
Received May 30, 2020, accepted June 14, 2020, date of publication July 9, 2020, date of current version July 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3007675

Facing Cold-Start: A Live TV Recommender
System Based on Neural Networks
XIAOSONG ZHU 1,2, JINGFENG GUO 1,2, SHUANG LI 3,4,5, AND TONG HAO 1,2
1College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
2The Technology Innovation Center of Cultural Tourism Big Data of Hebei Province, Chengde 067000, China
3Faculty of Ecology, Environmental Management College of China, Qinhuangdao 066102, China
4School of Architecture, Tianjin University, Tianjin 300072, China
5Key Laboratory of Urban Landscape Ecology & Planning and Design of Qinhuangdao, Qinhuangdao 066102, China

Corresponding author: Jingfeng Guo (tanxunqixidi@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61472340, and in part by the Hebei
Provincial Department of Science and Technology under Grant 20310301D.

ABSTRACT With the increase in the number of live TV channels, audiences must spend increasing amounts
of time and energy deciding which shows to watch; this problem is called information overload, and
recommender systems (RSs) are effectivemethods for addressing such problems. Due to the high update rates
and low replay rates of TV programs, the item cold-start problem is prominent, and this problem seriously
affects the effectiveness of the recommender and limits the application of recommendation algorithms for live
TV. To solve this problem better, RSs must consider information in addition to the time slot strategy, which
relies on experience. At present, no methods make good use of viewing behavior records. Therefore, in this
paper, we proposed a viewing environment model called DeepTV that considers viewing behavior records
and electronic program guides and includes a feature generation process and a model construction process.
In the feature generation process, we defined seven key features by clustering viewing time, distinguishing
positive and negative feedback, capturing continuous viewing preference and introducing the remaining time
proportion of candidate programs. We normalize the continuous features and add powers of them. In the
model construction process, we regard the live TV recommendation task as a classification problem and
fuse the above features by using a neural network. Finally, experiments on industrial datasets show that the
proposed model significantly outperforms baseline algorithms.

INDEX TERMS Cold start, live TV, neural network, negative feedback, TV channel, viewing environment.

I. INTRODUCTION
For a long time, live TV was the primary means of watch-
ing TV programs. With the increase in the numbers of
TV channels and TV programs, the audience has to spend
increasing amounts of time and energy deciding which pro-
grams to watch; this problem is referred to as information
overload. As an effective method for addressing information
overload [1], recommender systems (RSs) have been widely
studied and applied in academia and industry. Among such
systems, the live TV RS has been developed for commercial
applications in some regions of North America [2], [3] and
Europe [4]. In recent years, with the increase in the penetra-
tion rate of smart TVs and various smart set-top boxes, RSs
have been widely applied for live TV.
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Live TV differs fromVideo on Demand (e.g., YouTube [5],
Netflix [6]) in several ways that make the research of its RSs
difficult. First, every day, many programs are shown on live
TV that have not been broadcast in the past; thus, there are
no viewing records (scores) [7]. RSs cannot recommend new
programs due to the cold-start [8] problem. Second, families
constitute the main audience of live TV, and multiple family
members share a terminal [9], [10]; thus, an RS needs to iden-
tify the preferences of multiple people. Third, an audience
shows its preference for a program via implicit feedback (e.g.,
viewing duration) rather than explicit feedback (e.g., rating).
The length of viewing duration implies the preference for a
video. For example, watching a program for a few seconds
may mean that a user does not like the current program
(i.e., negative feedback), while the opposite behavior may
indicate positive feedback. Therefore, an RS should utilize
implicit feedback. Fourth, live TV is a real-time service, and a
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recommendation can only be given when candidate programs
are being broadcast [11]. Thus, the time window for live
TV recommendation is narrow, and the RS needs to respond
quickly to user feedback.

In recent years, live TV RSs have become a popular
research topic in the recommendation field. Live TV pro-
grams take the channel as a transmission carrier, and the
recommendation models rely on both the < user, program,
rating > and the < user, channel, rating >. Therefore,
we divided related research into methods for recommending
TV programs (RP methods) and method for recommend-
ing TV channels (RC methods) according to the recom-
mended content. The most common RP method is a collabo-
rative filtering-based algorithm (CF) that constructs a user-
program rating matrix [12]–[14] or a user-program-other
tensor [10], [15] and uses the CF to predict preferences. How-
ever, CF cannot cope with the cold-start problem. Content-
based (CB) algorithms [16]–[19], context-based algorithms
[20], and social network-based algorithms [21], [22] can
address such problems, but these algorithms require differ-
ent amounts of additional information. RC methods rely on
the time factor to establish a channel-time correlation, and
they convert the program preferences of users to the channel
preferences of users [7], [9], [11], [23]–[29]. Such methods
can handle the cold-start problem and have good real-time
performance. However, the above models have the following
disadvantages: (W1) they identify user preferences by consid-
ering time; however, time division relies on experience, and
it is not universal or interpretable; (W2) they do not consider
the characteristics of candidate programs at the recommended
time; thus, they cannot adjust the prediction according to
these programs; and (W3) for RP and RCmethods, either pos-
itive and negative feedback are not differentiates or negative
feedback is ignored.

