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ABSTRACT This study proposes an adaptive robust sliding-mode control strategy with time delay com-
pensation to address the issues of the inaccuracy of modeling, friction, uncertain disturbances, and time
delay in a permanent magnet spherical actuator trajectory tracking control system. First, an improved linear
predictor is designed to compensate for the time delay in position information. Second, a robust sliding mode
controller is designed to suppress the influence of uncertain disturbance. Third, the constant parameters
of the spherical actuator are estimated using the adaptive law and compensated at the control input. The
stability of the adaptive robust sliding-mode controller is proved by the Lyapunov theorem. Simulation and
experimental results show that the control strategy proposed in this research has good dynamic and static
performance, which can provide reference for the further engineering application of multi-degree of freedom
control system.

INDEX TERMS Adaptive control, delay compensation, linear predictor, permanent magnet spherical
actuator, robust sliding mode control, trajectory tracking.

I. INTRODUCTION
A permanent magnet spherical actuator (PMSA) has the
advantages of compact structure, relatively large range of
motion and rapid dynamic response. Given that the PMSA
can provide three degree-of-freedom movement in one joint,
this system is used in various applications in modern
aerospace, robotics and other fields [1]–[3].

However, PMSA is a typical multivariable, coupled, and
time-varying nonlinear system. The difficulties and chal-
lenges of PMSA control include inaccuracy of modeling, fric-
tion, uncertain disturbances, and time delay. Centripetal and
Coriolis forces, friction, and uncertain disturbances directly
interrupt the output torque, thereby possibly causing the rotor
to perform unintended movements. Without delay compen-
sation, the position and speed data used by the controller
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would be outdated. Therefore, the controller would calculate
the output torque based on inaccurate data, which would not
suit the current position.

In recent years, numerous studies have been conducted to
solve the preceding problems. References [4], [5] proposed to
apply the classical proportional plus derivative (PD) control
to the PMSA control system. Although the design of the
PD control system is simple and easy to realize, it is vul-
nerable to uncertainties and uncertain disturbances, thereby
causing large steady-state errors. Reference [6] used calcula-
tion torque method to control the spherical actuator, thereby
relatively realizing decoupling control. However, the scheme
is based on an accurate dynamic model, in which the control
accuracy will be considerably affected by model inaccuracy,
friction, and uncertain disturbance. In references [7], [8],
a neural network capable of self-learning is used to com-
pensate for model inaccuracy and the influence of uncer-
tain disturbance, thereby improving the control accuracy.
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However, the heavy computation of the algorithm and pos-
sibility of falling in the local optimal solution, have resulted
in the difficulty of the neural network control system to meet
the requirements of real-time control and practical applica-
tions. Reference [9], [10] used extended observer to com-
pensate for the disturbance by merging the cross-channel
interference into lumped disturbance. However, the selection
of the parameters and nonlinear functions limits its appli-
cation in the PMSA control. References [11], [12] com-
bined robust control and sliding-mode control because the
latter has such features as simple structure, fast response,
strong robustness to uncertain interference and parame-
ter perturbation. A robust controller with fixed structure
and parameters is used to ensure that the system is sta-
ble under the worst condition. However, this control strat-
egy cannot compensate for the disturbance from the input
of the controller, but merely reduces the error caused by
the disturbance. Thus, accuracy is not guaranteed. Refer-
ences [13]–[15] combined, the robust sliding mode control
with adaptive control and disturbance observer to compen-
sate for the errors caused by modeling inaccuracy and fric-
tion in the control input. The upper bound of the uncer-
tain disturbance is reduced and the control performance is
improved.

