
Received June 22, 2020, accepted July 3, 2020, date of publication July 9, 2020, date of current version July 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3008321

Curriculum, Teaching and Learning, and
Assessments for Introductory
Programming Course
ERUM MEHMOOD 1, ADNAN ABID 1, (Member, IEEE),
MUHAMMAD SHOAIB FAROOQ 1, (Member, IEEE), AND NAEEM A. NAWAZ 2
1Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore 54770, Pakistan
2Department of Computer Science (CFY), Umm Al-Qura University, Mecca 24231, Saudi Arabia

Corresponding author: Adnan Abid (adnan.abid@umt.edu.pk)

ABSTRACT Learning to program involves acquisition of various skills including problem solving,
fundamental design techniques as well as critical thinking. Generally, most of the novice programmers
struggle to develop all these important skill. The research community has addressed the problem in many
different ways while involving improvisations in curriculum, pedagogical methods, cognitive aspects,
supporting tools, and in designing assessments. This research aims to analyze and synthesize the existing
literature in the aforementioned areas. Research articles pertaining to the area of Introductory Programming
Courses (IPC) have been found using appropriate search queries, while nearly 60 research articles, published
in last ten years, have been carefully selected by employing a systematic filtering process. The scope of this
work only covers the research conducted for IPC in higher education. Main findings of this study show
that ‘‘solution proposal’’ and ‘‘evaluation research’’ have been reported as two main research types adopted
by these studies. Moreover, pedagogy, language choice and students’ performance analysis are the most
frequently addressed aspects of IPC; whereas, curriculum contents, assessment design, and teaching/learning
through tools have appeared as less addressed aspects of IPC. Furthermore, a taxonomy of IPC has been
presented based on the studied literature. Lastly, general considerations and future research directions have
been presented for the practitioners and researchers in this area.

INDEX TERMS Introductory programming, higher education, programming education curriculum,
language choice, systematic review.

I. INTRODUCTION
Introductory programming generally refers to course intro-
duced to undergraduate students with little or no program-
ming experience. Introductory programming courses (IPCs)
are included in various undergraduate degree programs.
Program design, data structures, syntax, problem solving,
programming logic and design techniques [1] are the basic
concepts IPC aims to cover. Final report of Curriculum
Guidelines for Undergraduate Degree Programs in Computer
Science [2] says that introductory courses differ across
institutions to help students with significant variance in
pre-requisite. Some introductory courses are developed to
deliver a broader introduction to computing concepts without

The associate editor coordinating the review of this manuscript and

approving it for publication was Luca Ardito .

the limitations of learning the syntax of a programming
language, according to this report. Dropout rates are still
high despite progressing in methods/tools for teaching
and learning IPC [3]. Moreover, suitability of a language,
as IPC, needs to be evaluated in order to analyse challenges
faced by novice students. Impact of language choice in
learning IPC is evaluated by developing a framework in
a study by [4]. Despite having several published reviews
in IPC domain, studies either cover papers up to 2017 or
focus more on learning methods and less on curricula and
assessment design for IPC as mentioned in Table 1. This
table provides comparison among existing reviews based
on five major perspectives: quality assessment scoring,
curriculum, teaching and learning, assessment and targeted
digital repositories. We have included comparison for only
reviews published in quality journals (excluding conferences

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 125961

https://orcid.org/0000-0001-9424-8274
https://orcid.org/0000-0003-2602-2876
https://orcid.org/0000-0002-4095-8868
https://orcid.org/0000-0002-3407-2630
https://orcid.org/0000-0002-0501-7886


E. Mehmood et al.: Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course

TABLE 1. Comparison with related works.

and workshops) in our study as more matured research gets
published in journals. This comparison help us build the need
of this survey.

This systematic literature review (SLR) provides a detailed
examination of problems faced by novice programmers in
learning introductory programming education and research
trends in IPC while covering all five major perspectives
shown in Table 1. Based on the systematic review criteria,
60 research papers have been finalized for further review
and analysis. The selected papers are empirically and
qualitatively evaluated through multiple aspects. The novelty
of our systematic literature review is that it provides a new
classification criteria, IPC research targeting channels, IPC
curricula [2], [49], programming language choice [4], [24],
teaching and learning approaches [29], [45], assessment
design [19], [21] and tools [23], [57], and approaches
to address challenges faced by novice students after val-
idating programming studies empirically. This SLR will
help educators in development of standardized IPC learning
environment together with curricula, teaching and learning
tools, and effective assessment tools and design.

This article is arranged as follows: Section II discusses
about existing relevant surveys, and provides a motivation
for this SLR. Section III presents adopted methodology to
conduct this survey together with objectives and research
questions. Answers to these research questions have been
described and analyzed in Section IV. Section V presents
synthesis of reviewed literature by describing a taxonomy
in this domain. Lastly, the article has been concluded
in Section VI.

II. LITERATURE REVIEW
Most of the surveys and systematic reviews on introductory
programming do not cover publication channels, curricula

standards and language choice as IPC, and focus more
on teaching methods and tools than on student problems.
A more recent systematic review on challenges faced by
novice programmers in learning introductory programming
course evaluated studies till year 2016 conducted by [3].
Authors focus on analyzing three stages of computational
thinking (problem formulation, solution expression and
solution execution and evaluation). This is the only other
survey to our knowledge that thoroughly presents key issues
for the research road map on introductory programming
learning and teaching in higher education. However, this
study does not focus on other factors playing important role in
learning IPC such as: curricula standards and language choice
as IPC.

Another SLR presented by [5] investigates the effective-
ness of using robots as teaching tools for IPC. Authors
discuss different technologies appearing helpful for learners
to overcome existing barriers in this context. This SLR
discovers that most frequently adopted programming by
educators is JAVA for those who use robots as a teaching
tool. According to this study, high quality and large scale
research is still required in order to discover true efficacy
of robots as tool for teaching programming. However, other
tools and methodologies of learning IPC are not discussed in
this survey.

Models of learning styles for IPC are recently reviewed
by [6]. Total of five learning approaches appeared in this
review: online self-paced, face-to-face instructor, online col-
laboration, face-to-face collaboration and online instructor-
led. Effectiveness of various learning approaches have been
evaluated on basis of students’ performance when blended
together. Impact of five blended learning models on the
learning experience of novice programmers have been
reviewed in this survey which are: flipped, mixed, flex,

125962 VOLUME 8, 2020



E. Mehmood et al.: Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course

supplemental and online practicing. Mixed model appeared
to be the most appropriate learning model according to this
review for enhancing students’ performance. This review,
however, focused only of learning models not on curricula,
and assessment for IPC.

