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ABSTRACT Wireless Sensor Network (WSN) as one of the representatives of the Internet of Things
technology has also received much attention. To accurately diagnose fault sensor nodes, a fault diagnosis
method based on fireworks algorithm optimization convolutional neural network algorithm is proposed.
The weights and biases of the convolutional neural networks are optimized by using the self-regulating
mechanism of global and local searching ability of fireworks algorithm. So the problem of convolution
neural network in extreme judgment and limited convergence speed is solved, to effectively realize the fault
diagnosis of the WSN. Simulation experiments show that this algorithm has higher fault diagnosis accuracy
than other classic WSN fault diagnosis algorithms.

INDEX TERMS Convolution neural network, fault diagnosis, fireworks algorithm, MM* model, wireless
sensor network.

I. INTRODUCTION
In the context of the development of big data and the Internet
of Things, WSN has gradually become a research hotspot
in various fields, especially in the fields of military warfare,
environmental monitoring and forecasting, security monitor-
ing, smart home, and health care. Sensor node failures are
usually caused by the hardware failure of the sensor itself
and the poor deployment environment. This can lead to fre-
quent changes in the topology of the WSN, communication
errors, and network separation. Therefore, timely diagnosis
and removal of WSN faults, and improving the reliability and
life cycle of WSN operation are the preconditions to ensure
that WSN monitoring system can complete the specified
tasks. In another words, WSN fault diagnosis is critical to
maintaining the quality of the network.

Because of its great advantages in the application field,
WSN has attracted wide attention from all walks of life,
and various WSN fault diagnosis algorithms have been pro-
posed one after another. The way of base station diagnosis
is a common WSN diagnostic method. In 1967, Preparata,
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Metze and Chien proposed a system-level diagnostic model
for interconnection–PMC model [1], in which the process-
ing module tests other modules, using the results of the
test to determine the state of the system. Subsequently,
diagnostic models such as the BGM model [2], Chwa &
Hakimi model [3], Malek model [4], MM model [5] and
MM* model [6] were successively proposed. These diag-
nostic models are also suitable for WSN. Two sensor nodes
that can communicate can be considered as two nodes with
physical connections. De Paola [7] proposed an adaptive
distributed Bayesian method for detecting outliers in data
collected by WSN. Zhang and Yuan [8] proposed a new
method for fault diagnosis of WSN clusters based on dis-
tributed energy-efficient clustering algorithm and neighbor
collaboration strategy. The algorithm divides the entire net-
work into multiple clusters, distributes fault management to
each cluster area, and adopts an improved neighbor collabo-
rative diagnosis strategy in the cluster. But the improvement
effect of these two methods of diagnostic accuracy is not
obvious. Based on the particle swarm optimization (PSO)
classification method, Swain and Khilar [9] proposed a real-
time soft fault diagnosis model for WSN. The proposed
model is divided into three phases, such as initialization, fault
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identification, and fault classification phases, to diagnose
composite faults in the sensor network. Subsequently, they
proposed a heterogeneous fault diagnosis protocol for
WSN [10]. However, the false alarm rate of these two meth-
ods is slightly higher when the node failure rate is higher
than 50%. Gao et al. [11] proposed a distributed filter-
ing scheme for dealing with soft fault detection of nonlin-
ear stochastic systems with WSN. Cheng [12] proposed a
sensor network fault detection mechanism based on sup-
port vector regression and neighborhood coordination. The
fault prediction model was established by using a support
vector regression algorithm. Then, the node state is deter-
mined by testing each other between reliable neighbor nodes.
Although these methods improve the diagnostic accuracy
to some extent, they increase the communication between
sensor nodes. He et al. [13] proposed a new fault diagnosis
method based on belief rules for WSN, which can detect and
correct sensor node faults in time and improve the accuracy
of sensor data fusion. But that requires a lot of historical
data. Mengying et al. [14] proposed a wireless sensor fault
diagnosis algorithm based on neighbor node and neighbor
node data for the problem of low detection accuracy when
the fault node rate is higher than 50% in WSN. In recent
years, researches on fault diagnosis methods based on deep
learning have becomemore andmore popular, andmany fault
diagnosis methods based on neural network have emerged
[15]–[17]. Their diagnostic accuracy and false alarm rate
are much better than traditional methods, which makes fault
diagnosis of WSN based on the neural network to be a future
research trend.

Convolutional Neural Networks (CNN) [18] is a type of
feed-forward neural network with convolutional computation
and deep structure. It is one of the representative algorithms of
deep learning. However, the traditional convolutional neural
network learning method uses the steepest descent algorithm
to learn, and the learning performance of the steepest descent
algorithm is greatly affected by the initial weight and bias
selection of the neural network. If the initial weight and
bias selection are not good, the training process is easy
to fall into local optimum. Considering that the fireworks
algorithm has strong self-regulation mechanism of global
search ability and local search ability [19], and fireworks
algorithm can effectively solve the problem of system-level
fault diagnosis [20], this paper introduces the fireworks algo-
rithm into the convolutional neural network model and pro-
poses a new WSN fault diagnosis method–FWA-CNNFD
(Fireworks Algorithm-Convolutional Neural Networks Fault
Detection). Firstly, according to the shortcomings of the
traditional fireworks algorithm, the fireworks algorithm is
improved appropriately. Then the initial weights and biases of
the multi-group convolutional neural networks are generated.
The combination of the weights and biases of each group
is used as the initial population of the fireworks algorithm.
Through explosion operator, mutation operator, displacement
operation, mapping rule, and selection strategy, the optimal
weight and bias are obtained. Finally, the optimal weight and

FIGURE 1. Typical WSN.

bias are used as the initial weight and bias of the convolutional
neural network to construct thewireless sensor fault diagnosis
model. By combining the fireworks algorithm with the con-
volutional neural network, the wireless sensor fault diagnosis
efficiency is greatly improved.