By contrast, the digital control system of PMSA has
experienced delay caused by heavy computation. Previous
PMSA control schemes have disregarded digital system delay
or merely use robust control or disturbance observer to
compensate for the errors caused by the delay as uncer-
tain disturbance. However, the position information used
by the controller is still from the past, which is not the
same as the present position information. Thus, the accu-
rate trajectory tracking control cannot be realized. Aiming
at the delay problem of the digital control system, refer-
ences [16], [17] proposed solutions through the Smith pre-
dictor and state observer, respectively, but Smith predictor
and state observer need an accurate dynamic model. Only
when the control object and the dynamic model are com-
pletely matched, can good control performance be achieved.
The preceding model-based delay compensation method
is not applicable because of the difficulty in establish-
ing an accurate dynamic model for the permanent mag-
net spherical actuator control system. To avoid dependence
on the dynamic model, some delay compensation methods
that are independent of the model are proposed. In refer-
ence [18], time delay is reduced by changing the digital
sampling moment. Given that the applicable requirement
of this method is that the computation time of the control
algorithm is less than the sampling period, this method is
not suitable for the control system of PMSA. In references
[19], [20], the first-order digital filter and the second-order
digital filter are used to reduce the time delay respectively.
However, this compensation method can amplify the
measurement noise near the Nyquist frequency, thereby
necessitating additional filters. In references [21], [22],
an adaptive fuzzy predictor is proposed to compensate for

the time delay. This compensation method can estimate the
future values of the system states with an unknown time
delay of known bound. In reference [23], a robust H infin-
ity output feedback controller is developed to deal with the
problem of active suspension control with actuator faults and
unknown time delay. The time delay of the PMSA system
can be approximated as a constant and measured through
experiments. Thus, a compensation method maximizes the
known time delay that would considerably suit the PMSA
system. In references [24], [25], a linear predictor (LP) is
proposed to predict control variables by linear extrapolation.
The computation amount of this method is small, which is
suitable for online prediction. Moreover, this method uses a
time delay constant to predict the future states of the sys-
tem. LP can also improve the controller bandwidth. How-
ever, the prediction accuracy of the LP is reduced when the
signal frequency goes up, thereby resulting in an unsatis-
fied delay compensation performance [26]. The motivation
of the current study is to develop a control strategy that
can address the inaccuracy of modelling, friction, uncertain
disturbances and time delay. Therefore, this study proposes
an adaptive sliding mode robust controller with modified
LP, which combines the advantages of adaptive controller,
sliding-mode control, and LP: (1) The adaptive controller
can estimate the constant parameter of PMSA, which is
needed to compensate for the centripetal and Coriolis forces.
(2) The sliding-mode controller is used to deal with friction
and uncertain disturbances. (3) Lastly, the LP is used to
predict the position data, thereby compensating for the time
delay.

The remainder of this paper is organized as follows.
Section II introduces the structure and dynamic model
of PMSA. Section III proposes the delay compensation
method and provides a digital example. Section IV designs
an adaptive robust sliding mode controller and proves its
stability. Section V and VI present the simulation and
experiment results, and it shows that the proposed con-
trol strategy can ensure that the PMSA control system has
good tracking performance in the presence of inaccuracy
modeling, friction, uncertain disturbance and computation
delay.

II. STRUCTURE AND DYNAMIC MODEL OF PMSA
A. PMSA STRUCTURE
The PMSA structure in this research is shown in Fig. 1.
PMSA comprise the rotor, stator shell, permanent mag-
nets, coils, and output shaft. The rotor is embedded with a
4-layer of 10 equally spaced Nd-Fe-B permanent magnets.
The adjacent magnets have opposite polarities. The stator
houses 2-layer of 12 equally spaced air-core coils.

The superposition principle, states that when the stator coil
of PMSA is electrified according to a certain electrifying
strategy, the electromagnetic torque is generated between the
stator coil and rotor permanent magnet. Thereafter, the three-
degree-of-freedom motions of rotation, yaw, and pitch are
realized.
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FIGURE 1. PMSA Structure.