There have been surveys on other aspects of programming
languages. One of these surveys is review of literature
by [7] which investigated the factors that contribute to
the difficulties faced by students in learning introductory
programming. Another survey on program visualization tools
for learning introductory programming education is done
by [8]. However, none of them focus on channels publishing
literature on IPC and problems faced by novice students
required to achieve desired solutions.

Our review distinguishes itself from the above reviews
by focusing only on the publication channels related to
IPC, closely examining the IPC curricula, and identifying
the approaches addressing challenges faced by novice
students. Furthermore, we conduct a more balanced and
comprehensive approach than all of the above reviews: we
select tools in a systematic way following strict criteria, and
we code them using a predetermined labelling.

III. RESEARCH METHODOLOGY
Guidelines for systematic reviews presented in software
engineering research by [9] and [10] are followed by our
survey. Based on these guidelines, a search protocol was
listed after finalizing research questions to reduce possibility
of any research bias. According to this protocol, we have
included threemain stages in our researchmethodology: plan,
conduct and report of review, presented in next sections.

FIGURE 1. Research strategy.

A. REVIEW PLAN
Adequate search strategy have been developed to find
all relevant studies. Figures1 and 2 show the research
methodology, which demonstrate search process for relevant
publications, definition of a classification scheme, and
mapping of publications. A highly structured process has
been followed in this review that involved:

• Research objectives
• Specifying research questions(RQs)
• Organizing searches of databases
• Studies selection
• Screening relevant studies
• Data extraction
• Results synthesising
• Finalizing the review report

It is important to formulate primary RQs (see Table 2) in
order to achieve following core objectives:

a) RQ1 attempts to address our objective to develop a
library of articles related to the challenges faced by
novice while learning IPC focusing on curricula and
language choice, and make this dataset available to other
researchers. Moreover, to identify more significant work
that provides direction to investigate students’ problems
in programming education. Answer of RQ1will discover
gaps in terms of research approaches and challenges in
the state-of-the-art.

b) Another objective to identify complexities faced by
novices based on the selection of any particular language
and curriculum while learning IPC will be achieved
during assessment of RQ2.

c) The objective to classify existing solutions addressing
problems in teaching/learning an IPC for novice pro-
grammers, and identify their solutions will be addressed
by answer of RQ3.

d) RQ4 attempts to achieve another objective: to identify
effectiveness of existing tools developed for teaching
and learning IPC.

e) RQ5 tends to determine the recently developed method-
ologies to analyze and validate students’ performance in
learning IPC in terms of assessment tools, design and
students’ performance analysis.

B. REVIEW CONDUCT
The process of conducting this review has been articulated
in four steps presented below. In first step, relevant primary
studies have been searched from most commonly used
digital libraries. Selection of studies based on pre-defined
inclusion/exclusion criteria has been performed during sec-
ond step. We have designed quality assessment criteria to
further enhance quality of our review described in third step.
Backward snowballing is then performed to extract important
candidate papers during final fourth step.

1) AUTOMATED SEARCH IN DIGITAL LIBRARIES
A systematic research has been carried out to filter irrele-
vant studies and extract appropriate information. Therefore,
automatic and manual search techniques have been followed
while exploring the search terms. Multiple digital libraries
were explored during this process, and only those repositories
have been selected for our search process that are commonly
accessed by other systematic literature surveys globally.
These widely used public venues happen to be relevant for

VOLUME 8, 2020 125963



E. Mehmood et al.: Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course

FIGURE 2. Search strategy.

TABLE 2. Research Questions (RQs).

our SLR too, therefore considered. In addition google scholar,
that covers other such venues which are not directly explored,
also included in our survey. Therefore, following eleven
digital venues possibly covering almost all relevant research
have been selected as primary search sources for automatic
search:
• ACM Digital Library (http://dl.acm.org)
• IEEE eXplore (http://ieeexplore.ieee.org)
• PLOS ONE (https://journals.plos.org/plosone/)
• ScienceDirect (https://www.sciencedirect.com)
• SpringerLink (https://link.springer.com/)
• WileyOnlineLibrary (https://onlinelibrary.wiley.com/)
• arXiv (https://arxiv.org/search/cs)
• AIS eLibrary (https://aisel.aisnet.org/)
• IGI Global (https://www.igi-global.com/search/)

• Central and Eastern European Online Library (https://
www.ceeol.com/)

• Google Scholar(https://scholar.google.com/)
The objective of manual search is to collect more literature
relevant to introductory programming education curriculum
and approaches domain. Extracted information can be
more relevant for limited search terms therefore following
conditions were applied to limit our search terms:
• Based on formulated RQs, determine primary keywords.
• Identification of secondary keywords and synonyms for
additional keywords.

• ‘AND’ and ‘OR’ Boolean operators have been incorpo-
rated with keywords to develop a search string.

Possible arrangements of search string used can be noted
from Figure 3, while a sample query has been presented

125964 VOLUME 8, 2020



E. Mehmood et al.: Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course

FIGURE 3. Search strings used to describe work included in our knowledge base.

Listing 1. Search query.

in Listing 1. Primary keywords were selected as key
identifiers for research of programming education. Primary
keywords were chosen along with any of secondary or
additional keywords. Combination of keywords, Boolean
operators and wildcard have developed a final search query
mentioned as:

Above search query appeared to be restrictive during
initial search process. It was observed that above search
string could not help inclusion of articles for only IPC
curriculum.

Table 3 enlists final search strings used to explore eleven
digital libraries with specific applied filters by applying
limited keywords. Only titles were searched for ACM
journals, ScienceDirect and PLOS ONE during automatic
search. Other digital libraries were explored with ‘‘all fields’’
setting, as these do not allow a more specific search
configuration. Search string being too restrictive failed to
find relevant articles for IGI Global and CEEOL journals,
therefore final search string designed for this library contains
less number of keywords shown in Table 3.

2) SELECTION BASED ON INCLUSION/EXCLUSION CRITERIA
1) Inclusion criteria:

a) Papers included in review must be in the domain of
introductory Programming Education.

b) Papers must target the research questions.
c) Papers published in journals or conferences are

included in review.
d) Papers discussing IPC focusing on teaching or

learning tools. Example: Intelligent tutoring sys-
tem, board games etc.

