 − β4 |3|

ϕ4+1 − υ(t) |3| − Ḋ3

≤ −α4 |3|
ψ4+1 − β4 |3|

ϕ4+1 − (υ(t)−
∣∣Ḋ∣∣) |3| (21)

Since the condition υ(t) >
∣∣Ḋ∣∣ is achieved in finite time,

it is concluded that V̇1 ≤ 0.Then, the sliding mode manifold
3 can converge to zero in finite time, i.e. 3 = 0. Define the

disturbance estimation error eD = D̂−D, it is concluded that
eD = 3 = 0. Thus, the proposed observer can estimate the
disturbance accurately in finite time.

The proof is completed.
Next, the objective is to construct adaptive algorithm for

υ(t) to satisfy the condition υ(t) >
∣∣Ḋ∣∣. Motivated by the

research work in [38], υ(t) is given by the following two
layers adaptive law:

υ̇(t) = −(υ0 + υ1(t))sign(ε)

υ̇1(t) =

{
υd |ε| , |ε| > ε0

0, |ε| ≤ ε0

(22)

with

ε = υ(t)−
|χ |

η0
− η1 (23)

χ̇ = λfal(−υ(t)sign(3)− χ,µ, δ0) (24)

fal(a, µ, δ0) =

 sig(a)µ, |a| > δ0
a

δ
1−µ
0

, |a| ≤ δ0 (25)

where υ0, υd , λ > 0,0 < η0, η1, µ, δ0 < 1.
Remark 2: Note that, a fal(·) function filter not only has

good filtering effect, but also has fast tracking performance.
A close approximation of −υ(t)sign(3) can be obtained in
real-time by the fal(·) function filter.
Proposition 1: η0, η1, ε0, τ , and υd are designed so that the

following inequalities:

|χ |

η0
+
η1

2
> |D1| (26)

ε20 +
τ 2D2

1

υdη
2
0

<
η21

4
(27)

hold for any given D1, then the condition υ(t) >
∣∣Ḋ∣∣ can be

achieved in finite time.
Proof: To facilitate analysis, denote

ζ =
τD1

η0
− υ1(t) (28)

where τ > 1, and τ is designed to ensure τ ≥ |χ̇ | /D1.
To analyze the variables ε and ζ , choosing a Lyapunov

function V2 = 0.5ε2 + 0.5ζ 2/υd , its time derivative is

V̇2 = εε̇ +
1
υd
ζ ζ̇

= ε

(
−(υ0 + υ1(t))sign(ε)−

|χ̇ |

η0

)
+

1
υd
ζ ζ̇

≤ −(υ0 + υ1(t)) |ε| +
|χ̇ |

η0
|ε| +

1
υd
ζ ζ̇ (29)

Case I: If |ε| > ε0, according to (28) and (29), it can be
obtained

V̇2 ≤ −υ0 |ε| − υ1(t) |ε| +
|χ̇ |

η0
|ε| − (

τD1

η0
− υ1(t)) |ε|

≤ −υ0 |ε| (30)
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Case II: If |ε| ≤ ε0 and ζ < 0, then εε̇ ≤ −υ0 |ε| +
ζ |ε| ≤ 0,and

V̇2 ≤ −υ0 |ε| + ζ |ε| − ζ |ε| ≤ −υ0 |ε| (31)

Case III: If |ε| ≤ ε0 and ζ ≥ 0, because υ̇1(t) > 0, then
ζ ≤ τD1/η0 for all time. It follows that V̇2 < 0, outside of the
region � = {(ε, ζ ) : |ε| ≤ ε0, 0 ≤ ζ < τD1/η0}. Define a
small region V0 = {(ε, ζ ) : V < 0.5ε20 + 0.5(τD1/η0)2/υd },
it encloses the region �. Choose appropriate parameters to
ensure that (27) can be satisfied. When (ε, ζ ) enters V0 as
case III, then (ε, ζ ) can not leave V0 because V0 is a fixed
region. According to (27), |ε| < η1/2.
Yet as case I and II, (ε, ζ ) does not enter V0, and V̇2 < 0.