B. DYNAMIC MODEL OF THE PMSA
Considering friction and uncertain disturbance of PMSA,
a Lagrange formulation of the PMSA control system in terms
of the Cardan angles coordinates is established as follows:

J (q) q̈+ C (q, q̇) q̇+ f (q̇) = τ (1)

where

J (q) =

 Jdq cos2 β+Jp sin2 β 0 Jp sinβ
0 Jdq 0

Jp sinβ 0 Jp

 (2)

C (q, q̇) =

C11 C12 C13
C21 C22 C23
C31 C32 C33

 (3)



C11 = (Jp − Jdq)β̇sinβcosβ
C12 = (Jp − Jdq)α̇sinβcosβ
C13 = Jpβ̇cosβ
C21 = (Jdq − Jp)α̇sinβcosβ
C22 = 0
C23 = Jpα̇cosβ
C31 = 0
C32 = Jpα̇cosβ
C33 = 0

(4)

where q = [α, β, γ ]T and q is the rotor orientation repre-
sented with Cardan angles; J (q) ∈ R3 denotes the sym-
metric, bounded, and positive definite inertia matrix; C(q,q̇)
represents the matrix of the centripetal and Coriolis forces;
f (q̇) ∈ R3 is the vector of the general disturbances including
friction and uncertain disturbances; τ is the vector of the
control input torque; and Jdq and Jp denote the moment of
inertia of the rotation around the d, q, and p axes respectively.
The symmetric structure of the PMSA results in Jd=Jq = Jdq.

III. TIME DELAY COMPENSATION
A. TIME DELAY IN PMSA CONTROL SYSTEM
The heavy computation of the PMSA electrifying strategy
causes a time delay in the control system. Reference [27]
proposed to use different coil combinations to avoid or reduce

calculations caused by simultaneously electrifying all coils.
However, this method is an open-loop control, which is not
suitable for the closed-loop PMSA trajectory tracking system.
The current optimization strategy proposed in reference [28]
can reduce the number of simultaneously electrified coils,
although this process entails heavy computation. The elec-
trifying strategy of the PMSA closed-loop control system in
the current study is based on the torque calculation method
proposed in reference [29]. Accordingly, the torque character-
istic model of a single stator coil and single rotor permanent
magnet should be established. When several groups of stator
coils are electrified, the electromagnetic torque vector can be
considered as a combination of separate torque generated by
each coil and permanent magnet. The combined torque vector
can be expressed as follows:

T =

 TXTY
TZ

 = n∑
i=1

m∑
j=1

F (q)
sri × ssj∣∣sri × ssj

∣∣Ni

=

 fX1 fX2 · · · fXm
fY1 fY2 . . . fYm
fZ1 fZ2 . . . fZm

 ·

I1
I2
...

Im

 = A · I (5)

where sri, srj is the position vector of the rotor permanent
magnet and stator coil, respectively; N is the number of turns
of the coil; F(q) is the torque generated by a single coil
and single permanent magnet; f Xi, f Yi, f Zi are the torque
components in the X, Y, Z directions, respectively, of Carte-
sian coordinate system generated by the i th coil under unit
positive current; and I i is the current of the i th coil.
Based on the torque vector model T , the control current

of the stator coil can be obtained through A+,which is the
pseudo-inverse matrix of A, as follows:

I = A+T (6)

Equation (5) shows that this electrifying strategy requires
heavy computation. An example is the PMSA in this study.
The motor consists of 24 stator coils and 40 rotor permanent
magnets. Therefore, 960 times of calculation are needed.
In addition, the pseudo inverse matrix A+ should be solved.
Although this method requires extensive of calculation, it can
cover all the working conditions of the spherical actuator
and is markedly suitable for the closed-loop tracking of the
complex trajectory. A certain amount of time is needed for
calculation in the digital control system and in the data trans-
mission of sensors and driving circuits. The control torque
is calculated according to the position information acquired
before the system time delay. Thus, the output torque is
delayed, thereby degrading the control system performance.