2) Exclusion criteria:
a) Remove papers written in non-english.
b) Remove papers that do not discuss IPC in higher

education.
c) Remove the papers published before 2011.
d) Remove papers discussing the IPC in school

education.
e) Papers written by same research group in this

subject matter were removed (most recent was kept
in this case).

3) SELECTION BASED ON QUALITY ASSESSMENT
Selection of relevant studies on the basis of quality
assessment (QA) is considered as most important step for
conducting any review. As the primary studies vary in design
therefore quantitative, qualitative, and mixed-method critical
appraisal tool used by [11] and [12] are followed to perform

VOLUME 8, 2020 125965



E. Mehmood et al.: Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course

TABLE 3. Search strategy for digital libraries.

TABLE 4. Possible ratings for recognized and stable publication source.

QA in our review. In order to enhance our study, we have
carried out QA by designing a questionnaire to assess the
quality of selected papers. The QA of our study was carried
out by three authors and each study is scored based on the
following criteria:
a) The study has awarded score (1) if it contributes towards

three identified aspects in IPC, otherwise scored (0).
b) If clear solutions for identified challenges in IPC have

been provided by the study: ‘‘Yes (2)’’, ‘‘Limited (1)’’,
and ‘‘No (0)’’ were the possible scores.

c) Score (1) is awarded to studies which presents empirical
results otherwise scored (0).

d) The studies were rated by taking computer science
conference rankings [13], and the journal and country

ranking lists [14] into account. Possible scores for
publications from recognized and stable sources are
shown in Table 4.

A final score has been calculated for each study after adding
scores of above questions: (a number between 0 to 8). Articles
achieving scores 4 or more have been included in finalized
results.

4) SELECTION BASED ON SNOWBALLING
After performing quality assessment, we conducted back-
ward snowballing [15] through reference list of each finalized
study to extract papers. Only those important candidate
papers are selected which passed through inclusion/exclusion
criteria. Once the paper is found, inclusion/exclusion of that

125966 VOLUME 8, 2020



E. Mehmood et al.: Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course

TABLE 5. Selection phases and results.

paper has been decided after reading its abstract and then
other parts of paper. After having examined selected papers
thoroughly we identified five more studies [16]–[19], [20]
and totally added up to 60 primary studies.

C. REVIEW REPORT
Overview of selected studies is provided in this section.

1) OVERVIEW OF INTERMEDIATE SELECTION
PROCESS OUTCOME
IPC is an extremely active field, therefore our review
methodology had to empirically and systematically draw
relevant studies from all related digital libraries. The next
stage of our systematic review is to select the papers that will
form the knowledge base for this review. Around 500k papers
are left after removing papers older than year 2011. However,
only one report published in year 2010 related to curriculum
has also been included in this review to build strong basis for
curricula comparison.

After building a knowledge base from eleven (11) digital
libraries, authors examined title, abstract, and corresponding
full paper if required of each search result. Papers less than
four pages long and irrelevant papers were eliminated in this
process.

To ascertain the relevance and contribution, in the field of
IPC, accepted publications have been read thoroughly during
inspection phase. To achieve the core goal of this study,
we build a systematic knowledge base of articles based on
their contributions.

2) OVERVIEW OF SELECTED STUDIES
Significant results of primary search, filtering and inspection
phases, covering eleven digital libraries, are presented
in Table 5. The automated search resulted in a very big

number of papers while filtering/inspection phases helped
reduce this number to 60 articles.

IV. ASSESSMENT AND DISCUSSION
OF RESEARCH QUESTIONS
In this section, we analyzed the finalized 60 primary studies
based on our research questions.

A. ASSESSMENT OF RQ1: WHICH ARE RELEVANT
PUBLICATION CHANNELS FOR IPC RESEARCH? WHICH
CHANNEL TYPES AND GEOGRAPHICAL AREAS
TARGETING IPC RESEARCH?
The analysis of IPC learning tools, methods, contents,
assessments, and language choice is a key challenge for
researchers for the development of international standards for
novice programmers. For this purpose, identification of high
quality publication venues and scientometric analysis based
on meta information in the domain of IPC is required. In this
section, an insightful knowledge of publication sources,
types, year and geographical distribution, publication channel
wise distribution of selected studies for the analysis of IPC
research is presented.

After inspection phase, maximum of 20 studies have been
finalized from ACM digital library and nearly equal number
is selected from IEEExplore as shown in Table 5, proving
these publication sources as world’s largest professional
societies publishing more than 50 scholarly peer-reviewed
journals in dozens of computing and information technology
disciplines.

Figure 4 represents the number of publicationsw.r.t. year of
publication. Maximum of 10 publications have been selected
from year 2018 out of 60 showingmore interest of researchers
towards development in teaching and learning IPC in that
year. However, less interest towards IPC research has been
observed in most recent year resulting less improvement in

VOLUME 8, 2020 125967



E. Mehmood et al.: Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course

FIGURE 4. Introductory programming publications identified by our
search.

FIGURE 5. Percentage of publication type.

FIGURE 6. Percentage of distribution of publications.

IPC curriculum/assessment analysis in relevance to students
and market needs.

It is observed from Figure 5 that highest number of studies
have been selected from recognized journals and second
highest number of studies have been picked from good rank
conferences, whereas few relevant studies have been selected
from workshops. Publication type for curriculum contents
included in our SLR has been categorized as report, which
are 3% of the total number.

Figure 6 shows geographical distribution of selected
studies. It is observed that majority of publications i.e,
21 out of 60, have been published from different countries
of America.

QA score for each finalized study awarded according
to criteria defined in section III.B.3, shown in Table 7,

it is clearly noted that QA scores are in the range of
4-8 discarding studies scored less than 4. IPC developers
may find this QA helpful to choose related studies while
addressing IPC challenges. Studies published in Q1 journals
mostly scored highest while studies scoring total of 4 are
from less recognized journal but highly relevant to the subject
matter. Exclusion of studies from less stable publication
channels might miss any relevant studies, which in turn can
compromise the quality standards of this SLR, therefore have
been included. Most of such studies scored four (4) making
a total of 16 studies out of 60. Whereas, 15 out 60 studies
scored highest (i.e, an eight 8) showing all QA criteria met
by these studies to their maximum.