The rest of the paper is organized as follows. Prepara-
tion knowledge is discussed in Section II. In Section III,
we improve the neural network based on the fireworks algo-
rithm. The implementation and analysis of FWA-CNNFD
algorithm are described in Section IV. Finally, the conclusion
and the direction of future work are given in Section V.

II. PREPARATORY KNOWLEDGE
A. WSN FAULT DIAGNOSIS MODEL
Wireless sensors are generally deployed in environments with
harsh environments and sparsely populated environments.
From the beginning of the deployment, nodes are almost
unmanaged, so WSN failures are more frequent and unpre-
dictable than traditional wireless networks. If a component
has hardware or software errors, it will lead to failure [21].
So, the sensor network is inevitable faulty, and what we have
to do is to determine which nodes in the network have failed.

The WSN consists of several wireless sensor nodes in a
self-organizing manner (Figure 1) [22]. The wireless sen-
sor consists of four basic modules: sensor, CPU, wireless
communication and power supply. Nodes can communicate
within a certain communication range and can transmit and
exchange information with each other. The sensor also has
a simple calculation function. In Figure 1, the small circles
represent sensor nodes, and the black nodes represent the
nodes that initiated the communication request. The line
segment between the two points indicates that the two sensor
nodes can communicate, and the large circle represents the
communication range of the black node.

With the development of WSN technology, various fault
detection, and fault diagnosis models have been proposed.
Malek comparative model was first proposed by Malek.
Under this model, the diagnostic test is executed by the node
that acts as the arbitrator. The arbitrator sends the same task
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and input to the two nodes that need to be tested, and then
the arbitrator compares the operation results of the two nodes
for the given task and input. This centralized troubleshooting
approach has proven to be effective and accurate, but this
approach is not suitable for large-scale networks. The main
reason is that such a cost will be very high. The base station
or center node collects node information in a centralized way,
and the fault identification requires a high level of equipment,
so this method does not apply to large-scale networks. Also,
this method also causes the node near the base station or
the central node to quickly consume energy, and the life-
time is reduced, thereby causing the network to be discon-
nected. Therefore, for the defects of the centralized model,
Sengupta and Danbura proposed a distributed comparison
model, the MM* model. In this model, the operation results
of each node are compared. This operation is not performed
by a single arbiter, but each node can compare the operation
results of any two nodes adjacent to it. By collecting all the
comparison results, we can judge the status of each node
in the system. Nodes in the network can independently judge
the state of the network, and the node makes decisions under
the supervision of the base station. If the node can make more
decisions, the less information that needs to be fed back to the
base station and other centers for judgment, thus effectively
reducing the extra energy overhead and extending the life of
the network. And this diagnostic framework can make the
diagnosis of large-scale dense networks easier. Therefore,
the MM* model has been widely applied and studied.

Wireless sensor network faults can be divided into hard
faults and soft faults. Hard fault means that the sensor node
cannot collect data or cannot communicate with other nodes
due to insufficient power or other reasons. Soft fault refers to
the normal data collection and communication function of the
sensor node, but there is a certain error between the collected
data and the true value. Soft faults can be subdivided into the
following four types: (1)Permanent faults. The data sensed by
the node will not change with time, and the sensed data is a
fixed value; (2)Temporary faults. The node perceives that the
data is abnormal during a certain period of time, but perceives
that the data is normal at other times; (3) Transient faults.
At a certain moment, the node feels wrong, and at other times
the sensed data is normal; (4) Offset faults. Perceptual data is
larger or smaller than a fixed value at every moment than real
data. This article assumes that the sensor node is a permanent
soft fault.

B. MM* MODEL
Under the MM* model, an undirected graph G (U ,E) can be
used to represent the test relationship between sensor nodes in
a WSN. One vertex u ∈ U in the graph represents one sensor
node in the system, and the edge

(
ui, uj

)
∈ E represents

the sensor node ui and uj can communicate with each other.
Node w assigns the same task to its two adjacent nodes u,
v and then feeds the test result back to node w. And then
node w compares the results returned by the two nodes. Use
σ ∗ ((u, v)w) to express the result of node w comparing the

TABLE 1. MM* model.

FIGURE 2. Common convolutional neural network structure.

outputs of the node u and node v. If the two results are the
same then σ ∗ ((u, v)w) = 0, otherwise, σ ∗ ((u, v)w) = 1.
If node w cannot communicate with node u and node v,
then σ ∗ ((u, v)w) = −1. All the test results are called the
comparative symptoms of this system, and are recorded as
σ ∗ ((u, v)w). The specific definition of the MM* diagnostic
model is shown in Table 1.