We focus on the item cold-start problem of live TVby using
user logs and electronic program guides (EPG) to address
the disadvantages (W1, W2, W3) of existing RC methods,
and a viewing-environment-based model that includes a fea-
ture generation process and a model construction process
is proposed (Fig.1). During feature generation, we define
seven key features by clustering viewing time, distinguishing
positive and negative feedback, capturing continuous viewing
preferences and introducing the proportion of time remaining
in candidate programs. We normalize the continuous fea-
tures and add powers of them. During model construction,
we regard the live TV recommendation task as a classification
problem and fuse the above features using a neural network.
These features are not associated with the user feedback on
candidate programs at the recommended time; thus, the cold-
start problem can be addressed. To distinguish our method
from other strategies, the factors that produce these features
are referred to as the viewing environment.
The main contributions of this paper include the following:
(1) We divide each day into several time slots by cluster-

ing the start time of watching behavior, and periodicity is
considered.

FIGURE 1. The overview of our work.

(2) We divide implicit feedback into positive feedback and
negative feedback, and we use them separately.

(3)We define viewing heat, viewing heat in the current time
slot and viewing distance to reflect the continuous viewing
preference of the user.

(4)We correlate the candidate programs with the RSmodel
by introducing the proportion of time remaining for candidate
programs.

(5) The live TV recommendation task under the cold-start
scenario is regarded as a classification-based sorting task,
and a recommendation model is constructed using a neural
network.

II. RELATED WORK
This paper considers the live TV recommendation task under
an item cold-start scenario. Next, we present recent studies
from the related literature and divide these studies into RP
methods and RC methods. In addition, because the model in
this paper uses a neural network, some applications of deep
learning for addressing the cold-start problems of RSs are
introduced.

A. PROGRAM RECOMMENDATION METHODS
RP methods mainly include traditional CB and CF meth-
ods. In 2015, Ras et al. [30] surveyed the literature on TV
RSs, with a focus on RP methods. CB algorithms are com-
monly used to solve the cold-start problem in recommenda-
tion tasks. Bambini et al. [16] recommended new programs
to users by calculating the similarity of media information
between programs. Li et al. [19] adopted a CB method by
calculating the similarity between users and programs to
acquire a prediction, and adopted a collaborative filtering
process of CF-SVD-CF to acquire the other prediction, and
acquired the final result by predictions fusion. This method
used the CB section to alleviate the item cold-start problem.
Hölbling et al. [18] used a CB method to present an effective
and flexible tag generation process. The recommendation
results of CB are poor in terms of novelty and diversity.

The application of CF for live TV is similar to that in
VOD. Hu et al. [14] converted user preferences for programs
to 0 or 1 and used matrix decomposition to predict user
preferences. Jin et al. [12] constructed a rating function with
viewing duration and viewing duration proportion and used
Pearson’s correlation coefficient to implement user-based CF.
Wang et al. [10] proposed an algorithm that determines the
time slots for each account by clustering the factorized time
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subspace, and similar activities among these slots are com-
bined to represent members. Cho et al. [13] used weighted
alternating least squares to predict the preference in a user-
item preference matrix to generate the final rating matrix
and adjusted the rating matrix by using a view probability
model. RecTime [15] employs 4D tensor factorization, which
considers two additional time factor dimensions. By factor-
izing the 4D tensor, the system naturally identifies both the
recommendation time and the items. However, CF has to
address the matrix sparsity and program cold-start problems.

Other methods, e.g., Change et al. [21] and
Zhang et al. [22], derived user preferences from user viewing
history and social networks. Kim et al. [31] applied a knowl-
edge extension method to media recommendation based on
media information. Based on metadata, Philipp et al. [32]
adopted a field-aware factorization machines model for pub-
lishing TV content onto secondary publication channels.
Using an explicit hybrid strategy, Seo et al. [33] mixed
OTT data with IPTV data to improve the recommendation
accuracy. Hsu et al. [20] carried out recommendation task
research by obtaining numerous user attributes, including
interest, emotion, experience, population information, etc.,
and implemented program recommendations by using ANN.
The above methods rely on different types of data to solve the
cold-start problem, and the recommendation effect depends
on the dimension [34] and quality of the data. Note that for
these methods, operators must obtain relevant data, which
is challenging. In addition, by employing statistics-based
methods, ShowTime [35] constructs user-item preference
matrix and viewing frequency matrix to predict candidate
programs. ShowTime focuses on a user’s preference for a
program and does not rely on additional information; thus,
it cannot address the cold-start problem.

In fact, a TV program is broadcast on a TV channel accord-
ing to a schedule, and it is challenging to determine how
suitable a program is for a viewer when the viewer changes
the channel [37].

B. TV CHANNEL RECOMMENDATION METHOD
The RC method is a unique solution for the live TV recom-
mendation task. Similar to live streaming, a channel recom-
mender, instead of a program recommender, is more suitable
for live broadcasts. It converts a user’s preference for TV
programs into the preference for TV channels and thus can
be used to bridge historical TV programs with new ones.
Most of these methods used the time factor to divide a TV
channel into several logical channels or to divide a shared
account into several virtual viewers to achieve preference
differentiation. The scale of the preference estimation model
(e.g., user-channel-time) is much smaller than that of the
user-item matrix; thus, it can alleviate the problem of data
sparseness. For example, Cremonesi et al. [9] divided a day
into eight time slots to build a time-channel rating matrix for
each user, used the cumulative viewing duration of each time
slots as the user viewing preference in that slot, and realized
preference prediction by applying Tucker decomposition.