According to Barbalat’s Lemma, it can be concluded that ε
can converge to zero asymptotically [38]. It implies that there
exists a finite time t0 such that |ε| < η1/2 for t > t0.
Therefore, whether (ε, ζ ) enters V0 or not, the inequality
|ε| < η1/2 is satisfied in finite time. Then,

|ε(t)| =

∣∣∣∣υ(t)− |χ |η0 − η1
∣∣∣∣ < η1

2
(32)

So

υ(t)−
|χ |

η0
− η1 > −

η1

2
(33)

and the condition in (26) is satisfied, then

υ(t) >
|χ |

η0
+
η1

2
> |D1| (34)

According to Assumption 1,
∣∣Ḋ∣∣ < D1, then the condition

υ(t) > Ḋ can be achieved in finite time.
The proof is completed.

C. CONTROL LAW DESIGN
According to (1), (15), and (16), the time derivative of the
proposed sliding surface can be given by:

ṡ = F(x)+ B(x)u+ D+ α1κ1 |x1|κ1−1 x2 + β1ω̇(x1)x2
(35)

with

ω̇(x1) =

{
γ1 |x1|γ1−1 x2, |x1| > δ

$ cos(x1)x2 + σθ |x1|θ−1 x2, |x1| ≤ δ
(36)

To ensure the system trajectory fast reach the designed
sliding surface from any initial conditions, a novel fixed-time
reaching law can be designed as:

ṡ = −α2sig(s)κ2 − β2sig(s)γ2 (37)

where α2 > 0,β2 > 0,κ2 = 0.5(ψ2 + 1) + 0.5
(ψ2 − 1)sign(|s| − 1),γ2 = 0.5(ψ2 + ϕ2) + 0.5
(ψ2 − ϕ2)sign(|s| − 1),ψ2 > 1,0 < ϕ2 < 1.
Based on the output of the observer in (18), substituting

(35) into (37), a novel fixed-time nonsingular fast termi-
nal sliding mode control based on an adaptive disturbance
observer (NFNTSMC-ADO) is designed as:

u = −
1

B(x)
(F(x)+ D̂+ α1κ1 |x1|κ1−1 x2 + β1ω̇(x1)x2

+α2sig(s)κ2 + β2sig(s)γ2 ) (38)

D. STABILITY ANALYSIS
Theorem 2: Consider the system (1), applying the control law
in (38), the designed sliding surface s can converge to zero
in fixed time, and the system states will converge to a small
region R = {(x1, x2) : |x1| ≤ δ, |x2| ≤ α1δ + β1δϕ1} in fixed
time.

Proof: Substituting (38) into (35), ṡ can be given by:

ṡ = −α2sig(s)κ2 − β2sig(s)γ2 − D̂+ D (39)

Consider a Lyapunov function V3 = s2, the time derivative
of V3 can be given by:

V̇3 = 2sṡ

= −2s(α2sig(s)κ2 + β2sig(s)γ2 + D̂− D)

= −2α2 |s|κ2+1 − 2β2 |s|γ2+1 − 2eDs (40)

According to Theorem 1, the disturbance estimation error
can converge to zero in finite time. It means that there exists
a finite time T ∗ such that eD = 0 for t > T ∗. Define the
reaching time of the sliding surface as Tr . Choose appropriate
values for α2,β2, ψ2,ϕ2, and observer parameters to satisfy
the condition Tr > T ∗, then,

V̇3 = −2α2 |s|κ2+1 − 2β2 |s|γ2+1

= −2α2V
κ2+1
2

1 − 2β2V
γ2+1
2

1 (41)

According to Lemma 3,the sliding surface can be reached
in fixed time, and the upper bound of convergence time can
be given by:

Tr <
1

(α2 + β2)(ψ2 − 1)
+

1
β2(1− ϕ2)

ln(1+
α2

β2
) (42)

When s = 0, the stability analysis of the system states
convergence to the region near zero is given as follows:

Case I: If |x1| > δ, from (15), the following equation can
be obtained:

s = x2 + α1sig(x1)κ1 + β1sig(x1)γ1 = 0 (43)

Consider a candidate Lyaunov function V4 = x21 , then the
time derivative of V4 can be given by:

V̇4 = 2x1ẋ1
= 2x1(−α1sig(x1)κ1 − β1sig(x1)γ1 )

= −2α1V
κ1+1
2

2 − 2β1V
γ1+1
2

2 (44)

According to Lemma 3 and (44), it is concluded that the
system state x1 will converge to the region |x1| ≤ δ and the
convergence time Ts is bounded by:

Ts <
1

(α1 + β1)(ψ1 − 1)
+

1
β1(1− ϕ1)

ln(1+
α1

β1
) (45)

Moreover, from (43), it can be obtained:

|x2| ≤ α1 |x1| + β1 |x1|ϕ1 ≤ α1δ + β1δϕ1 (46)

VOLUME 8, 2020 126619



H. Pan et al.: Novel Fixed-Time Nonsingular Fast Terminal SMC for Second-Order Uncertain Systems

Therefore, the system state x2 can converge to the region
|x2| ≤ α1δ + β1δϕ1 in fixed time. The convergence time for
the system (1) can be calculated as:

T = Tr + Ts <
1

(α2+β2)(ψ2 − 1)
+

1
β2(1−ϕ2)

ln(1+
α2

β2
)

+
1

(α1 + β1)(ψ1 − 1)
+

1
β1(1− ϕ1)

ln(1+
α1

β1
) (47)

Case II: If |x1| ≤ δ, it means that the system state x1 has
converged to the region |x1| ≤ δ in fixed time. Applying (15),
(48) can be obtained:

s = x2 + α1x1 + β1($ sin(x1)+ σ sig(x1)θ ) (48)

From (48), the following inequality can be obtained:

|x2| ≤ α1 |x1| + β1($ |sin(x1)| + σ |x1|θ )

≤ α1δ + β1δ
ϕ1 (49)

Thus, according to (49),the system states will converge to
the finite set R = {(x1, x2) : |x1| ≤ δ, |x2| ≤ α1δ + β1δϕ1} in
fixed time.
The proof is completed.
Remark 3: The disturbance is quickly estimated by the

designed observer in (18). Moreover, the disturbance is elim-
inated quickly under the control law in (38), then the sliding
surface and the system states can converge to their desired
values in fixed time.
Remark 4: Note that, using the proposed sliding surface

in (15), the system states can not strictly converge to zero,
which means that small steady-state errors may be brought.
By designing appropriate parameters, the steady-state errors
can be small enough, which may not affect the convergence
accuracy of the system.

IV. SIMULATION RESULTS
In this section, the proposed composite control scheme is
applied to a Van der Pol circuit system and a two-link rigid
robotic manipulator system. Simulation results confirm the
effectiveness and superiority of the proposed method.

A. VAN DER POL CICUITS SYSTEM
Consider the Van der Pol circuit system, as follows [28]:{

ẋ1 = x2
ẋ2 = −2x1 + 3x2(1− x21 )+ u+ d

(50)

According to (18), the adaptive disturbance observer is
designed as:

e = φ − x2
3 = ė+ α3sig(e)ψ3 + β3sig(e)ϕ3

φ̇ = −2x1 + 3x2(1− x21 )+ u+ d̂ − α3sig(e)
ψ3

−β3sig(e)ϕ3
˙̂d = −α4sig(3)ψ4 − β4sig(3)ϕ4 − υ(t)sign(3)

(51)

in which υ(t) is updated by the adaptive law in (22).