In a t-diagnosable system, there is a correct and complete
diagnostic algorithm, that is, all faulty nodes in the system
can be identified completely and correctly. A system with
n nodes is t-diagnosable if and only if the number of faulty
nodes t is less than or equal to (n− 1) /2, and each node can
be tested by at least t other nodes. In a t-diagnosable system,
the number of faulty nodes is always less than the number
of fault-free nodes. The fault diagnosis of wireless sensor
network in this paper is based on the premise of t-diagnosable
system.

III. IMPROVED CONVOLUTIONAL NEURAL NETWORK
BASED ON FIREWORKS ALGORITHM
A. CONVOLUTIONAL NEURAL NETWORK
Convolutional neural networks are an important model in
deep learning, and it has now become a part of the era of com-
puter vision. Convolutional neural networks, like ordinary
full-path neural networks, are composed of neurons formed
by weights and biases. The convolutional neural network
reduces the number of parameters in the network using partial
connection of neurons and does not cause loss of perfor-
mance. Convolutional neural networks have excellent perfor-
mance in the image field. The basic structure of convolutional
neural networks includes local perception, shared weights,
and pooling operations. Figure 2 is a diagram of a common
convolutional neural network structure.

1) CONVOLUTIONAL LAYER
When the size of the convolution kernel is i, the relationship
between the activation value a′ of each node of the next layer
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and the activation value a of the node of the previous layer is
as shown in Eq. (1). f is the activation function. w and b are
weights and biases, respectively.

a′j,k = f

(
i∑

l=1

i∑
m=1

wl,maj+l,k+m + b

)
(1)

Each feature map will have a feature map. In general,
the convolution layer will have multiple feature maps, that
is, corresponding to multiple convolution layer filters.

2) POOLING LAYER
In the convolutional neural network, the pooling layer is also
a very common structural unit. The pooling layer reduces the
data size by compressing the data. It is usually connected
behind the convolutional layer. The principle is similar to
the compressed image resolution. There is not much loss of
image features. For example, the value of the next layer node
in the average pooling layer corresponds to the average of
four adjacent nodes in the upper layer of the hidden layer.
When the pooling layer size is m, the average pooling layer
can be expressed by Eq. (2).

yr,c =

m∑
p=1

m∑
q=1

xr∗m+p,c∗m+q

m2 (2)

where yr,c represents the output value at the (r, c) position,
and the activation value at the (j, k) position of the previous
layer is xj,k . In addition to the average pooling layer, there is
also a maximum pooling layer etc. The largest pooling layer
is the maximum value of several adjacent nodes in the upper
layer.

3) FULL CONNECTION LAYER AND CLASSIFIER
After a series of feature processing, the data enters the fully
connected layer and is then classified by the classifier. In the
convolutional neural network, the structure of the fully con-
nected layer and the classifier is the same as that of the
traditional neural network. In this paper, the multi-layer full
connection plus the softmax layer is used as the classifier to
obtain the final output. For example, if there are k sensors
for fault detection, the network ends up with k probability
outputs. The calculation of the fully connected layer is as
shown in Eq. (3), where w is the weight, b is the offset. a′

represents the activation value of the next layer. a represents
the activation value of the previous layer.

a′j = f

(
i∑

l=1

wlal + b

)
(3)

The k activation values y1, y2, · · · , yn are output after the
multi-layer full connection, and the final classification result
after the softmax regression processing is as shown in Eq. (4).

softmax (y)i =
eyi
n∑
j=1

eyi
(4)

FIGURE 3. Flowchart of fireworks algorithm.

B. TRADITIONAL FIREWORKS ALGORITHM
The fireworks algorithm is an algorithm that simulates the
process of a fireworks explosion. The fireworks explosion
will generate a lot of sparks and spread in the local space.
The sparks can continue to explode as new fireworks, gradu-
ally making the fireworks (sparks) fill the whole space. The
basic principle of the fireworks algorithm is: the smaller the
explosion radius of the better fireworks, the more sparks are
generated by the explosion, to enhance the local search ability
of the algorithm. On the contrary, the larger the explosion
radius of the worse fireworks, the fewer sparks are generated
by the explosion, to enhanced the global search capability
of the algorithm. The fireworks algorithm simulates the fire-
works explosion process in real life. Figure 3 shows the flow
chart of the fireworks algorithm [23].

The population is initialized, that is N fireworks are ran-
domly generated in a specific solution space (N is a suitable
value equationted by the problem scale), and each fireworks
individual xi represents a feasible solution in the solution
space.

The blast radius Ai and the number of sparks Si generated
by the explosion of the fireworks xi are calculated according
to the following equation:

Ai = Â ·
f (xi)− Ybest + ε

N∑
i=1
(Ybest − f (xi))+ ε

(5)
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Si = Ŝ ·
Yworst − f (xi)+ ε

N∑
i=1
(Yworst − f (xi))+ ε

(6)

Among them Â and Ŝ are constants, which are used to limit
the maximum explosion radius and the maximum number of
sparks generated by the explosion. Ybest represents the best
value of the fitness function corresponding to all fireworks,
and Yworst represents the worst value of the fitness function
corresponding to all fireworks. f (xi) is the fitness value of
fireworks individual xi. ε is a very small constant, avoid-
ing the case where the denominator has zero in the above
equation.