Turrin et al. [7], Wu et al. [25] and Kim et al. [29] divided
a week into several time slots to capture user preferences in
combination with TV program metadata. However, the time-
division strategies of the above methods rely on experience
and have poor universality, as they only focus on the channel
and ignore the features of the current programs at the time of
recommendation.

Yu et al. [23] proposed six channel-based recommenda-
tion strategies. By considering recommendation as a binary
classification task, they integrated the above recommendation
strategies. This method considered a user’s preference for
a channel and the current programs being broadcast, but it
ignored negative feedback. Zui et al. [26] provided a hybrid
preference-aware recommendation algorithm that adopted
the cumulative duration spend viewing a channel as the chan-
nel preference. Bahn and Baek [27] analyzed user viewing
behaviors by channel to recommend channels. Ning et al. [11]
discussed the difficulty of live channel recommendation and
proposed ways to intelligently recommend channels to users.
Lin et al. [28] proposed the user preference clustering algo-
rithm to solve the channel recommendation problem for live
game streaming platforms, channel/game/language prefer-
ence calculation, clustering computation, and channel score
calculation. However, the above methods did not distinguish
positive feedback from negative feedback. Except for [23],
the studies did not consider the characteristics of candidate
programs at the recommended time.

C. RECENT DEEP LEARNING RESEARCH ON THE
COLD-START PROBLEM
With the application of deep learning in RS, some internet
companies adopted neural networks to address the cold-start
problem [38]–[40]. Alibaba uses the embedding of side infor-
mation in new items to replace the embedding of the items to
calculate the similarity between items [38], [39]. For the cold-
start problem of housing options, Airbnb selects the three
closest houses of the same type (within a radius of 10 miles)
and uses the average value of the embedding of the three
houses as the embedding of the new house [40]. For new
music, Oramas et al. [41] extracted semantic information
and text features from the author’s introduction and extracted
track embedding information frommusic signals. Such meth-
ods show that deep learning has a strong ability to make use
of heterogeneous data.

In summary, in the program recommendation method,
the CB has a single recommendation type and an unsatis-
factory recommendation effect, while the CF cannot address
the matrix sparsity and cold-start problems produces poor
real-time recommendations. The context-based approach and
the social network-based approach rely on multidimensional
datasets, which increases the difficulty of implementation.
For the RC method, the time division rules are not uni-
versal and have poor interpretability. Most methods do
not focus on the current programs at the time of recom-
mendation. In addition, the two methods cannot effectively
distinguishing positive feedback from negative feedback.
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Therefore, while employing no additional information, this
paper aims to address the cold-start problem of live TV pro-
grams and improve recommendation effect by optimizing the
time-division strategy, considering the candidate programs
at the time of recommendation, using positive and negative
feedback and capturing continuous viewing preferences. Due
to the advantages of deep learning for information utilization,
in this paper, we adopt deep learning methods to fuse hetero-
geneous data from various features.

III. PRELIMINARIES
A. TASK DEFINITION
We first define our research task. The user set is U, the TV
channel set is C, and the historical set of TV programs is
Rhistory. At time t, the set of TV programs that are on air
is Rnow, and the cold-start problem of the TV program is
represented as Rhistory ∩ Rnow = Ø, |Rnow| = |C|. For each
historical TV program ph ∈ Rhistory, argChannel(ph) ∈C . For
each live TV program pn ∈Rnow, argChannel(pn) ∈C . The
task is to generate a recommendation list ranku(C,K) (RC
method) or ranku (Rnow, K ) (RP method) for user u at time t
with length K .

If the above task is regarded as a regression problem, then
the implicit feedback (viewing duration) should be trans-
formed into explicit feedback (rating). Existing conversion
methods employ the accumulation of viewing duration [35],
the 0-1 method [14], [42], the proportion of TV viewing
duration [1] and the optimized proportion of TV viewing
duration (state-of-the-art) [13]. However, this conversion pro-
cess inevitably loses some information, and it can easily
introduce error. For instance, the optimized proportion of TV
viewing duration adopts the ratio of user’s viewing duration
to program’s duration the user can view. However, the denom-
inator contains advertisements and cast which users may not
watch, those contents participate in the conversion of implicit
feedback to explicit feedback, and error is introduced. The
ratio of advertisements (and cast) to the whole TV program
are various in different TV programs, it means that the con-
version errors of different TV programs are not same, so it is
not ideal to regard the recommender system as a regression
task with conversion results of implicit feedbacks as labels.
Inspired by [5], we regard live TV recommendation as a
multiclassification problem, with each candidate TV program
as a classification.

In viewing environment E , the probability that the content
wt watched by user u at time t of TV program p is:

P(wt = p|u,E) =
evp∑

i∈Rnow e
vi
, p ∈ Rnow (1)

where vi is the output of TV program i.
The time of recommendation is critical to user experience.