B. DELAY COMPENSATION METHOD
The delay of the PMSA control system mainly exists in
the calculation process of the controller. When the hardware
condition of the controller is fixed, the value of the delay
can be approximately regarded as a measurable constant.
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The position of PMSA is set at a certain time as q(t) and
the speed as q̇(t). At this moment, the delayed position infor-
mation in the controller is q(t − td) and the delayed speed
signal is q̇(t − td). If td is relatively small, then the following
approximate equation holds:

q (t)− q (t − td)
td

≈q̇ (t − td) (7)

Thus,

q (t) ≈ q̇ (t − td ) td + q (t − td ) (8)

The predicted position signal qp is defined as follows:

qp = q̇ (t − td ) td + q (t − td ) (9)

The speed signal q̇ (t − td) used in the preceding linear
prediction method is the signal after delay and the PMSA
speed is changing continuously in the delay process. Thus,
the speed signal should be compensated. If td is relatively
small, then the following approximate equation holds:

q̇ (t)− q̇ (t − td)
td

≈
q̇ (t − td)− q̇ (t − 2td)

td
(10)

The average speed q̇a during the delay can be obtained by
the following approximate equation:

q̇a ≈ q̇ (t − td)+ (q̇ (t − td)− q̇ (t − 2td)) /2 (11)

The compensated predicted speed signal q̇p is defined as
follows:

q̇p = q̇ (t − td)+ (q̇ (t − td)− q̇ (t − 2td)) /2 (12)

By replacing q̇(t− td) in (8) with qp in (12), the compensated
position signal qcom can be obtained as follows:

qcom = q (t − td)+ q̇ptd (13)

The transfer function of qcom is defined as qcom(S), and
qp as qp(S). The delay and compensation processes can be
expressed by transfer function as qcom(S)e

−tdS , qp(S)e
−tdS .

Fig. 2 shows the bode gram of the two transfer functions.
Meanwhile, td in these functions are set to 0.022 sec, which
is the measured time delay constant of the PMSA system
used in this study. The bode gram shows that the proposed
predictor has less phase lag for high-frequency signal than the
normal LP.

C. NUMERICAL EXAMPLE
The following signal is used as an example:{

q(t) = sin(t), t > 0
q(t) = 0, t ≤ 0

(14)

The delay time td is set at 0.2 sec. Given that every output
signal of the digital control system of PMSA must take td,
the computation frequency of the digital system can be con-
sidered as 1/td.
In Fig. 3, q is the actual position signal, qd is the delayed

position signal, qp is the prediction of position signal based

FIGURE 2. Bode gram of qcom(S)e−tdS , qp(S)e−tdS .

FIGURE 3. Trajectories of signals q, qd, qp, and qcom for the numerical
example.

on (9), and qcom is the prediction of position signal based
on (13).

The numerical example shows that the proposed position
prediction method can make the position information given
to the controller closer to the actual position signal q without
delay. When the speed changes rapidly, the error of the LP
with speed compensation is smaller than the one without
speed compensation. Although the position signal in the
actual control process may be more complex, the main goal
of the proposed prediction method is able to improve the
robustness of the PMSA control system for time delay.

IV. CONTROLLER DESIGN AND STABILITY ANALYSIS
A. DESIGN OF THE SLIDING-MODE CONTROLLER
The following sliding-mode controller is designed to suppress
the influence of friction and uncertain disturbance on the
control performance of PMSA:

{
Eq = qcom − qdes
S = Ėq +3Eq

(15)

where qdes is the desired angle signal, Eq is the position error,
S is the sliding face function, and 3 is a positive constant
diagonal matrix.
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The sliding-mode controller us satisfies the following
relationship:

1
2
d
dt
S2 ≤ −η |S| (16)

which ensures that the system state eventually converges to
the sliding surface S = 0. When the system state enters
the sliding surface, such a state is determined by the linear
differential equation 0 = Ėq C 3Eq, which ensures that the
position error can converge to 0 when time tends to∞. Given
the uncertain disturbance in the control system, the output of
the sliding-mode controller is taken as follows:

us = us1 + us2
us1 = −ksS
us2 = −κsgn (S)
κ = [k1, k2, k3]T

κ = sup |f (q̇)|

(17)

where us1 is the feedback term; us2 is the robust term;
ks, k1, k2, k3 are positive constants; ks determines the con-
vergence speed of the error on the sliding surface; and κ is
the gains of the robust term, which are the upper bounds of
the uncertain disturbances.