Next, according to the NFNTSMC-ADO technique, the
new fixed-time nonsingular sliding mode manifold and the
control law are constructed as:

s = ẋ1 + α1sig(x1)κ1 + β1ω(x1) (52)

u = 2x1 − 3x2(1− x21 )− d̂ − α1κ1 |x1|
κ1−1 x2

−β1ω̇(x1)x2 − α2sig(s)κ2 − β2sig(s)γ2 (53)

The initial conditions for the system and the disturbance
observer are assumed as x1(0) = 2, x2(0) = −1, and d̂(0) =
0, respectively. The controller and observer parameters are set
as α1 = β1 = α3 = β3 = 2, α2 = β2 = ψ3 = 3, ϕ1 = ϕ2 =
0.6, ψ1 = ψ2 = ψ4 = 2, α4 = β4 = 6, ϕ3 = ϕ4 = 0.5,
υ0 = 0.1, δ = δ0 = 0.01, η0 = 0.999, η1 = 0.65, λ = 60,
and µ = 0.9.

In the first simulation test, the disturbance is assumed
as d = 0. For comparison, a novel fixed-time nonsin-
gular fast terminal sliding mode controller (NFNTSMC),
a modified fixed-time nonsingular fast terminal sliding
mode controller (FNTSMC) proposed in [19] and a conven-
tional fixed-time nonsingular fast terminal sliding mode con-
troller (NTSMC) proposed in [14] are designed as follows:

NFNTSMC:

s = ẋ1 + α1sig(x1)κ1 + β1ω(x1) (54)

u = 2x1 − 3x2(1− x21 )− α1κ1 |x1|
κ1−1 x2

−β1ω̇(x1)x2 − α2sig(s)κ2 − β2sig(s)γ2 (55)

FNTSMC:

s = ẋ1 + α1sig(x1)κ1 + β1ω0(x1) (56)

u = 2x1 − 3x2(1− x21 )− α1κ1 |x1|
κ1−1 x2

−β1ω̇0(x1)x2 − α2sig(s)κ2 − β2sig(s)ϕ2 (57)

NTSMC:

s = ẋ1 + α1sig(x1)ψ1 + β1ω0(x1) (58)

u = 2x1 − 3x2(1− x21 )− α1ψ1 |x1|ψ1−1 x2
−β1ω̇0(x1)x2 − α2sig(s)ψ2 − β2sig(s)ϕ2 (59)

Three controllers are employed to stabilize system (50).
The results given in Fig.3 illustrate that the system states
are steered to their desired values, respectively. Compared
with FNTSMC and NTSMC, NFNTSMC takes shorter time
for the reaching motion. Moreover, NFNTSMC makes the
system states x1 and x2 converge to equilibrium more quickly
than FNTSMC and NTSMC. Comparative results show that
NFNTSMC has better control performance than two other
controllers with respect to faster convergence speed and
shorter reaching time.

In the second simulation test, the disturbance is assumed as
d = 3 sin(0.5π t) + 0.5 sin(2π t).The response curves of the
system variables under NFNTSMC-ADO and NFNTSMC
are shown in Figs.4-6.

The disturbance and its estimation are displayed in Fig.4.
It is clear to see that the proposed disturbance observer can
estimate the disturbance in finite time. Fig.5 shows that the
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FIGURE 3. The response curves of state variables (a)x1.(b) x2.(c)s.

adaptive gain υ(t) dynamically changes according to
∣∣ḋ∣∣.

Moreover, it can be observed that the condition υ(t) >
∣∣ḋ∣∣

is achieved in finite time. Based on Theorem 1, the stability
of the proposed disturbance observer can be guaranteed. The
simulation results in Fig.4 agree with Theorem 1.

As shown in Fig.6, it can be noted that the disturbance
compensation is able to affect the convergence rate to some
extent. Furthermore, it is obvious that NFNTSMC-ADO can
substantially reduce the chattering of the system states and
the sliding surface in comparison with NFNTSMC. That is
because NFNTSMC-ADO utilizes an adaptive disturbance
observer to accurately estimate the disturbance and compen-
sate the disturbance online. These simulation results confirm
that the proposed NFNTSMC-ADOmethod can be employed

FIGURE 4. Disturbance and its estimation.