As shown in Fig.2, Oh et al. [35] evaluated the condition of
recommendation every 10minutes. The recommendationwill
be triggered when the rating of a TV program that is on air
is higher than that of the current TV program watched by the
user. Obviously, the recommendation will interrupt the user’s

FIGURE 2. Recommendation moment. (1) Fixed duration, e.g., 10 minutes;
(2) the moment the TV channel is changed.

viewing process and thus affect user experience. A more
appropriate time for recommendation is the moment at which
the user switches the channel. This operation indicates that
the current user is looking for preferred content and that
a recommendation at this time meets the user’s needs; this
moment is the time at which the user starts viewing programs.

B. OUR OBSERVATIONS
For live TV, common datasets include viewing records
(Table 1) and EPG (Table 2). On this basis, this paper pro-
poses a solution to the program cold-start problem based on
the viewing environment. In Table 1, the audience’s prefer-
ence for a TV program is expressed as the viewing duration
(end_time − start_time). Watching a TV program for a short
duration indicates that the user does not like the program; this
type of behavior is considered negative feedback; the opposite
type of viewing behavior is considered positive feedback.

TABLE 1. View behavior logs.

TABLE 2. EPG.

How can we distinguish positive feedback from negative
feedback? Cho et al. [13] set a threshold for the viewing dura-
tion ratio (α = 0.1). The viewing duration ratio is defined
as r = w/Tl , where w is the viewing duration, i.e., w =
end_time-start_time, and Tl is the remaining time, i.e., Tl =
be_time-start_time. However, -when Tl = 50 minutes,
the conclusion that a viewing duration of 5 minutes
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FIGURE 3. User’s viewing sequence.

(50 minutes × 0.1) is negative feedback is unconvincing.
Wang et al. [10] set a threshold of viewing duration (β =
300 seconds). Obviously, this method is not suitable for short
TV programs. Statistics of our dataset show that a remaining
time of more than 50 minutes accounts for 17.6% of all view-
ing behavior, while a remaining time less than 300 seconds
accounts for 14.0% of all viewing behavior; thus, the errors
caused by the two methods cannot be ignored. To define
negative feedback more precisely, we combined both rules,
and the viewing behaviors meeting the conditions α < w/Tl ,
and w < β are considered as negative feedback.
Here we discuss the recommendation task of live TV,

which is a common viewing scenario, and only the programs
being broadcasted are regarded as candidates. The PVR and
TV replaying functions are not considered. Suppose Lu is
a viewing sequence of user u with positive feedback and
negative feedback (Fig.3). In Lu, user u watched News Night
(positive feedback) at 22:10 on Monday. On Tuesday, he
started to watch The Lion King, Forrest Gump and the NBA,
respectively from different channel, at 16:30 (negative feed-
back). At 22:03, he switched to a news channel to watch the
National News (positive feedback). We noticed that:
OB1: 22:03 and 22:10 are likely to belong to the same

viewing time slot for user u.
OB2: The Lion King, Forrest Gump and the NBA should

not be recommended to user u at 22:03 on Tuesday because
user u has provided negative feedback. Since The Lion King
finished before 22:03, the program aired subsequently can be
used as a candidate for user u. To this end, we adopted the
methods proposed in [13] and [10] respectively to distinguish
the positive feedback and negative feedback to calculate the
probabilities, which are an on-aired program p viewed as
a negative program by user u will be re-watched by user
u as a positive program (e.g., the probability of watching
Forrest Gump at 23:15 by user u), the results are 19.51% and
34.99% respectively, while the probability of program p will
be re-watched as the first positive program after continuous
negative feedbacks (e.g., the probability of watching Forrest
Gump at 22:03 user u) are only 2.04% and 2.49%, the statis-
tics confirmed our inference.
OB3: The viewing behavior (National News) for which

positive feedback was provided on Monday has a positive
influence on the viewing behavior on Tuesday.
OB4: When user u starts to watch News Night, a signif-

icantly amount of its content of News Night remains to be
broadcast because user u is reluctant to watch a TV program
that is almost over.

To make use of the above information, traditional machine
learning methods need to concatenate different models. Such
methods are difficult to implement, and acquiring a good
effect is difficult.

In our work, the state of TV programs that are on air at
time t and the historical viewing behaviors that may affect the
viewing behaviors of user u at time t are called the viewing
environment of user u. For user u, suppose that the probability
of viewing a historical TV program ph under environment E
is P, and the probability of viewing a TV program pn that
is on air under environment E ′ is P′. If P = F(u, ph, E),
then P′ = F(u, ph, E ′). Next, we will present the feature
generation process based on the viewing environment.

IV. FEATURE GENERATION
In this section, we try to extract features from our obser-
vations and express them in a continuous or discrete way.
Continuous features are represented by real numbers [5],
while discrete features are represented by one-hots or multi-
hots. This part includes two components: feature selection
and feature processing. We first define seven key features.

A. USER ID
We extract u_id without considering event_id. As mentioned
in part II, historical TV programs will not be replayed in the
future; thus, it is meaningless to extract event_id from the
historical record.

B. THE START TIME OF POSITIVE FEEDBACK
We hope to make recommendations at the moment t when the
user selects a channel, which corresponds to the start_time
(Table 1). Therefore, we regard start_time as a key feature.
In general, live TV usually serves the whole family, and
the start_time often varies by family member. For example,
housewives and older people prefer to watch TV in the morn-
ing, children watch in the afternoon after school, and other
adults watch in the evening or at midnight (OB1). Therefore,
we divide each day into ts time slots so that the start_time of
each set of viewing behaviors belongs to one time slot only.