The way in which fireworks individual xi produces sparks
(displacement operation) is as follows:

x̂ki = xki +1x (7)

where x̂ki is the position of the i explosion spark in the k
dimension. xki is the position of the i fireworks xi in the k
dimension. 1x = Ai × rand (−1, 1). k = 1, 2, · · · ,D,
the dimension representing the problem to be optimized.

After theNfireworks explosions are completed, to increase
the diversity, m̂ Gaussian sparks are added, and each spark is
calculated according to Eq. (8).

x̃ki = xki × Gaussian (1, 1) (8)

where x̃ki is the position of the i mutation spark in the k
dimension. xki is the position of the i fireworks in the k dimen-
sion. Gaussian (1, 1) is the random number whose mean and
variance are both 1.

To prevent the newly generated two spark particles from
exceeding the search range, the fireworks algorithm uses the
mapping rule of the modulo operation to pull the sparks
outside the feasible range back to the feasible range. If the
spark particle xi is outside the feasible range, it is calculated
as follows:

xki = xkmin +
∣∣∣xki ∣∣∣% (

xkmax − x
k
min

)
(9)

where xki is the position of the i fireworks xi in the k dimen-
sion. xkmax and x

k
min are the upper and lower search boundaries

of the dimension, respectively. % is the modulo operation.
Apply the selection strategy to get the next generation of

fireworks groups, that is, select N fireworks individuals from
fireworks, explosion sparks, and mutation sparks to form the
next generation fireworks population. The selection strategy
is as follows: select the fireworks with the best fitness value
directly for the next generation fireworks group, and the
remaining N −1 fireworks individuals are selected according
to the following probability:

R (xi) =
∑
j∈k

d
(
xi − xj

)
(10)

p (xi) =
R (xi)∑

j∈k
R
(
xj
) (11)

where R (xi) is the sum of the distances between the fire-
works individual xi and other individuals. According to the
above equation, the probability that the fireworks (sparks) are
selected is inversely proportional to the concentration, which
is beneficial to the diversity of the population.

C. IMPROVEMENT STRATEGY OF FIREWORKS
ALGORITHM
1) INITIAL POPULATION
The objects optimized by the firework algorithm are the
weights and thresholds randomly generated by the neural
network. For a given neural network structure, the con-
nected weights and thresholds are directly arranged to
form a firework individual. If a neural network has a
three-layer structure, the weights and thresholds from the
input layer to the hidden layer are [W1,W2, . . . ,Wn1]
and [θ1, θ2, . . . , θn2], respectively, and the weights and
thresholds from the hidden layer to the output layer are
[V1,V2, . . . ,Vn2] and [r1, r2, . . . , rn3], respectively. Among
them, Wi is a weight vector converted from the input
layer to the hidden layer into a n2-dimensional row vec-
tor, and Vi is a weight vector converted from the hidden
layer to the output layer into an n3-dimensional row vector.
An individual firework in the population can be represented
as [W1,W2, . . . ,Wn1, θ1, θ2, . . . , θn2,V1,V2, . . . ,Vn2, r1, r2,
. . . , rn3].

2) IMPROVEMENT OF EXPLOSION RADIUS
The main intention of Eq. (5) is that the explosion radius of
the fireworks is inversely proportional to the fitness function
value, which can ensure that the good fireworks enhance
the local search. However, for the best fireworks, the value
of the explosion radius calculated by putting into Eq. (5) is
almost 0, which is obviously not following the original design
intention of the algorithm. According to Eq. (6), the best
fireworks produce the most sparks, which means that the best
fireworks produce a lot of sparks, but did not conduct any
search, increasing the amount of calculation.

In response to this problem, we need to introduce a lower
bound of explosion radius Amin (t) (which represents the
minimum explosion radius of the first iteration) to limit the
explosion radius, namely:

Ai =

{
Amin (t) , Ai < Amin (t)
Ai, others

(12)

For Amin (t), two schemes of linear decline and nonlinear
decline are respectively presented in [24].

Amin (t) = Ainit −
Ainit − Afinal
evalsmax

∗ t (13)

Amin (t) = Ainit −
Ainit − Afinal
evalsmax

√
(2∗evalsmax−t) t (14)

where Ainit represents the initial blast radius of the algorithm.
Afinal represents the blast radius at the end of the algo-
rithm. evalsmax represents themaximumnumber of iterations.
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FIGURE 4. The minimum radius varies with the number of iterations.

t represents the number of iterations of the current algorithm
evolution.

Similar improvements have been given in [25]–[27], but
all introduce more parameters that require manual settings.
To simplify the parameter setting and achieve a similar effect,
this paper improves the explosion radius as follows:

Amin (t) = At +
At ∗ t
100

(15)

where Amin (t) represents the minimum blast radius of the
current iteration.

Figure 4 shows the change diagram of the minimum
radius proposed by [24] and this paper, where Ainit = 5,
Afinal = 0.5, evalsmax = 100.
Obviously, the three minimum radius calculation methods

can achieve similar results. It can be seen from Figure 4 that,
with the increase of the iteration number t of algorithm evolu-
tion, the minimum explosion radius Amin (t) decreases gradu-
ally. This makes the algorithm at the beginning of the search
radius is large, focus on a global search. In the later stage,
when the optimal value is nearly found, the explosion radius
is reduced, which is conducive to fine local search. Compared
with [25]–[27], Eq. (15) does not introduce parameters that
need to be manually set and maintains the simplicity of the
fireworks algorithm.