FIGURE 5. The curves of
∣∣∣ḋ ∣∣∣ and υ(t).

to improve the dynamic performance and stability of the
system.

In the third simulation test for verifying the fixed-time
convergence of the proposed composite controller, other three
different initial states are set as: 1) [x1, x2] = [2.5,−0.5],
2) [x1, x2] = [5,−2], 3)[x1, x2] = [8,−1]. The design
parameters of NFNTSMC-ADO are consistent with above.
Based on Theorem 2, the upper bound of convergence time
for the sliding surface and the system states are calculated
as 0.74s and 1.86s, respectively. It is obvious from Fig.7 that
the sliding surface and the system states can converge to their
equilibrium within bounded convergence time. Moreover, the
simulation results confirm that the time taken to reach the
desired values of system states from different initial states
under uncertain disturbance is guaranteed to be fixed time,
and the upper bound convergence time of the system is only
related to the design parameters.

To conclude, NFNTSMC has a faster convergence rate
than FNTSMC and NTSMC. NFNTSMC-ADO has higher
accuracy control and lower chattering in comparison with
NFNTSMC. Furthermore, NFNTSMC-ADO can achieve fast
fixed-time convergence. Thus, it can be seen that the proposed
composite control scheme can achieve promising control
performance.
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FIGURE 6. The response curves of state variables (a) x1. (b) x2.(c)s.

B. TWO-LINK RIGID ROBOT MANIPULATOR
As in [39],the dynamic equation of a two-link manipulator
model can be described as:

M (q)q̈+ C(q, q̇)q̇+ G(q) = u+ d (60)

in which, the involved matrices can be given by:

M (q) =


(m1+m2)l21+m2l22
+2m2l1l2 cos(q2)+J1

m2l22+m2l1l2 cos(q2)

m2l22 + m2l1l2 cos(q2)

m2l22 + J2

 ,

FIGURE 7. The response curves of state variables(a) x1. (b) x2. (c) s.

C(q, q̇)=

−m2l1l2 sin(q2)q̇1

0

−2m2l1l2 sin(q2)q̇1

m2l1l2 sin(q2)q̇2

 ,
G(q) =

 (m1 + m2)gl1 cos(q2)+ m2gl2 cos(q1 + q2)

m2gl2 cos(q1 + q2)

 .
where qi, q̇i, and q̈i denote the vectors of joint position,
velocity and acceleration, respectively. mi is the link mass, Ji
is the link moment of inertia given in the centre of mass. u and
d represent the torque input and the uncertain disturbance,
respectively.

The system parameters are set as m1 = 0.5kg,m2 =

1.5kg, l1 = 1m, l2 = 0.8m, J1 = 5kg · m2, J2 = 5kg ·
m2, g = 9.8N/s2, q(0) = [1.2, 0.8]T , q̇(0) = [0, 0]T . The
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desired signals are given by qd = [q1d , q2d ]T with q1d =
0.35e−4t − 1.4e−t + 1.25 and q2d = e−t − 0.25e−4t + 1.25.
Denote x = [x1, x2]T = [q, q̇]T , (60) can be rewritten as:{

ẋ1 = x2
ẋ2 = f (x)+ b(x)u+ D

(61)

where f (x) = −M−10 (x1)(C0(x)x2 + G0(x1)), b(x) =
M−10 (x1),D = −M

−1
0 (x1)(1M (x1)ẋ2+1C(x)x2+1G(x1)−

d). In which, M0(x1),C0(x),G0(x1) are nominal values, and
1M (x1), 1C(x), 1G(x1) are uncertain terms.
According to (18), the adaptive disturbance observer is

designed as:
e = φ − x2
3 = ė+ α3sig(e)ψ3 + β3sig(e)ϕ3

φ̇ = f (x)+ b(x)u+ D̂− α3sig(e)ψ3 − β3sig(e)ϕ3
˙̂D = −α4sig(3)ψ4 − β4sig(3)ϕ4 − υ(t)sign(3)

(62)

in which υ(t) = [υ1(t), υ2(t)], and they are updated by the
adaptive law in (22).