D :=
ts
∪
s=1

ds s.t.
ts
∩
s=1

ds = ∅ (2)

Equation (2) shows that viewing cycle D (24 hours per day)
is composed of consecutive time slots that do not intersect;
ds represents the s-th slot. Each start_time belongs to a cor-
responding slot ds and is transformed into discrete features
represented by a one-hot.
Definition 1: The time slot of positive feedback
Positive feedback of user u occur at time t is expressed as

PF = {pf1, pf2,. . . , pfs,. . . , pfts}.

pfs =

{
1, t ∈ ds
0, else

(3)

During the test phase, we used such feedback as the input
of the model. For example, for the recommendation task
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of user u at time t ′, we used time t ′ as the start_time to
generate PF.

To implement time division, the start_time values of all
sets of user viewing behaviors are taken as the inputs to
K-means++, and ts time slots are clustered by calculating the
Euclidean distance between each pair of start_time values.
The result is shown in Fig.4 as an example.

FIGURE 4. Time feature clustering.

Note that the time characteristics are cyclical. For example,
start_time values of 00:20 and 23:50 are likely to be in the
same slot for user u (e.g., an adult). However, if we do not
consider the cyclic characteristics of time, they may belong
to period 1 and period 6 after clustering (Fig.4).

The one-dimensional feature of time is usually mapped
to two-dimensional features by Equation (4) [43]. As an
example, the mapping effect is shown in Fig.5-a).

xsin = sin(
2π t
24

)

ycos = cos(
2π t
24

)
(4)

Here, t is the start_time. However, the Euclidean distance
between any two points cannot reflect the real difference
between two start_time values. As shown in Fig.5-a), the dis-
tance from 0 o’clock to 6 o’clock is obviously not 6 times the
distance from 0 o’clock to 1 o’clock. Therefore, we map time
to a circle with a radius r = 1/2π ; for example, the result for
time a= 13:30(13.5) is a’= 2πra/24= a/24= 13.5/24. The
minimum distance on the arc of the two points (time) is taken
as the distance between them for clustering, i.e., the distance
of time a and time b is dab= min(|a’−b’|, 2πr-|a’ −b’|).
Then, the clustering effect becomes as shown in Fig.5-b), and
slot 1 and slot 6 are combined into one slot.

C. FEATURE EXTRACTION OF NEGATIVE FEEDBACK
Inspired by OB2, negative feedback shows that user u does
not like the TV program or that it is not worth watching as
it nears the end; TV programs that are airing and have been
watched but are disliked by user u should not appear in the
recommendation list of user u. For user u, the TV channel,
which is still broadcasting the TV program that received
negative feedback at time t (recommended time) is regarded
as the input of the neural network. The input is represented
by a multi-hot.

Suppose that positive feedback is provided at time t−1 and
time t, and the negative feedback of all channels at time t is
expressed as NW = {nw1, nw 2,. . . , nw c,. . . , nwn}.

nwc =

{
1, if pc ∈ chc
0, else

(5)

FIGURE 5. Mapping method of time-periodic characteristics.

Here, pc ∈ Iu ∩ It , Iu represents the TV programs for which
user u provided negative feedback from time t to time t−1,
and It represents the TV programs airing at time t .

D. CONTINUOUS VIEWING PREFERENCE
The viewing behavior of user u before the recommended
time t reflects user u’s preference at time t to some extent.
For example, user u likes to watch programs (e.g., news,
TV shows, variety shows) on the same channel and at the
same time (OB3). Therefore, we map these features to the
corresponding TV channel CH= {ch1, ch2,. . . , chc,. . . , chn}.
Definition 2: Viewing heat
Within h hours before time t , user u shows the positive

feedback of each channel, i.e., BW= {bw1, bw 2,. . . , bwc ,. . . ,
bwn}.We set h = 24 in the following experiments.

bwc =

{
0, if Icth = ∅
|Icth| , else

(6)

Here, Icth represents the positive feedback of user u on channel
C within h hours before time t .
Definition 3: Viewing heat of the current period
Within h hours before time t , user u provides positive feed-

back for each channel in ds, t ∈ ds, i.e., FW = {fw1, fw2,. . . ,
fwc,. . . , fwn}. We set h = 24 in the following experiments.

fwc =

{
0, if Icdsh = ∅∣∣Icdsh∣∣ , else

(7)

Here, Icdsh represents the positive feedback of user u for
channel C within h hours before time t(t ∈ ds), and the
positive feedback is provided in ds.
Definition 4: Viewing distance
For user u, the number of days between start_time t ′ of the

last positive feedback provided for each channel and time t, t ′

and t ∈ ds, i.e., DW = {dw1, dw2,. . . , dwc,. . . , dwn}.

dwc =

{
0, if Icds = ∅
t − max(Tcds ), else

(8)

Here, Tcds indicates the start_time set of all positive feedback
of TV channel C , and each start_time belongs to ds.
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FIGURE 6. The structure of DeepTV (pf means positive feedback while nf means negative
feedback).