3) IMPROVEMENT IN DISPLACEMENT OPERATION
In the traditional fireworks algorithm, when an individual
fireworks explosion produces an explosion spark, the off-
set occurring in each dimension is the same, which greatly
reduces the diversity of the explosion spark population. Aim-
ing at this defect, this paper introduces a chaotic sequence
in the process of individual fireworks exploding to produce
explosive sparks, which can realize the displacement opera-
tion with different magnitudes of offset on each dimension.
The implementation process is shown in Eq. (16).

x̃ki = xki + (3g− 1)Ai (16)

where g is an element in a set of chaotic sequences
between [0, 1].

4) IMPROVEMENT IN MUTATION OPERATOR
To allow the current fireworks individual to better share
relevant information with the optimal fireworks individual,
the genetic algorithm’s mutation idea is introduced. For the
current fireworks individual xi, generate a random number
between [0, 1]. If this random number is less than the set
mutation probability, then the individual fireworks mutation
operation, the equation is as follows:

x̃ki = xkbest + hi
(
xkbest − x

k
i

)
if pi ≤ pm (17)

where xkbest is the position of the optimal fireworks individual
xbest in the current population in the k dimension. hi is the
random number between (−1, 1). pi is the random number
between [0, 1]. pm is a pre-set mutation probability.

5) IMPROVEMENTS IN MAPPING RULES
When a fireworks (spark) individual exceeds the feasible
domain, it can bemapped to a new locationwithin the feasible
domain by the following mapping rules:

xki = xkmin + U (0, 1)
(
xkmax − x

k
min

)
(18)

where U (0, 1) is a random number uniformly distributed
over [0, 1].
Theotem 1: all fireworks beyond the feasible region can be

mapped to the feasible region through Eq. (18).
Proof: from the definition ofMM*, we know that xkmin =

−1, xkmax = 1, so xkmax−x
k
min = 2.The value range ofU (0, 1)

is [0, 1], so the range ofU (0, 1)
(
xkmax − x

k
min

)
is [0, 2].While

xki = xkmin+U (0, 1)
(
xkmax − x

k
min

)
, it can be inferred that the

value range of xki is [−1, 1].
So Theotem 1 is proved.

6) IMPROVEMENTS IN SELECTION STRATEGY
In the basic fireworks algorithm, the selection strategy is
measured by distance. However, in this way of selection,
the Euclidean distance between any two points needs to be
calculated during each generation of population construction,
which will result in a large time consumption of the basic
fireworks algorithm. This paper adopts a semi-reserved elitist
and semi-random selection strategy, that is, the former N/2
fireworks individuals with good fitness values are retained,
and the remaining N/2 fireworks individuals adopt a random
selection strategy. Form these N fireworks individuals into a
new population set and enter the next iteration.

D. SOLVING THE INITIAL WEIGHT AND BIAS OF THE
CONVOLUTIONAL NEURAL NETWORKS USING
FIREWORKS ALGORITHM
The basic framework of the fireworks algorithm optimization
convolutional neural network learning method proposed in
this paper is shown in Figure 5. The main problem of the
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FIGURE 5. Algorithm framework of the convolutional neural network
combined with fireworks algorithm.

traditional the convolutional neural network is that the learn-
ing performance is greatly affected by the initial weight and
offset settings of each layer. To solve this problem, the initial
weight and bias of each layer are optimized and solved in the
training process of convolutional neural network in this paper.
The specific algorithm is described as follows:

Among them, the specific calculation steps of the fitness
value of individual fireworks are as follows:

Step 1: Decode the individual fireworks to obtain a set of
initial weights and offsets.

Step 2: The initial weights and biases of the group are used
as the weights and biases of the corresponding layers of the
convolutional neural network.

Step 3: Calculate the diagnostic accuracy of the convolu-
tional neural network after training, and use it as the fitness
value of the corresponding fireworks individual.

IV. FAULT DIAGNOSIS OF WSN BASED ON FWA-CNNFD
A. EXPERIMENTAL DESIGN
The algorithm design platform of this paper is Python, and
the simulation experiment is carried out on a computer
with 8.00GB of memory and Intel (R) Core (TM) i5-7400
3.00GHz.

According to the MM* model, we first set the number
of sensor nodes as 300 and randomly generated network

Algorithm 1 :Solving InitialWeight and BiasWith Fireworks
Algorithms
Input: Wi, θi, Vi, ri
Output: xbest
1: for (int i = 1; i <= N ; i++)
2: Initialization of convolutional neural networks.
3: Training convolutional neural networks by the steep-

est descent algorithm.
4: Save the weight and bias of this training.
5: end for
6: The weight and bias combination of each group is coded

into fireworks individuals, and the population of the fire-
works algorithm is initialized.

7: Do {
8: Calculate the fitness value of individual fireworks.
9: Generating explosive sparks.