Overall classification results and QA of finalized studies
have been presented in Table 6. Finalized studies have been
classified based on five factors: research type, empirical type
and methodology. We have categorized types for research
as: SLR, solution proposal, evaluation research, experience
paper, framework, review or curicula. Selection based on
these defined research types helped us to build taxonomy
presented in section V. All studies other then review papers
have been empirically validated their results by performing
surveys, statistical analysis, experiments or case studies
increasing their quality standards and awarded one score
each. Only 12 papers out of 60 have not presented empirical
results indicated by zero score for category (c) of quality
assessment criteria, including eight those studies which
are SLRs (no proposed methodology hence no need to be
empirically validated), other review papers. Only 17 papers
score zero for category (d) of quality assessment criteria, rest
of them score higher indicating competent sources. Four (4)
was the lowest score any study has been awarded. In addition,
only formally executed SLRs have been included in our
selection, methodologies adopted by selected studies other
than SLRs are also listed in Table 6.

Furthermore, we have identified sources of finalized stud-
ies, their publication channels and total number/percentage
of studies per publication source mentioned in Table 8.
About 14% of finalized studies have been published in
(Q1) journal named: ‘‘ACM Transaction on Computing
Education’’, whereas proceedings of ‘‘IEEE Frontier in
Education Conference’’ (Rank A) appeared to be second
highest publication source contributing 8% into our selected
studies. In addition to that, Table 9 presents contribution and
approaches developed by such studies whose research types
are either ‘solution proposal’ or ‘framework’.

B. ASSESSMENT OF RQ2: WHAT ARE WORLD WIDE
ACCEPTED STANDARDS FOR IPC CURRICULUM AND
WHAT FACTORS AFFECT LANGUAGE CHOICE FOR IPC?
Appropriate content and language choice are basic parame-
ters while designing curriculum for IPC. These parameters
play an important role in teaching and learning IPC. Fol-
lowing sub-sections describe existing studies in the domain
of language choice and content selection for teaching and
learning IPC.

125968 VOLUME 8, 2020



E. Mehmood et al.: Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course

TABLE 6. Classification.

VOLUME 8, 2020 125969



E. Mehmood et al.: Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course

TABLE 6. (Continued.) Classification.

TABLE 7. Quality assessment score.

1) LANGUAGE CHOICE
Many programming languages had been taught as IPC
reported by one SLR [46] and several studies [24], [30],
[35], [51], [52], [56], [59], [60], [67], [69] to assess best
choice for an introductory programming language. Various
languages used as IPC have been evaluated with the help of
a comprehensive framework proposed by [4] and categorized
using technical and environmental feature sets. Based on this
framework researchers can develop new IPCs as it provides
quantitative score computation for programming languages.
Studies suggest selection of a language for IPC is based on
the following factors:
• presence of important features (repetition structures and
functional decomposition features)

• industry relevance and/or marketability to students
• online help and accessibility of a community
• availability of libraries and capability of being extended

• platform independent
• ease of installation
• compiled strongly typed languages (More errors have
been captured at compile time in them therefore less
vulnerable to runtime failures)

• pedagogical benefits

Another study by [36] has also assessed impact of dif-
ferent programming languages on software standards and
developers productivity by performing statistical analysis on
development of projects in C and C++ languages. They
have concluded that use of C++ considered to produce
better software quality and minimize maintenance efforts as
compared to using C language. Furthermore, [50] reported
that, C# is rarely adopted as IPC in CS1 & CS2 courses
whereas often demanded in industry job ads. According to
same study, Java and C++ are also demanded by industry
frequently and often taught in CS1 & CS2. Findings by
another study [25] revealed that teaching of a syntactically
simple language (Python) as IPC accelerate students’ under-
standing of programming concepts, in comparison to teaching
a syntactically complex one (Java). In addition, significant
improvement has been found in students’ performance
when problem solving has been taught before programming
concepts. It is further noticed that choice of programming
paradigm also helps in selecting programming language for
IPC. According to our assessment of selected studies while
investigating language choice and curriculum contents, that
is elaborated well in Table 10, it is found that different
programming languages appeared as choice for an IPC

125970 VOLUME 8, 2020



E. Mehmood et al.: Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course

TABLE 8. Publication source.

based on multiple criterion. Both Java and Python have
been well regarded first programming languages. Whereby,
dominance of Java language can be clearly noticed where
institutions select programming language based on industry
relevance.

Whereas Python initially appeared as the first choice
based on pedagogical benefits, but now it is a popular

language in data science with strong supportive libraries.
However, it is clear from the Table 10 that it is hard to
clearly rate any programming language as the unanimous
choice for first programming language. On the other hand,
the most comprehensive and reasonably generic criteria for
the selection of appropriate first programming language has
been presented by [4].

VOLUME 8, 2020 125971



E. Mehmood et al.: Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course

TABLE 9. Solutions proposed by selected studies.

2) CONTENT
Surveys/reports on content design while developing curricu-
lum of IPC have been reported by [1], [2], [18], [53] [49].
New IPC curriculum CS0.5 has been developed and taught
in study [18] resulting improved pass rates of students in
comparison to CS1. Curriculum developed in [53] and [49]
clearly presented topic wise content comparison of all
volumes.

According to (P27) of curriculum [2], students need to
gain problem solving skills by applying knowledge they
have learned more than just write code. They should to
be able to develop and enhance a system based on its
functionality, performance and usability while performing its
quantitative and qualitative assessment. Much focus of intro-
ductory programming courses on ‘‘Software Development
Fundamentals’’ topics along with a subset of ‘‘Programming

125972 VOLUME 8, 2020



E. Mehmood et al.: Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course

TABLE 10. Curriculum: Findings of the reviewed studies.

VOLUME 8, 2020 125973



E. Mehmood et al.: Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course

Languages’’ topics (P31). Some courses use functional pro-
gramming while others adopt object-oriented programming
or platform-based development. Findings and evaluation
methods of other studies reviewing curriculum presented
in Table 10 indicating there are only few studies present at the
moment addressing standards for programming objectives for
majors and non-majors, topic level comparison and program
by design curriculum. According to the reviewed studies it
is concluded that ACM/IEEE CS Curriculum considered as
widely accepted standard.