E. FEATURES OF THE AIRING TV PROGRAM
To establish a direct relationship between the new TV pro-
grams and the model, inspired by OB4, we introduced the
proportion of time remaining [35].
Definition 5: The proportion of time remaining
At time t , the proportion of time remaining of TV program

p in channel C is:

rpc =
be_timep − t

be_timep − bs_timep
(9)

where be_timep is the be_time of p, and bs_timep is the
bs_time of p. At time t , the proportion of time remaining
of all TV channels is expressed as RP = {rp1, rp2,. . . ,
rpc,. . . , rpn}.

F. FEATURE PROCESSING
Before being fed to the neural network, the continuous fea-
tures are first treated as x̃ by the L2 norm, and

√
x̃ and x̃2

are added to provide the neural network with more expression
ability. The continuous features include viewing heat, viewing
heat of the current period, viewing distance, and the propor-
tion of remaining time. This process improves the accuracy of
offline training [5]. Then, all features are embedded through
a fully connected layer. The dimension eq of the embedding
layer is in [1, fq−1]. fq is the number of classifications of
the feature, and eq is selected based on experience, as there

is no relevant theory related to its determination [44]. The
embedding maps the nonzero term of a one-hot or multi-hot
to the connectionweight corresponding to the full connection,
and then it realizes the transformation from input to network
expression.

V. MODEL CONSTRUCTION
Our model,DeepTV, consists of a feature generation process
and a model construction process (Fig.6). Feature gener-
ation includes feature selection, normalization and powers
generation. Model construction includes input, hidden and
output layers. The input layer is a fully connected layer for
embedding the input features. In the hidden layer, a suitable
neural network is used for network fitting. The output layer
is a fully connected layer that takes softmax as the activation
function. In the classification task, cross entropy is usually
chosen as the loss function.

Loss = −
|C|∑
c=1

yic log(P
i
c) (10)

Here, yic represents whether the c-th sample belongs to the
i − th category, with a value of 0 or 1. Pic represents the
probability that the model predicts that the c − th sample
belongs to the i− th category. However, cross entropy is not
suitable for live TV. For user u, the candidates are l= {c1,
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c2, c3, c4},the correct answer is c2, and we use cross entropy
as the loss function. Suppose that there are three outputs,i.e.,
l1 = {c1:0.4, c2:0.3, c3:0.1, c4:0.2}, l2 = {c1:0.32, c2:0.30,
c3:0.31, c4:0.07}, l3 = {c1:0.0, c2:1.0, c3:0.0, c4:0.0}; thus,
we obtain the corresponding losses: loss1 = 0.52, loss2 =
0.52, and loss3 = 0. Although l1 and l2 are wrong, l1 (with
c2 in second place) is better than l2 (with c2 in third place).
However, the loss function does not reflect their difference
(loss1 = loss2). Therefore, cross entropy cannot reflect the
training state of the neural network. In l3, although the net-
work converges, it sacrifices efficiency and increases the risk
of overfitting. Therefore, we propose a position-dependent
loss function:

Loss =
1
|L|

∑
l∈L

Indexl(p)
log2(Indexl(p)+ 1)

− 1 (11)

Where Indexl(p) represents the position of the correct answer
p in the candidate list l, and L is the set of recommended tasks.

VI. EXPERIMENTAL RESULTS AND ANALYSIS
Our dataset includes the user viewing record and EPG
from May 17, 2017 to June 20, 2017. The dataset contains
30,187,636 records of 35,143 set-top boxes. In order to test
the effect of our proposal on item cold-start problem, we ran-
domly selected 500 accounts, and each account had at least
200 viewing records. Each user’s viewing record is sorted
according to the start_time and divided into a training set
and a testing set with a ratio of 80:20. Each event_id is
different, and all algorithms are implemented by assuming
the cold start of the TV program, i.e., Rhistory ∩ Rnow =
Ø. We adopt recall, normalized discounted cumulative gain
(nDCG), and mean reciprocal rank (MRR) to evaluate the
prediction performance.

To show the performance of our algorithm, we select some
recent TV recommendation algorithms with different tech-
nologies as comparison methods and adopt the best param-
eters given in these literatures. All comparison methods and
our algorithm adopt the same viewing records (Table 1) and
EPG (Table 2). Some methods are not chosen because of
the distinct datasets they need, e.g., the methods based on
the content and the methods based on social network. In
addition, we add the most popular method to reflect the
viewing characteristics of live TV.

TD [9]: Time-based model. First, it divided each day into
eight viewing timeslots and constructed a time-channel rat-
ing matrix for each user. Secondly, the cumulative viewing
duration of each timeslot was taken as the preference of user
in that period. Finally, the results were predicted by Tucker
Decomposition.

ShowTime [34]: Statistics-based model. First, users’ pref-
erences were obtained by calculating the viewing duration of
programs. Secondly, the stay time ratio and the remaining
time ratio were defined to construct a matrix of viewing
probability with 10 × 100 for each user. Finally, ShowTime
performed the product of preference and viewing probability
as predicted score of candidate.

MFHM [12]: User-based collaborative filtering model.
It proposed a scoring model of implicit feedback based on
the viewing duration ratio and viewing duration. User-based
collaborative filtering algorithm was used to implement the
recommendation with correlation coefficient. To alleviate the
program cold-start problem, rating of finished content of a
current program was used to replace the rating of the whole
program at recommendation time.