Denote xd = [x1d , x2d ]T = [qd , q̇d ]T , define ξ1 =
q − qd , ξ2 = q̇ − q̇d , then the error equation of the rigid
robotic manipulator can be obtained:{

ξ̇1 = ξ2

ξ̇2 = F(ξ )+ B(ξ )u+ D
(63)

where F(ξ ) = f (x)− q̈d ,B(ξ ) = M−10 (x1).
Based on the strategy of NFNTSMC-ADO, the fixed-time

nonsingular terminal sliding surface and the control law are
designed as:

s = ξ2 + α1sig(ξ1)κ1 + β1ω(ξ1) (64)

u = −B−1(ξ )(F(ξ )+ D̂+ α1κ1 |ξ1|κ1−1 ξ2
+β1ω̇(ξ1)ξ2 + α2sig(s)κ2 + β2sig(s)γ2 ) (65)

where s = [s1, s2]T , sig(ξ1)κ1 = [sig(ξ11)κ11 , sig(ξ12)κ12 ]T ,
ω(ξ1) = [ω(ξ11), ω(ξ12)]T, sig(s)

κ2 = [sig(s1)κ21 , sig(s2)κ22 ]T,
sig(s)γ2 = [sig(s1)γ21 , sig(s2)γ22 ]T.
The controller and disturbance parameters are chosen as

α1 = β1 = diag{1.5, 1.5}, ψ1 = 3, ψ2 = ψ3 = 2, ψ4 =

1.5, α2 = β2 = diag{2, 2}, α3 = β3 = diag{1, 1},
α4 = β4 = diag{7, 1}, ϕ1 = ϕ2 = ϕ3 = ϕ4 = 0.6, θ =
1.5, δ = δ0 = 0.01, υ0 = 0.1, η0 = 0.999, η1 = 0.6, µ =
0.9, and λ = diag{15, 15}.

In the first simulation test, the external disturbances are set
as d = [0, 0]T . Three controllers, NFNTSMC, FNTSMC and
NTSMC, are designed by reference to the above example for
the purpose of comparison.

The position tracking responses of joints 1,2 using the
three controllers are depicted in Fig.8. Fig.9 shows the time
responses of tracking errors obtained by utilizing the three
controllers.It is concluded from Figs.8-9 that in comparison
with the two other controllers, the system states track the
desired signals more quickly under NFNTSMC. The time
responses of the sliding surfaces are plotted in Fig.10. It can

FIGURE 8. The tracking performances of joints 1 and 2.

FIGURE 9. The tracking errors of joints 1 and 2.

be obviously observed from Fig.10 that the tracking errors
reach the desgined sliding surfaces with less time under
NFNTSMC compared to FNTSMC and NTSMC. Therefore,
NFNTSMC has the faster convergence rate than FNTSMC
and NTSMC.

In the second simulation test, the disturbance is assumed as
d = [5 cos(π t); 2 sin(π t)].Shown in Figs.11-14 are the time
responses of the state variables under NFNTSMC-ADO and
NFNTSMC. The disturbance and its estimation are plotted
in Fig.11. It is seen from Fig.12 that the condition υ(t) >∣∣ḋ∣∣ can be satisfied in finite time. According to Theorem 1,
ADO can accurately estimate the disturbance in finite time.
The simulation results in Fig.11 agree with Theorem 1. The
tracking errors of joints 1 and 2 under the two control schemes
are presented in Fig.13. Fig.14 shows the time responses
of sliding surfaces obtained by the two control schemes.
Compared with NFNTSMC, NFNTSMC-ADO can largely
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FIGURE 10. The sliding surfaces under the three controllers.