B. DESIGN OF ADAPTIVE CONTROLLER
To compensate for the Coriolis and centrifugal forces,
an adaptive controller is designed to estimate the moment
of inertia Jp, Jdq of PMSA’s dynamic model which are two
constant parameters.

Define

qr = q̇des −3Eq (18)

Substitute (18) into (15) and obtain

S = q̇com − q̇r (19)

Ṡ = q̈com − q̈r (20)

JṠ = J(q̈com − q̈r) = τ − Cq̇com − Jq̈r − f (q̇com) (21)

Define

Cq̇com + Jq̈com=Y (qcom, q̇com, q̇r, q̈r)a(Jp, Jdq) (22)

where Y(qcom, q̇com, q̇r, q̈r) is a function independent of the
unknown constant parameters of the dynamic equations (2),
(3), and (4); and a(Jp, Jdq) is a constant matrix consisting of
the unknown constant parameter.

Define

â− a
(
Jp, Jdq

)
= ã. (23)

where ã is the error of the adaptive parameters and â is the
estimated parameter.

Adaptive law is chosen as follows:

˙̂a = −PYT (q, q̇, q̇r, q̈r)S, (24)

where P is a symmetric positive constant matrix. The output
of the adaptive controller is as follows:

ua=Ĵ q̈r + Ĉq̇r (25)

C. STABILITY ANALYSIS
The output of the controller is as follows:

τ = us + ua (26)

A Lyapunov candidate is chosen as follows

V (t) =
1
2
STJS+

1
2
ãTP−1ã (27)

The derivation is expressed as follows:

V̇ (t) = STJṠ+
1
2
STJ̇S+ ãTP−1 ˙̃a (28)

By using (1), (15), (17), (21), (24), and (26), Equation (28) is
further deduced as follows:

V̇ (t) = ST
(
τ − Cq̇com−Jq̈r−f

(
q̇com

))
+
1
2
STJ̇S+ ãTP−1 ˙̃a

= ST
(
τ − C

(
s+ q̇r

)
−Jq̈r−f

(
q̇com

))
+
1
2
STJ̇S+ ãTP−1 ˙̃a

= ST
(
−ksS+ Ĵ q̈r + Ĉq̇r − C

(
s+ q̇r

)
−Jq̈r

)
+
1
2
STJ̇S+ ãTP−1 ˙̃a− ST

(
f
(
q̇com

)
+ κsgn (S)

)
= ST

(
−ksS+ J̇ q̈r + Ĉq̇r − CS

)
+

1
2
STJ̇S+ ãTP−1 ˙̃a− ST

(
f
(
q̇com

)
+ κsgn (S)

)
= −ksSTS+ STYã− ST

(
f
(
q̇com

)
+ κsgn (S)

)
+
1
2
ST
(
J̇ − 2C

)
S+ ãTP−1 ˙̃a

= −ksSTS+ ãT
(
P−1 ˙̃a+ YTS

)
−ST

(
f
(
q̇com

)
+ κsgn (S)

)
= −ksSTS− ST

(
f
(
q̇com

)
+ κsgn (S)

)
≤ 0 (29)

The function V̇ (t) is negative semi-definite. Thus, the
stability of the controller is proven according to Lasalle’s
invariant principle.

FIGURE 4. Structure of the PMSA control system.

D. STRUCTURE OF THE PMSA CONTROL SYSTEM
The block diagram of the PMSA control system is shown
in Fig. 4, including the sliding-mode controller, adaptive
controller, and delay compensation module. The delay com-
pensation includes the electrifying strategy in (5) and (6).
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V. SIMULATION AND ANALYSIS
The PMSA structure indicates that the dynamic simulation
model is established in the automatic dynamic analysis of the
mechanical system (ADAMS). The moment of inertia of d, q,
and p axes of PMSA is obtained as follows: Jd =Jq = Jdq= 0.01548

(
kg ·m2

)
Jp= 0.01571

(
kg ·m2

) (30)

The desired trajectory qdes and initial state q(0) are as
follows{

qdes = [15sin (π t) , 15cos (π t) , 15t/4]
q(0) = [0, 0, 0]

(31)

This trajectory has a varying speed and different functions
in each direction. The initial error of β direction is 15 degree.
The results of the simulation can show controller’s perfor-
mance on complex trajectory with large initial error.