WIM [13]: Multi-strategy aggregation model. WIM is the
latest RP method, which includes preference estimation pro-
cess, rating prediction process and recommendation process.
First, WIM constructed a rating matrix and weighting matrix.
Secondly, WIM adopted the weighted least square method to
the rating matrix. Finally, the rating matrix was used as the
output after adjusted by a viewing probability model.

PSG [23]: Channel-based multi-strategy aggregation
model. Based on six channel-based recommendation strate-
gies, e.g., global popularity, personal popularity, PSG con-
sidered the recommendation as a typical binary classification
problem.

POP: Channel-based model. At recommendation time t ,
the number of people who are watching channel c is consid-
ered as the rating of channel c.

First, we adjust the parameters α, β, and ts to acquire the
best input for the neural network. Then, we adjust the parame-
ters of the neural network by impact from large to small (i.e.,
the hidden-layer network, the number of layers, the output
dimension, dropout, and initialization), and we shuffle the
input sequence of data to further improve the effect. Finally,
we compare our algorithm with other algorithms. This model
is implemented by TensorFlow 2.0 and Keras 2.3.1. All the
algorithms related to the neural network are tested 30 times,
and the average is taken as the final result.

A. INPUT CONSTRUCTION FOR NEURAL NETWORK
To facilitate the calculation, we build a simple neural net-
work (the hidden layer is a fully connected layer, the output
dimension is 512, dropout= 0.5 is suggested when there is no
support of experimental results [24], and the other parameters
are set to default values), and change α, β, and ts.

1) INFLUENCE OF NEGATIVE FEEDBACK
For ts = 12 and β = 0, we change α. As shown
in Fig.7-a), nDCG@1 obtains the maximum value at α = 0.3,
but for nDCG@5, the value at α = 0.1 is higher than that at
α = 0.3. The MRR at α = 0.1 is slightly higher than that at
α = 0.3. We choose α = 0.1 for the following experiments,
and the result is consistent with that of [13].

The increase in α leads to a decrease in training samples
that affects the generalizability of the model. With a decrease
in positive feedback, negative feedback increases gradually,
which leads to negative feedback samplesmixedwith positive
feedback; thus, the quality of negative feedback decreases.
Incorrect samples affect the model.

In industrial applications, the area on the TV in which the
recommendation is shown is small, and the results of each
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TABLE 3. Comparison of different hidden layers (dp: dropout).

FIGURE 7. Influence of α and β.

metric at N = 5 is very important [45]. With a fixed α = 0.1,
we change β. As shown in Fig.7-b), the changes in nDCG and
MRR are similar. The results of nDCG and MRR are optimal
when β = 100.

2) INFLUENCE OF TIME DIVISION
For α = 0.1 and β = 100, we change ts. Based on
experience and [9], [10], we set the number of periods
to [4,8,12,16,20,24]. As shown in Fig.8, nDCG and MRR
change in similar ways, first increasing and then decreasing.
When ts = 8, the results of each metric are optimal.

FIGURE 8. Influence of ts.

FIGURE 9. Influence of dropout.

B. NEURAL NETWORK OPTIMIZATION
1) HIDDEN LAYER SELECTION
In recent years, a variety of neural networks have been used
in RSs [46]. For example, (1) before 2016, YouTube applied
DNN to industrial RSs [5] for handling heterogeneous data.
(2) By adding hidden-layer units to save a long-term state,
LSTM can effectively model long-term dependency and is
good at processing recommendation tasks for time series data
[47]. (3) He et al. [48] extracted features from data using
AE to realize collaborative filtering. We take the above three
neural networks as the hidden layer to construct DeepTV,
as shown in Fig.6. We set dropout = 0.5 and adopt the
default method of Keras for other parameters. By changing
the position of the dropout layer and the activation function,
we achieve the best performance of the three neural networks
after a large number of experiments (Table 3). The DNN
achieves the best performance in terms of all metrics. It is a
common method for training different LSTMs for each user
with their data. Since there are many more parameters for
LSTM than for DNN, we train a shared network with the data
of all users to speed up training; to some extent, this method
limits the performance of LSTM. Therefore, we use the DNN
as the hidden layer in the following experiments.

2) DROPOUT
Dropout prevents overfitting the neural network by discard-
ing the input of the neural network. Based on the previous
section, we apply experiments with DeepTV_DNN (Table 3).
According to Fig.9, the introduction of dropout significantly
improves the effect of DeepTV. The best result is obtained for
dropout = 0.7, then we re-performed experiments, and the
best hidden layer did not change compared with that when
dropout = 0.5.
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TABLE 4. Comparison of different initialization.

FIGURE 10. Method comparison.

3) INFLUENCE OF INITIALIZATION
When glorot_uniform initialization [49] is used with relu,
the vanishing gradient problem becomes more serious with
the increase in the neural network layer. Therefore, we adopt
He initialization [36] instead of glorot_uniform initialization.
As shown in Table 4, althoughDeepTV is not deep, the results
are still improved after he_normal (he normal distribution
initialization) was adopted.