10: Generating mutation sparks.
11: Cross-border detection and mapping.
12: Select the next generation of fireworks population.
13: }
14: While (The fitness value meets the termination condition

or the number of iterations reaches the upper limit);
15: Decoding the optimal fireworks individual to obtain the

initial weight and offset of the convolutional neural net-
work.

topology diagrams of different scales. Then, according to
the t- diagnosable (the number of fault nodes in the network
should not exceed half of the total number of nodes), fault
nodes are randomly generated. Thus, the corresponding sys-
tem test symptom S and fault mode F are obtained. That is
the system test report. The specific implementation method
is: first, initialize an all-zero arrayA of length 300. According
to t-diagnosable, a fault node is randomly generated, that
is, some elements are assigned a value of 1 (the number
of 1 is less than the number of 0). This array represents
300 sensor nodes. If A[i]=1, it means that the sensor node
i is fault, otherwise, if A[i]=0, it means that the sensor node
i is fault-free. Then, randomly generate a 300×300 matrix
B consisting of 0 and 1. If B[i][j]=1, it means that there
is a communication link between nodes i and j, otherwise,
if B[i][j] = 0, it means that there is no communication link
between nodes i and j. The corresponding values are obtained
through the values of the arrayA andmatrixB and themethod
described in Table 1, and then a 300×300 diagnostic matrix
of 300 nodes can be obtained. The index of each matrix
represents the index of the array A, that is, the serial number
of the node. As long as there is no communication link
between a node corresponding to an index and a comparison
node (the corresponding value of the B matrix is 0), the cor-
responding value of the diagnostic matrix is -1. Finally, a
300 × 300 × 300 three-dimensional matrix C is obtained by
stacking the diagnosis matrix of each node. Among them,C is
the test symptom of the system, andA is the fault mode. In the
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TABLE 2. The setting of relevant parameters of fireworks algorithm.

TABLE 3. The setting of relevant parameters of neural network training.

system test report, 80%was randomly selected as the training
sample, and the remaining 20% was used as the test sample.
Because the test symptoms and failuremodes generated under
the MM* model are both -1, 0, or 1, the data itself has been
normalized, so no further normalization of the data is required
in the subsequent diagnostic experiments.

The CNN network uses two convolutional layers (the con-
volution kernel size is set to 5, and the number is 16 and
32 respectively), two pooling layers (max-pooling of size 2),
two fully connected layers, and a Softmax classifier. Adopt
SGD (Stochastic Gradient Descent) optimization algorithm.

The performance evaluation index uses diagnostic AR
(Accuracy Rate) and FAR (False Alarm Rate). In a WSN
G (U ,E), the diagnostic accuracy and diagnostic false alarm
rate are defined as:

AR =
UTF
UF
× 100% (19)

FAR =
UNF
UFF
× 100% (20)

In among UFF represents a set of fault-free sensor nodes.
UF represents a set of faulty sensor nodes. UTF represents a
set of nodes that accurately diagnose the fault.UNF represents
a set of fault-free sensor nodes diagnosed as faulty nodes.

The fireworks algorithm and convolution neural network
algorithm described in this paper need to configure some
parameters. The relevant parameters of the fireworks algo-
rithm are shown in Table 2. The relevant parameters of the
convolution neural network are shown in Table 3.

B. ALGORITHM COMPARISON
In order to compare the performance of this method and
other classical fault diagnosis methods for WSN, under the
condition of the selection of the same training parameter,
using the same test report (data sets), and then respectively

FIGURE 6. Comparison of diagnostic accuracy of seven algorithms at
different node failure rates.

FIGURE 7. Comparison of diagnostic false alarm rates for seven
algorithms at different node failure rates.

compare the diagnosis accuracy rate and false alarm rate of
DFD algorithm [7], DEEC-RDFD algorithm [8], PNNFD
algorithm [14], BPNNFD algorithm [16], L-ANNFD algo-
rithm [17], CNNFD algorithm and FWA-CNNFD algorithm.
Among them, the unique parameters of each algorithm are set
according to the corresponding literature. In order to ensure
the stability of the results and reduce their randomness, under
the same conditions, this paper repeated 100 experiments,
taking the average value of diagnostic accuracy and diagnos-
tic false alarm rate. The results are shown in Figure 6 and
Figure 7.

It can be seen from Figure 6 that with the increase of node
failure rate, the diagnostic accuracy of the DFD algorithm,
DEEC-RDFD algorithm, BPNNFD algorithm, CNNFD algo-
rithm, and L-ANNFD algorithm show different degrees of
decrease. The diagnostic accuracy of FWA-CNNFD algo-
rithm is relatively stable. Although the diagnostic accuracy
of the PNNFD algorithm keeps improving, it is always lower
than that of the FWA-CNNFD algorithm. Because the exper-
iment is conducted under the premise of t-diagnosable sys-
tem, the closer the node failure rate is to 50%, the lower
the accuracy of the algorithm. In particular, when the node
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failure rate exceeds 40%, the accuracy of the DFD algorithm,
DEEC-RDFD algorithm, CNNFD algorithm, and BPNNFD
algorithm decreases sharply, while the accuracy of the
FWA-CNNFD algorithm still exceeds above 95%.