C. ASSESSMENT OF RQ3: WHICH TEACHING AND
LEARNING APPROACHES HAVE BEEN REPORTED TO
ADDRESS PROBLEMS FOR NOVICE STUDENTS?
This systematic study aims to examine the existing knowl-
edge in IPC from finalized 60 papers. In order to gain the
overview, we investigate teachers’ and students’ perspective
of IPC trends and approaches to address novice problems.
Teaching/pedagogy an IPC refers to the techniques, tools,
approaches and methods developed for teaching program-
ming in an effective way. These developments in teaching
methodologies contributed in finding solutions for a lot of
challenges related to the nature of programming. Whereas,
learning/cognition requirements is the students’ ability to
think and act in their academic life which help them acquire
programming skills and overcome difficulties in learning by
adopting any specific model, notional machine or games.

Teaching and learning an IPC by applying pedagogical
skills or through tools are summarized and discussed in this
section. Pedagogy enables instructors to impart knowledge
and skills in such ways where students understand, remember
and apply these skills. In our SLR, pedagogy is divided into
two sub-levels i.e, teaching and learning. Existing surveys
targeting teaching and learning IPC are evaluated in the
following sub-sections:

1) TEACHING
Impact of various teaching approaches on students’ perfor-
mance for IPC has been surveyed by several studies [16], [20],
[27], [31], [38], [42], [45], [47], [64], [65], [70]. Different
pedagogical approaches are compared in terms of passing
rate percentages by [27] where as some pedagogical and
motivational strategies have been surveyed in [31], [38], [65]
to promote students’ motivation. Significant factors to predict
students’ attitude towards computer programming have been
identified as three variables i.e, (performance in program-
ming courses, perceived learning and programming self-
efficacy) by [20]. ‘‘Action research insights and outcomes
ADRI approach’’, ‘‘active learning technique’’, ‘‘innovative
programming environment approach’’, ‘‘models for teaching
programming’’ and ‘‘program by design approach’’ are
various approaches discussed, compared and validated in
studies [16], [42], [45], [47], [64]. Another study [71]
proposed agile process for teaching an IPC and concluded
positive impact on students’ learning. These studies examined
various factors that contribute to students’ failure in IPC.

Results from these studies highlight significance to measure
the effect of curricular changes.

2) LEARNING
Existing studies investigated learning requirements and
pointed out need of basic reasoning and mental skills for
learning IPC. Surveys/literature targeting learning an IPC
through methods/models, notional machine and games are
evaluated as follows:

i) Methods/Models: Different types and models of learn-
ing styles have been reviewed in an SLR [37] conclud-
ing learning style can not be used as an instrument to
predict student success. Students have been introduced
to programming using different introductory program-
ming languages in another study [29] and performance
has been analyzed statistically. Another analysis of
programming language education has been conducted
by a study [34] for a pre-introductory CS course.
According to the results of this survey, students rec-
ognized that education programming language based
course framework helped their understanding of basic
programming concepts and algorithm design. Objec-
tive of both of these studies is to possibly improve the
selection of suitable programming language for novice
programmers. Another recent study [70], explores the
effect of incremental mindsets in individuals and found
an increases in effort during programming activities but
not in performance.

ii) Notional Machine:
An informal literature review to examine knowledge
bodies in conceptual relation to a ‘‘notional machine’’
has been presented in study [39]. Notional machine
serves as an abstract computer for the execution of
particular kind of programs and fulfills the purpose
of understanding program execution stages. One or
more programming languages/paradigms with one
specific programming environment are possibly asso-
ciated with notional machine. several aspects on the
functionality of notional machines in introductory
programming education (IPE) have been discussed
together in this study that concludes notional machines
as a prominent challenge in IPE.

iii) Games/Robots:
A game-based learning (GBL) model is presented by
[41] and [68] developed a robot-based programming
tool. Major contributions and approaches used for
the developments in domain of IPC are presented
in Table 9.

Table 11 elaborates the criterion, evaluation methods,
participant details and findings of selected studies addressing
IPC teaching and learning methods and techniques. Four
evaluation criterion were identified for teaching aspect during
review that includes seven studies. These studies looked
at factors effecting students’ learning, pedagogical and
motivational strategies, use of active learning techniques and

125974 VOLUME 8, 2020



E. Mehmood et al.: Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course

TABLE 11. Teaching and Learning: Findings of the reviewed studies.

application based teaching techniques. Approaches devel-
oped considering pedagogical and motivational strategies
appeared to be more effective towards students’ learning and
programming behaviour. On the other hand, active learning
and application-based teaching techniques showed promising
results when used during an IPC. It is important to note
that four studies contributed in students’ cognitive level
meeting two evaluation criterion. Findings of these studies
suggesting adoption of such learningmodels that consider the
characteristics of the learners.

D. ASSESSMENT OF RQ4: HOW EFFECTIVE IS TEACHING
IPC THROUGH TOOLS IN IMPROVING THE LEARNING
EXPERIENCE OF NOVICE PROGRAMMERS?
Teaching and learning an IPC through tools is divided into
following categories:

1) IMPLEMENTED TOOLS
GUI based tools have been developed for teaching and
learning an IPC and empirically validated in studies [22],
[58], [63] with the aim of improving problem solving ability

VOLUME 8, 2020 125975



E. Mehmood et al.: Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course

of novice programmers. These tools allow the programmers
to interactively develop executable flow charts. Introduction
of abstract programming concepts visually allow students
to make transition itno a complex programming language
easier, concluding visual tools are relevant in attaining better
results.

2) FRAMEWORK
A development framework has been designed by [54], called
Splashkit, for motivating and engaging students in introduc-
tory programming for tertiary education. This is an open-
source, cross-platform development and language-agnostic
framework that supports a wide range of programming
education approaches. Objects-first/ objects-later curriculum
design, a range of fully-featured game engines like pro-
gramming tools, databases, programming language choices,
and web-servers together with easy API design tech-
niques are the basic programming education approaches
included in this framework. Objective of this study to
empower students for developments of important software
engineering skill that is reading API documentation. Stu-
dents were able to design games when taught using this
framework.

As can be seen in Table 11 four studies have been
categorized addressing learning of an IPC using tools based
on two evaluation criterion. Proposed approaches proved to
be effective compared to traditional learning styles as these
helped students for problem solving improvement and to
develop a wide range of applications. It is concluded that
teaching with SplashKit considered as more beneficial as
this framework is empirically evaluated on large scale of
participants for several years.