C. DATA SHUFFLE
To avoid the influence of the sequence of input data during
training, data are usually shuffled. Shuffling can prevent the
model from shaking during training process and improve
robustness to prevent overfitting and promote the learning of
correct features. In the above experiments, the training data
are put into the neural network according to u_id. We shuffle
the input sequence of data and obtain MRR = 0.5658, which
is slightly better than the result in Table 4 (0.5647). Because
the data volumes of the users are similar and the user’s scale is
large, the possibility of local data features is low. Therefore,
the effect of shuffling is not obvious.

D. COMPARISON AND ANALYSIS
In this section, we compare the proposed algorithm with
existing algorithms. As shown in Fig.10, DeepTV_DNN
(Table 3), the best performing method we developed, per-
forms significantly better than the comparison algorithms.
Of the comparison algorithms, WIM and PSG perform
well, and the scores of each evaluation criterion are sim-
ilar. With the increase in the length of the recommenda-
tion list, except for POP, the effects of other algorithms
are significantly improved; MFHM is the fastest. Specif-
ically, in terms of recall, PSG was better than WIM at
first, but WIM improved faster than PSG as the length
of the recommendation list increased. In terms of nDCG,
PSG remained ahead of WIM in MRR. Although MFHM

FIGURE 11. The utilization of the test set in different models.

improved significantly with the increase in the length of
the recommendation list, its performance at low N values
was significantly weaker than that of other comparison algo-
rithms, and its performance at Recall@1 was only slightly
better than that of POP. POP’s recommendation ability was
improved at N∈[1,2,3,4,5], reaching 19.32% at Recall@5
before improvement slowed. This result indicates that several
popular TV programs attract a certain number of people, but
the user’s demand for personalized TV programs is obvious,
and TV programs show a long-tail effect. To exactly evalu-
ate our method, we compare our method with baselines by
using (recall(our method) – recall(baseline))/recall(baseline)
at Recall@N∈[1,5,10], DeepTV_DNN is higher than PSG by
21.68%, 11.98% and 14.74%, higher than WIM by 43.56%,
8.93%, 9.81%, higher than TD by 71.67%, 26.09%, and
17.51%, higher than ShowTime by 66.35%, 30.29%, and
29.96%, and higher than MFHM by 240.37%, 84.92%,
and 38.98%. Notably, WIM and ShowTime are unable to
address the cold start of TV programs. Therefore, during
preference estimation, we adopt the user preference for TV
channels to replace the user preference for TV programs.
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FIGURE 12. Comparison of all algorithms with sparse data.
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As shown in Fig.11, DeepTV is so effective because it
selects features more widely than other algorithms; it can
make full use of the information in the dataset, including
user-time connection, positive and negative feedback, and
continuous viewing preference. However, WIM extracts fea-
tures including user-channel, the TV programs on air, and the
viewing state of the user at start_time. Although PSG adopts
multi-strategy fusion, these strategies are not accurate in
terms of feature extraction and ignore important information,
such as positive and negative feedback. TD extracts only the
user-channel-time feature. This difference is reflected in both
the training stage and the testing stage. As shown in Fig.11,
in (I), the input of the neural network is larger than that of
other models in terms of info3 and info4. Specifically, in (II),
at recommendation time t , the neural network model uses the
information before t .

E. THE INFLUENCE OF SPARSITY
We randomly select data from training set (test set for
POP) of each user with proportions of 80%, 60%, 40%, and
20% respectively without replacement of samples. As shown
in Fig.12, as the dataset becomes sparser, the quality of
each algorithm’s candidate list gradually and significantly
declines (Fig.12-a). Our method DeepTV_DNN still per-
forms best. Specifically, MFHM and PSG are most seriously
affected by data sparseness. For a sparse dataset, the user-
item rating matrix of MFHM becomes sparser and cannot
be used to accurately calculate the similarity between users.
PSG behaves similarly. In addition, sparse data make multi-
strategy fusion of PSG difficult. TD based on tensor decom-
position maps preferences to time-channel correlations in
small-scale tensors (far smaller than the user-item rating
matrix in MFHM). Although the reduction in the training set
reduces the accuracy of preference estimation to some extent,
it does not make the tensor significantly sparser. ShowTime
is a statistical method, but each viewing behavior of users
can provide multiple fillers for the preference matrix; thus,
the preference matrix does not easily become sparser due to
a decrease in viewing behavior. WIM adopts user-channel
preference estimation, which has similar advantages to TD;
its recommendation section method adopts the same strategy
as ShowTime; thus, it can mitigate the impact of data sparse-
ness to some extent. POP and DeepTV_DNN were slightly
affected by data sparseness. Because POP adopts the method
of popularity calculation, sparse data do not lose statistical
significance. DeepTV_DNN benefits from richer input and
stronger feature extraction ability than other algorithms.

VII. CONCLUSION
This paper focuses on the cold-start problem of live TV
programs. To address the weaknesses of existing methods,
we propose a recommendation model based on the viewing
environment by taking the viewing record and simplified
electronic program guides as the dataset. Compared with
existing methods, we improved our work by (1) using cluster-
ing to divide the time slots, (2) dividing implicit feedback into

positive feedback and negative feedback, (3) capturing the
continuous viewing preference of users, and (4) introducing
the broadcast status of candidate programs.We regard the live
TV recommendation task as a classification problem and use
a neural network to integrate the above features. Experiments
on real datasets show that the proposed model is obviously
superior to traditional live TV recommendation algorithms.
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