FIGURE 11. The disturbance and its estimation.

alleviate the chattering of system states and sliding surfaces
because ADO can accurately estimate the disturbances which
are utilized in the control law. Thus, NFNTSMC-ADO can
achieve better tracking performance and higher precision than
NFNTSMC.

In addition to external disturbances, considering the sud-
den load variation in the running robotic manipulators, it is
assumed that the mass of joint 2 increases to 2.5kg after t ≥
2s. As shown in Figs.15-16, the fluctuation of the tracking
errors and the sliding surfaces are small under NFNTSMC-
ADO.Moreover, the recovery time of both the tracking errors
and the sliding surfaces convergence to zero are short under
NFNTSMC-ADO. Thus, it can be seen that the proposed
NFNTSMC-ADO technique achieves good property of nom-
inal performance recovery.

In a word, NFNTSMC-ADO exhibits the fine properties of
disturbance rejection and strong robustness.

FIGURE 12. The curves of
∣∣∣ḋ ∣∣∣ and υ(t).

FIGURE 13. The tracking error of joints 1 and 2.

In the third simulation test, other three different initial
states are set as: 1)q = [2, 1]T , 2) q = [5, 0.5]T , 3)q =
[10, 0]T . The parameters selection of NFNTSMC-ADO is
consistent with above. According to Theorem 2, the upper
bound time of the sliding surfaces convergence to zero is
1.12s, and the upper bound time of the system states reaching
stabilization is 2.44s.

Figs.17-19 show the position tracking responses, tracking
errors and sliding surfaces of joints 1 and 2 with different
initial states under NFNTSMC-ADO, respectively. It is not
difficult to find that the convergence time of the sliding sur-
faces and the system states do not exceed the calculated upper
bound convergence time. It can be seen that the proposed
NFNTSMC-ADO scheme can not only force the sliding sur-
face to the equilibrium point in fixed time, but also drive
system states to reach stabilization in fixed time. Simulation
results given in Figs.17-19 verify the proposed composite
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FIGURE 14. The sliding surfaces under the two control schemes.

FIGURE 15. The tracking errors of joints 1 and 2 under NFNTSMC-ADO
scheme.

FIGURE 16. The sliding surfaces under NFNTSMC-ADO scheme.

control technique can achieve the fixed-time convergence
regardless of the initial states.

FIGURE 17. tracking performances of joints 1 and 2 with three cases.

FIGURE 18. The tracking error of joints 1 and 2 with three cases.

FIGURE 19. The sliding surfaces with three cases.

In summary, NFNTSMC has the faster convergence rate
than FNTSMC and NTSMC. NFNTSMC-ADO has smaller
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tracking errors and lower chattering in comparison with
NFNTSMC. Furthermore, NFNTSMC-ADO can achieve
system stabilization within fixed time. Therefore, it can be
concluded that the proposed composite controller is a robust
controller with fast fixed-time convergence and good tracking
precision.

V. CONCLUSION
In this paper, an adaptive disturbance observer-based fixed-
time nonsingular fast terminal sliding mode control method
is investigated for second-order uncertain nonlinear systems.
A novel fixed-time stable system is presented. Combining
this system and a new nonlinear piecewise function, a novel
fixed-time nonsingular fast terminal sliding mode controller
is developed, which can force the system states to reach
stabilization within fixed time. To reduce the influence of
disturbance, an adaptive disturbance observer is designed
to accurately estimate the disturbance that is fed back to
the control law. Simulation results illustrate that the pro-
posed composite control method can exhibit satisfactory con-
trol performance with fast convergence, high precision, and
strong robustness. It is worthwhile noticing that the control
method can be also applied to other complicated second-order
uncertain systems.This method is extended to n-order sys-
tems with mismatched disturbance, which would be a future
research work.
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