E. ASSESSMENT OF RQ5: WHICH METHODOLOGIES HAVE
BEEN ADOPTED TO ANALYZE AND VALIDATE
PERFORMANCE OF NOVICE PROGRAMMERS?
Surveys performed to assess teaching and learning process of
IPC are categorized into following sub-levels.

1) STUDENTS’ PERFORMANCE ANALYSIS
Several methodologies have been adopted to analyze and
validate students’ performance in IPC by various studies
[19], [21], [28], [32], [33], [40], [43], [44], [48], [61], [62],
[66]. Objective of these studies is to predict factors effecting
students’ performance in an IPC by observing programming
errors made by students using multiple testing techniques:
ADRI model based on six categories of Blooms’ Taxonomy,
regression and t-tests, formative and summative approach,
and bayesian network classifier. Few studies suggested that
for many low-performance students learning fails due to
cognitive overload, while others identified students’ main
problem was to divide activity into functions and classes
and to find errors in ones’ own programs. One survey
observed that implicit theories of programming-aptitude
and programming-efficacy are interrelated and positively
correlated with effort, performance, and previous failures in

the course. Repeaters favor fixed programming aptitude and
have lower programming efficacy which increases further
possibility of failure.

2) ASSESSMENT TOOL
Aweb-based students’ response platform has been developed
in study [57] for instructors to ask free-form short response
questions to students, while impact of different teaching
approaches and languages on students’ learning an IPC
has been assessed by study [26] using an assessment tool.
objective of both of the studies is to assess teaching
and learning an IPC. Programming language learning is
assessed in another study [23] based on peer code review
model EduPCR2. The EduPCR system and its PCR-based
assessment process have significantly improved student
learning outcomes in many areas including programming
skills.

Custom-based assessment tools, self-assessment tools and
tools on giving student feedback have been reviewed in
another recent SLR [38]. This includes ProgTest, UML
testing, industrial based testing suite, Bluefix, NoobLab and
PRAISE. Another recent study [72] build a comprehensive
automated programming assessment system named: Edgar,
that deals with various programming languages and can be
deployed on all major operating systems.

3) ASSESSMENT DESIGN
Various factors have been reviewed in studies [17] [55] to
improve student academic self-efficacy and problem solving
and in learning programming by applying Spearmans’ rank
correlation coefficient technique. It was identified in [55]
that performance in formative assessment and problem-
solving-skill are weakly correlated. These studies aim to
discover correlation between various assessment method,
student’s participation and their final performance.

Table 12 further elaborates findings and evaluation
methods of each reviewed study which are evaluated on
criterion like: students’ learning and programming behaviour,
auto recognition of required features in students’ code,
students’ course performance, students’ programming errors
investigation and correlation among perceived and academic
performance.

First most addressed evaluation criteria was students’
course performance, which was used to evaluate nine studies.
Most of these studies gather data through assessment which
is then statistically analyzed. These studies attempt to
predict students’ pass rates as well as evaluated different
factors effecting students’ performance. It is concluded that
such assessment tasks/tools considered more effective which
tend to assess students’ problem solving skills and logical
errors in their code. Moreover, considering factors such
as: structural design of assessment, time management, auto
feature detection and balanced weights of labs, quizzes and,
midterm/final exams may significantly improve methodolo-
gies for assessing students’ performance in an IPC.

125976 VOLUME 8, 2020



E. Mehmood et al.: Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course

TABLE 12. Assessment: Findings of the reviewed studies.

V. DISCUSSION AND FUTURE DIRECTIONS
This section summarizes and discusses the results related to
the systematic literature review.

A. TAXONOMIC HIERARCHY
The goal of this systematic literature review was to examine
the current knowledge in IPC by selecting 60 papers.
To achieve this goal, We build taxonomic hierarchy of
selected studies shown in Figure 7, excluding those stud-
ies (SLRs) which have not validated their methodologies
empirically. We have investigated developments and chal-
lenges for the aspects such as: IPC curriculum, teaching and
learning and assessment. However, these aspects are then
further divided into many sub-levels showing depth of each
aspect and their role in the performance improvement of
novice programmers.

B. GENERAL OBSERVATIONS AND FUTURE DIRECTION
Several observations possibly can be made in the findings
of this SLR. Various RQs were developed in order to
determine methods/approaches/tools while teaching an IPC
and to provide an exclusive overview of subject matter. Many
trends and findings can be noted as a result in regards to
the challenges for teaching and learning IPC. These include
following observations together with future directions:

1) CURRICULA
The motivational factor for big proportion of selected
studies (33% ) involves designing curriculum contents and
selection of appropriate programming language for IPC.
Early programming curricula attempts focused mainly on
the relatively simple challenge. Various factors for the

VOLUME 8, 2020 125977



E. Mehmood et al.: Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course

FIGURE 7. Taxonomy of introductory programming education perspectives.

selection of language for IPC have been discussed by many
researchers, concluding that using a syntactically simple
language facilitated student’s learning of programming
concepts. Therefore, Python as first programming language
considered as first choice of instructors, whereas, Java
leads where industry relevancy becomes core requirement.
Curriculum developers, on the other hand, have been focused
on the development of course contents for computer science
as major. Little has been done to tackle challenges in IPC
course contents for non-majors. Moreover, Lack of curricula
standardization appears as a limitation as the industry cannot
rely on teachers’ subjective attitude towards programming.
Students might be able to learn IPC well if they have been
taught IPC starting from school years instead of graduation
level and by including algorithm visualization tools in
curricula. In addition, coding standards and year wise focus
of each study must be considered while developing IPC
curricula in future.

2) TEACHING AND LEARNING
A large number of publications that we have explored
focus on methods/tools designed for teaching and learning
IPC. Where most of the work has clearly help students
learn programming through building tools. Comparatively
less attention has been paid to analyzing and evaluating
those learning tools, according to our observations. No/less
distribution of these learning tools beyond the institution
where they were designed also been observed. Students
can improve their problem solving skills and learn C++
programming language using tool developed in [22] whereas
multiple programming languages are supported by another
recent learning tool: SplashKit [54]. It is further noticed that
web-based programming learning tools were developed in
early years while trend recently shifts towards serious games
using mobile phones.. In future, more modern tools should be
developed for learning IPC such as serious games.