As shown in Figure 7, when the node failure rate increases,
the diagnostic false alarm rate of the DEEC-RDFD algorithm,
DFD algorithm, CNNFD algorithm, and BPNNFD algorithm
rise sharply, while the false alarm rate of FWA-CNNFD
algorithm increases the least among the seven algorithms.
When the node failure rate is lower than 30%, the false
alarm rate of the DFD algorithm, DEEC-RDFD algorithm,
PNNFD algorithm, and FWA-CNNFD algorithm are less than
1%. However, when the node failure rate is as high as 50%,
the false alarm rate of the FWA-CNNFD algorithm is only
2.5%, which is lower than the DFD algorithm. 10.5 percent-
age points.

The time complexity of the FWA-CNNFD algorithm
is O

(
N 2
)
. Combined with Figure 6 and Figure 7, we can see

that the wireless sensor fault diagnosis algorithm based on the
fireworks algorithm and convolution neural network is more
effective.

V. CONCLUSION
Using the efficient search ability of global and local optimal
solutions of fireworks algorithm, and the local perception,
parameter sharing, multi-core and multi-layer convolution
of convolution neural networks, this paper proposes a fault
diagnosis method for WSN nodes which combines fire-
works algorithm and convolution neural network. Firework
algorithm is a swarm intelligence algorithm with global
search capability and local search capability self-adjusting
mechanism. By combining the fireworks algorithm and the
convolutional neural network, it can not only overcome the
problems of the slow speed of the general convolutional
neural network algorithm and easy to fall into the local mini-
mum value, but also have the advantages of the convolutional
neural network and the firework algorithm itself. According
to the characteristics of WSN fault diagnosis based on MM*
model, the explosion radius, mutation operator, mapping rule
and selection strategy of fireworks algorithm are improved
respectively. Then, the improved fireworks algorithm is used
to generate the initial weight and bias required for convo-
lutional neural network training, to avoid the problem that
the performance of the steepest descent algorithm is greatly
affected by the initial weight and bias setting when train-
ing the convolutional neural network. The simulation results
show that the proposed fault diagnosis algorithm has higher
diagnostic accuracy and a lower false alarm rate. It can effec-
tively detect faulty nodes in WSN, and can well solve the
problem of node fault in the network.

In this paper, the algorithm we designed has adopted some
improved methods f to overcome the shortcomings of current
research, which effectively reduces the error rate of node
fault diagnosis. However, due to limited conditions, we only
carried out experiments in the simulation environment and
cannot simulate the influence of complex environmental

conditions on sensor nodes in reality. The execution results of
the diagnostic algorithm in the actual environment will also
be affected by the real environment, producing results that are
not in line with expectations. In this regard, we can measure
the effectiveness of the algorithm in the actual environment
in the future, to obtain more real and effective data.

REFERENCES
[1] F. P. Preparata, G. Metze, and R. T. Chien, ‘‘On the connection assign-

ment problem of diagnosable systems,’’ IEEE Trans. Electron. Comput.,
vol. EC-16, no. 6, pp. 848–854, Dec. 1967.

[2] F. Barsi, F. Grandoni, and P. Maestrini, ‘‘A theory of diagnosability of
digital systems,’’ IEEE Trans. Comput., vol. C-25, no. 6, pp. 585–593,
Jun. 1976.

[3] K.-Y. Chwa and S. L. Hakimi, ‘‘Schemes for fault-tolerant computing:
A comparison of modularly redundant and t-diagnosable systems,’’ Inf.
Control, vol. 49, no. 3, pp. 212–238, Jun. 1981.

[4] M. Malek, ‘‘A comparison connection assignment for diagnosis of
multiprocessor systems,’’ in Proc. 7th Annu. Symp. Comput. Archit.,
La Baule-Escoublac, France, 1980, pp. 31–36.

[5] J. Maeng and M. Malek, ‘‘A comparison connection assignment for self-
diagnosis of multiprocessor system,’’ in Proc. 11th Int. Symp. Fault-
Tolerant Comput., Portland, OR, USA, 1981, pp. 173–175.

[6] A. Sengupta and A. T. Dahbura, ‘‘On self-diagnosable multiprocessor
systems: Diagnosis by the comparison approach,’’ IEEE Trans. Comput.,
vol. 41, no. 11, pp. 1386–1396, Nov. 1992.

[7] A. De Paola, S. Gaglio, G. L. Re, F. Milazzo, and M. Ortolani, ‘‘Adaptive
distributed outlier detection for WSNs,’’ IEEE Trans. Cybern., vol. 45,
no. 5, pp. 902–913, May 2015.

[8] Y. Zhang and X. Yuan, ‘‘Fault diagnosis in clusteringWSN based on neigh-
bor cooperation,’’ in Proc. Chin. Control Decis. Conf. (CCDC), Yinchuan,
China, May 2016, pp. 1803–1807.

[9] R. R. Swain and P. M. Khilar, ‘‘Soft fault diagnosis in wireless sensor
networks using PSO based classification,’’ in Proc. IEEE Region 10 Conf.
(TENCON), Penang, Malaysia, Nov. 2017, pp. 2456–2461.

[10] R. R. Swain, P. M. Khilar, and S. K. Bhoi, ‘‘Heterogeneous fault diagnosis
for wireless sensor networks,’’AdHocNetw., vol. 69, pp. 15–37, Feb. 2018.