Friction is set to 0.02N and its direction is opposite to the
movement direction of PMSA. Noted that the actual friction
is considerably complex and other uncertain disturbances are
present. The total uncertain disturbances are set as random
numbers with normal distribution from 0 to 0.03. The param-
eters of the controller are set as follows:

3 = diag(0.1, 0.1, 0.1)
ks = 0.1
K = [0.06, 0.06, 0.06]T

P = diag(1, 1, 1),

(32)

where diag(·) is the diagonal matrix.
The parameter of the PD controller used in the simulation

is as follows {
kP= −0.15
kD= −0.35

(33)

The delay constant td = 0.02 and calculating frequency of
the digital system to 1/td are set. The simulation time is set
to 4 sec.

FIGURE 5. Position response to angle α.

The position response and tracking errors of the PD con-
troller, adaptive sliding-mode robust controller (RAS) and
adaptive sliding-mode robust controller with delay compen-
sation (RASC) are shown in Figs. 5 to 7 and Figs. 8 to 10,
respectively. Table 1 shows the mean square errors (MSEs)
versus the different angles. The preceding simulation results

FIGURE 6. Position response to angle β.

FIGURE 7. Position response to angle γ.

FIGURE 8. Tracking errors versus angle α.

FIGURE 9. Tracking errors versus angle β.

FIGURE 10. Tracking errors versus angle γ.

show that the proposed controller can effectively reduce the
error caused by friction and uncertain disturbances and com-
pensate for the Coriolis and centrifugal forces in the output
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TABLE 1. Mean square errors versus the different angle.

torque. PMSA is controlled to track the desired trajectory.
Compared with the PD controller, MSEs of RAS in the
α, β, γ directions is decreased by 88.6%, 39.3%, and 99.8%,
respectively. Compared with the RAS controller, the MSEs
of RASC in α, β, γ directions are reduced by 24.8%, 3.1%,
and 56.2%, respectively, after compensation. Compared with
the PD controller, the RAS and RASC controllers respond to
large initial error without overshoot, and the convergence rate
of error is faster.

FIGURE 11. Experiment platform.

VI. EXPERIMENT AND ANALYSIS
The structure of the experimental platform is shown
in Fig. 11. The detailed structure of PMSA used in this plat-
form is described in Section II. A six-axis gyroscope position
sensor is fixed on its output shaft through a flange, and can
communicate with the controller through Bluetooth serial
communication. The precision of the sensor is 0.05 degree.

The PC controller uses an i7-6700 processor. Through
the graphical interface of the PC controller, users can edit
the control parameters and select the desired trajectory. The
driving circuit consists of 24 ARMs, each of which controls
the current of a single coil of PMSA.

As shown in Fig. 12, after receiving the position informa-
tion of PMSA, the controller calculates the corresponding
torque using the proposed control strategy. The currents of the
corresponding 24 coils can be obtained using (5) and (6). The
current values will be sent to the drive circuit through serial
port communication. Thereafter, the drive circuit passes the
current into the stator coil of PMSA to generate electromag-
netic torque that drives the rotor to track the desired trajectory.

FIGURE 12. Schematic of the experiment platform.

The parameters of the controller, desired trajectory, and
initial conditions used in the experiment are set to be the
same as those of (30) and (31) in the simulation. The delay of
the system is measured as 0.022±0.0002 sec, the calculating
frequency of the digital system is 45.5 Hz, and the total
experiment running time is set to 4 sec.

FIGURE 13. Position response to angle α.

FIGURE 14. Position response to angle β.