3) ASSESSMENT
The vast majority of literature assumed that forma-
tive/summative assessment approaches are enough to
measure student’s performance. Little has been done to focus
on assessment design. Code conventions are important to
programmers to improve the readability and maintainability
of code which needs to be assessed while measuring perfor-
mance of novice programmers. We have noticed a language
dependant web-based assessment tool [23] that assesses
students’ performance for object oriented programming in
Java course and C programming for freshmen. Whereas,
a language-independent assessment tool [26] has been found
during this review which assesses students’ grasp of all
fundamental and object-oriented concepts. Another domain
independent practical system designed in [57] for collecting
and labeling student responses to open ended questions has
also been identified by our study. Associated rubric must be
included while designing assessments containing functional
correctness scheme, technical correctness scheme, high
quality code sample files and code convention restrictions.
Tester files must also be included while assessing novice
programmers. To enhance learning an IPC, web based
assessments and strong assessments need to be developed.

VI. CONCLUSION
This study has been conducted to build an understanding
of research trends in the field of Introductory Programming
Education. To ensure thorough coverage of challenges
and their solutions we followed a systematic literature
review. We have performed search using as many terms
as we know associated with IPC then results have been
evaluated accordingly.We concluded our search in June 2020,
so studies conducted after that date would have not been
included. Eleven main digital repositories were explored for

125978 VOLUME 8, 2020



E. Mehmood et al.: Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course

this search and around 60 articles appeared to contribute even
better students’ performance out of 500k searched articles.

The results show that more than half of the selected
studies appeared in recognized journals and only a few had
published in workshops or as reports. ‘‘Solution proposal’’
and ‘‘evaluation research’’ have been reported as two main
research types adopted by these studies. Majority of selected
studies were evidence based and possibly helping the
instructors to gain maximum benefits of IPC teaching and
learning. Pedagogy, language choice and students’ perfor-
mance analysis were found as most frequently addressed
aspects of IPC, whereas curricula contents, assessment
tool/design and teaching/learning through tools have been
appeared as less addressed aspects of IPC.

Limitations of any SLR are mainly related to search strat-
egy, inaccurate extracted data or misclassification. However,
our search strategy reduced the risk of selection bias by con-
ducting this study with different keywords from all common
digital repositories. By applying rigorous inclusion/exclusion
criteria and asking two independent reviewers for assessment
of all extractions, other two risks were addressed.

For future research on IPC, more attention should be paid
to curricula design for non-majors, tools design; particularly
serious games, and web-based assessment design with rubric.
More evaluation research should be carried out in order to
evaluate existing IPC curriculum contents.

REFERENCES
[1] H. Topi, J. S. Valacich, R. T. Wright, K. M. Kaiser, J. Nunamaker Jr,

J. C. Sipior, and G. De Vreede, ‘‘Curriculum guidelines for undergraduate
degree programs in information systems,’’ in Proc. ACM/AIS Task Force,
2010, pp. 56–57.

[2] M. Sahami et al., Computer Science Curricula 2013: Curriculum
Guidelines for Undergraduate Degree Programs in Computer Science.
New York, NY, USA: Association for Computing Machinery, 2013.

[3] R. P. Medeiros, G. L. Ramalho, and T. P. Falc ao, ‘‘A systematic literature
review on teaching and learning introductory programming in higher
education,’’ IEEE Trans. Educ., vol. 62, no. 2, pp. 77–90, May 2019.

[4] M. S. Farooq, S. A. Khan, F. Ahmad, S. Islam, and A. Abid, ‘‘An evaluation
framework and comparative analysis of the widely used first programming
languages,’’ PLoS ONE, vol. 9, no. 2, Feb. 2014, Art. no. e88941.

[5] L. Major, T. Kyriacou, and O. P. Brereton, ‘‘Systematic literature review:
Teaching novices programming using robots,’’ IET Softw., vol. 6, no. 6,
pp. 502–513, 2012.

[6] A. Alammary, ‘‘Blended learning models for introductory programming
courses: A systematic review,’’ PLoS ONE, vol. 14, no. 9, Sep. 2019,
Art. no. e0221765.

[7] Y. Qian and J. Lehman, ‘‘Students’ misconceptions and other difficulties
in introductory programming: A literature review,’’ ACM Trans. Comput.
Edu., vol. 18, no. 1, pp. 1–24, Dec. 2017.

[8] J. Sorva, V. Karavirta, and L. Malmi, ‘‘A review of generic program
visualization systems for introductory programming education,’’ ACM
Trans. Comput. Edu., vol. 13, no. 4, p. 15, 2013.

[9] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
‘‘Lessons from applying the systematic literature review process within the
software engineering domain,’’ J. Syst. Softw., vol. 80, no. 4, pp. 571–583,
Apr. 2007.

[10] B. Kitchenham, Procedures for Performing Systematic Reviews, vol. 33.
Keele, U.K.: Keele Univ., 2004, pp. 1–26.

[11] A. Fernandez, E. Insfran, and S. Abrahāo, ‘‘Usability evaluation methods
for the Web: A systematic mapping study,’’ Inf. Softw. Technol., vol. 53,
no. 8, pp. 789–817, Aug. 2011.

[12] S. Ouhbi, A. Idri, J. L. Fernández-Alemán, and A. Toval, ‘‘Requirements
engineering education: A systematic mapping study,’’ Requirements Eng.,
vol. 20, no. 2, pp. 119–138, Jun. 2015.

[13] (2018). CORE Conference Portal. Accessed: Jan. 6, 2020. [Online].
Available: http://portal.core.edu.au/conf-ranks/

[14] (2018). Scimago Journal & Country Rank. Accessed: Jan. 6, 2020.
[Online]. Available: https://www.scimagojr.com/

[15] C. Wohlin, ‘‘Guidelines for snowballing in systematic literature studies
and a replication in software engineering,’’ in Proc. 18th Int. Conf. Eval.
Assessment Softw. Eng. EASE, 2014, p. 38.

[16] V. Aleksić and M. Ivanović, ‘‘Introductory programming subject in
European higher education,’’ Informat. Edu., vol. 15, no. 2, pp. 163–182,
2016.

[17] R. A. Alturki, ‘‘Measuring and improving student performance in an
introductory programming course,’’ Informat. Edu., vol. 15, no. 2,
pp. 183–204, Nov. 2016.

[18] J. Q. Dawson, M. Allen, A. Campbell, and A. Valair, ‘‘Designing an
introductory programming course to improve non-Majors’ experiences,’’
in Proc. 49th ACM Tech. Symp. Comput. Sci. Edu., Feb. 2018, pp. 26–31.