[11] Y. Gao, F. Xiao, J. Liu, and R. Wang, ‘‘Distributed soft fault detection
for interval type-2 fuzzy-model-based stochastic systems with wireless
sensor networks,’’ IEEE Trans. Ind. Informat., vol. 15, no. 1, pp. 334–347,
Jan. 2019.

[12] Y. Cheng, Q. Liu, J. Wang, S. Wan, and T. Umer, ‘‘Distributed fault
detection for wireless sensor networks based on support vector regression,’’
Wireless Commun. Mobile Comput., vol. 2018, pp. 1–8, Oct. 2018.

[13] W. He, P.-L. Qiao, Z.-J. Zhou, G.-Y. Hu, Z.-C. Feng, and H. Wei, ‘‘A new
belief-rule-based method for fault diagnosis of wireless sensor network,’’
IEEE Access, vol. 6, pp. 9404–9419, 2018.

[14] M. Mengying et al., ‘‘Fault diagnosis algorithm of WSN based on precon-
dition of neighbor nodes,’’ J. Comput. Appl., vol. 38, no. 8, pp. 2348–2352,
2018.

[15] X. Wu, H. Chen, Y. Wang, L. Shu, and G. Liu, ‘‘BP neural network
based continuous objects distribution detection in WSNs,’’Wireless Netw.,
vol. 22, no. 6, pp. 1917–1929, Aug. 2016.

[16] R. R. Swain and P. M. Khilar, ‘‘Composite fault diagnosis in wireless
sensor networks using neural networks,’’Wireless Pers. Commun., vol. 95,
no. 3, pp. 2507–2548, Aug. 2017.

[17] R. R. Swain, P. M. Khilar, and T. Dash, ‘‘Neural network based automated
detection of link failures in wireless sensor networks and extension to a
study on the detection of disjoint nodes,’’ J. Ambient Intell. Hum. Comput.,
vol. 10, no. 2, pp. 593–610, Feb. 2019.

[18] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang,
G. Wang, J. Cai, and T. Chen, ‘‘Recent advances in convolutional neural
networks,’’ Pattern Recognit., vol. 77, pp. 354–377, May 2018.

[19] Y. Chen, L. Li, X. Zhao, J. Xiao, Q. Wu, and Y. Tan, ‘‘Simplified
hybrid fireworks algorithm,’’ Knowl.-Based Syst., vol. 173, pp. 128–139,
Jun. 2019.

[20] Q. Lu, W. Gui, and M. Su, ‘‘A fireworks algorithm for the system-
level fault diagnosis based on MM∗ model,’’ IEEE Access, vol. 7,
pp. 136975–136985, 2019.

127092 VOLUME 8, 2020



W. Gui et al.: WSN Fault Sensor Recognition Algorithm Based on MM* Diagnostic Model

[21] Z. Zhang, A. Mehmood, L. Shu, Z. Huo, Y. Zhang, and M. Mukherjee,
‘‘A survey on fault diagnosis in wireless sensor networks,’’ IEEE Access,
vol. 6, pp. 11349–11364, 2018.

[22] M. Jeyaselvi and C. Jayakumar, ‘‘Enhanced clone detection using chan-
nel response information in wireless sensor network,’’ J. Comput. Theor.
Nanosci., vol. 14, no. 9, pp. 4174–4182, Sep. 2017.

[23] Y. Tan and Z. Yuanchun, ‘‘Fireworks algorithm for optimization,’’ in Proc.
Int. Conf. Swarm Intell., Beijing, China, 2010, pp. 355–364.

[24] C. Yu, L. Kelley, S. Zheng, and Y. Tan, ‘‘Fireworks algorithm with
differential mutation for solving the CEC 2014 competition problems,’’
in Proc. IEEE Congr. Evol. Comput. (CEC), Beijing, China, Jul. 2014,
pp. 3238–3245.

[25] J. Li, S. Zheng, and Y. Tan, ‘‘Adaptive fireworks algorithm,’’ in Proc. IEEE
Congr. Evol. Comput. (CEC), Beijing, China, Jul. 2014, pp. 3214–3221.

[26] S. Zheng, A. Janecek, J. Li, and Y. Tan, ‘‘Dynamic search in fireworks
algorithm,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Beijing, China,
Jul. 2014, pp. 3222–3229.

[27] B. Zhang, M.-X. Zhang, and Y.-J. Zheng, ‘‘A hybrid biogeography-based
optimization and fireworks algorithm,’’ in Proc. IEEE Congr. Evol. Com-
put. (CEC), Beijing, China, Jul. 2014, pp. 3200–3206.

WEIXIA GUI is currently an Associate Professor
with Guangxi University, Guangxi, China, where
she is engaged in research and development
of intelligent computing, networks, and parallel
distributed computing.

QIAN LU is currently pursuing the master’s degree
with Guangxi University, Guangxi, China, where
she is engaged in research and development of
intelligent algorithms and parallel computing.

MEILI SU is currently pursuing the master’s
degree with Guangxi University, Guangxi, China,
where she is engaged in research and development
of intelligent algorithms and parallel computing.

FULAI PAN is currently pursuing the master’s
degree with Guangxi University, Guangxi, China,
where he is engaged in research and development
of intelligent algorithms and parallel computing.

VOLUME 8, 2020 127093