The trajectories and errors are shown in Figs. 13 to 15 and
Figs. 16 to 18 respectively. The MSEs versus the different
angles are shown in Table 2. Compared with the PD con-
troller, theMSEs of RAS in the α, β, γ directions is decreased
by 81.2%, 50.4%, and 99.6%, respectively. Compared with
the RAS controller, the MSEs of RASC in the α, β, γ direc-
tions are reduced by 8.3%, 1.2%, and 25.0% respectively after
compensation. Compared with the PD controller, the RAS
and RASC controllers respond to large initial error without
overshoot, and the convergence rate of error is faster. The
experiment results show that the proposed controller can
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FIGURE 15. Position response to angle γ.

effectively reduce the error caused by friction and uncertain
disturbance, and compensate for the Coriolis and centrifugal
forces in the output torque. PMSA is controlled to track
the desired trajectory. By compensating for the time delay,
the tracking error of PMSA can be reduced, thereby improv-
ing the tracking accuracy.

FIGURE 16. Tracking errors versus angle α.

FIGURE 17. Tracking errors versus angle β.

FIGURE 18. Tracking errors versus angle γ.

Apart from performing complex trajectory tracking,
PMSA can also be tasked with simple movements such as
tilting and spinning. These movements around a single axis
can show the effect of inter-axis couplings and how well the
effects are compensated by the controller. A typical tilting

TABLE 2. Mean square errors versus the different angle.

FIGURE 19. Position response to angle α.

FIGURE 20. Position response to angle β.

motion along the X-axis of rotor is performed to show the
performance of the proposed control scheme in dealing with
inter-axis couplings. In this experiment, the rotor is controlled
to move along the desired trajectory as (34), (35), and the
experiment time is set to 6 sec. This desired trajectory is set to
be identical with the experiment trajectory in reference [15].
Therefore, this experiment can also be viewed as a reference
for comparison with the results of other pertinent works.{

qdes = [α(t), 0, 0]
q(0) = [0, 0, 0]

(34)
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α(t) =


6t, t∈[0, 2]
12, t∈[2, 4]
12− 6 (t − 4) , t∈[4, 6]

(35)

The experiment results are shown in Figs. 19 and 20,
indicating that the actual trajectory fits the desired trajec-
tory well under the proposed control scheme. The maximum
tracking error measured by sensor is 0.13 degree. Given
that the precision of the sensor used in this experiment is
0.05 degree, the real maximum tracking error is between
0.08 and 0.18 degrees. The experimental results illustrate that
apart from uncertain disturbances, friction, Coriolis and cen-
trifugal forces, and time delay, the proposed control scheme
is also robust against the effects of the inter-axis couplings of
α and β.

VII. CONCLUSION
This study proposes an adaptive robust sliding-mode control
system with delay compensation is proposed for the trajec-
tory tracking control system of PMSA. The feasibility and
efficiency of the proposed method are illustrated by theory
and experiments, thereby making it a superior alternative for
the sake of providing a solution to PMSA and other industries
multi-DOF devices with unknown dynamics. The three main
contributions of this research are as follows.
1. An improved LP is proposed, which has superior predic-

tion accuracy when the speed changes rapidly. The delay
of the PMSA digital control system is compensated to
obtain more accurate position information, which is used
as the position signal of the adaptive robust sliding-mode
controller.

2. A sliding-mode controller is designed to compensate for
the uncertain disturbance of the PMSA control system.
Adaptive controller is designed to adapt the parameters
of the PMSA online, and the components of Coriolis and
centrifugal forces are compensated at the control input to
improve the robustness of the entire system.

3. The control strategy proposed in this study combines
the improved LP with adaptive robust sliding mode con-
troller, which has good robustness against the inaccuracy
of modeling, friction, uncertain disturbance and, compu-
tation delay.

Future work will consider the application of extended state
observer to compensate for uncertain disturbances, adjust-
ment of controller gains through machine learning, and the
chattering issue of sliding-mode controller to acquire an
improved control performance.
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