[19] E. D. Canedo, G. A. Santos, and L. L. Leite, ‘‘An assessment of the
teaching-learning methodologies used in the introductory programming
courses at a brazilian university,’’ Informat. Edu., vol. 17, no. 1, pp. 45–59,
Apr. 2018.

[20] M. D. Gurer, I. Cetin, and E. Top, ‘‘Factors affecting students’ attitudes
toward computer programming,’’ Informat. Edu., vol. 18, no. 2, p. 281,
2019.

[21] U. Nikula, O. Gotel, and J. Kasurinen, ‘‘A motivation guided holistic
rehabilitation of the first programming course,’’ACMTrans. Comput. Edu.,
vol. 11, no. 4, p. 24, 2011.

[22] D. Hooshyar, R. B. Ahmad, M. Yousefi, F. D. Yusop, and S.-J. Horng,
‘‘A flowchart-based intelligent tutoring system for improving problem-
solving skills of novice programmers,’’ J. Comput. Assist. Learn., vol. 31,
no. 4, pp. 345–361, Aug. 2015.

[23] Y.Wang, H. Li, Y. Feng, Y. Jiang, andY. Liu, ‘‘Assessment of programming
language learning based on peer code review model: Implementation and
experience report,’’ Comput. Edu., vol. 59, no. 2, pp. 412–422, Sep. 2012.

[24] A. Stefik and S. Siebert, ‘‘An empirical investigation into programming
language syntax,’’ ACM Trans. Comput. Edu., vol. 13, no. 4, p. 19, 2013.

[25] T. Koulouri, S. Lauria, and R. D. Macredie, ‘‘Teaching introductory
programming: A quantitative evaluation of different approaches,’’ ACM
Trans. Comput. Edu., vol. 14, no. 4, p. 26, 2015.

[26] W. M. Kunkle and R. B. Allen, ‘‘The impact of different teaching
approaches and languages on student learning of introductory program-
ming concepts,’’ ACM Trans. Comput. Edu., vol. 16, no. 1, pp. 1–26,
Feb. 2016.

[27] G. Silva-Maceda, P. D. Arjona-Villicana, and F. E. Castillo-Barrera, ‘‘More
time or better tools? A large-scale retrospective comparison of pedagogical
approaches to teach programming,’’ IEEE Trans. Educ., vol. 59, no. 4,
pp. 274–281, Nov. 2016.

[28] M. J. Scott and G. Ghinea, ‘‘On the domain-specificity of mindsets: The
relationship between aptitude beliefs and programming practice,’’ IEEE
Trans. Educ., vol. 57, no. 3, pp. 169–174, Aug. 2014.

[29] S. Xinogalos, T. Pitner, M. Ivanović, and M. Savić, ‘‘Students’ perspective
on the first programming language: C-like or pascal-like languages?’’ Edu.
Inf. Technol., vol. 23, no. 1, pp. 287–302, Jan. 2018.

[30] S. Nanz and C. A. Furia, ‘‘A comparative study of programming languages
in rosetta code,’’ in Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng.,
May 2015, pp. 778–788.

[31] A. Gomes and A. Mendes, ‘‘A teacher’s view about introductory program-
ming teaching and learning: Difficulties, strategies and motivations,’’ in
Proc. IEEE Frontiers Edu. Conf. (FIE) Proc., Oct. 2014, pp. 1–8.

[32] D. McCall and M. Kolling, ‘‘Meaningful categorisation of novice
programmer errors,’’ in Proc. IEEE Frontiers Edu. Conf. (FIE), Oct. 2014,
pp. 1–8.

[33] F. B. Tek, K. S. Benli, and E. Deveci, ‘‘Implicit theories and self-efficacy in
an introductory programming course,’’ IEEE Trans. Educ., vol. 61, no. 3,
pp. 218–225, Aug. 2018.

[34] I. Yoon, J. Kim, and W. Lee, ‘‘The analysis and application of an
educational programming language (RUR-PLE) for a pre-introductory
computer science course,’’ Cluster Comput., vol. 19, no. 1, pp. 529–546,
Mar. 2016.

[35] O. Ezenwoye, ‘‘What language?—The choice of an introductory program-
ming language,’’ in Proc. IEEE Frontiers Edu. Conf. (FIE), Oct. 2018,
pp. 1–8.

[36] P. Bhattacharya and I. Neamtiu, ‘‘Assessing programming language impact
on development and maintenance: A study on c and c++,’’ in Proc. 33rd
Int. Conf. Softw. Eng. ICSE, 2011, pp. 171–180.

VOLUME 8, 2020 125979



E. Mehmood et al.: Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course

[37] M. Carelli Oliveira Maia, D. Serey, and J. Figueiredo, ‘‘Learning styles
in programming education: A systematic mapping study,’’ in Proc. IEEE
Frontiers Edu. Conf. (FIE), Oct. 2017, pp. 1–7.

[38] A. Luxton-Reilly, J. Sheard, C. Szabo, Simon, I. Albluwi, B. A. Becker,
M. Giannakos, A. N. Kumar, L. Ott, J. Paterson, and M. J. Scott,
‘‘Introductory programming: A systematic literature review,’’ in Proc.
Companion 23rd Annu. ACM Conf. Innov. Technol. Comput. Sci. Edu.
ITiCSE Companion, 2018, pp. 55–106.

[39] J. Sorva, ‘‘Notional machines and introductory programming education,’’
ACM Trans. Comput. Edu., vol. 13, no. 2, pp. 1–31, Jun. 2013.

[40] K. Benda, A. Bruckman, and M. Guzdial, ‘‘When life and learning do not
fit: Challenges of workload and communication in introductory computer
science online,’’ ACM Trans. Comput. Edu., vol. 12, no. 4, p. 15, 2012.

[41] C. Kazimoglu, M. Kiernan, L. Bacon, and L. MacKinnon, ‘‘Understanding
computational thinking before programming: Developing guidelines for
the design of games to learn introductory programming through game-
play,’’ Int. J. Game-Based Learn., vol. 1, no. 3, pp. 30–52, 2011.

[42] S. I. Malik, ‘‘Improvements in introductory programming course: Action
research insights and outcomes,’’ Syst. Pract. Action Res., vol. 31, no. 6,
pp. 637–656, Dec. 2018.

[43] N. C. C. Brown and A. Altadmri, ‘‘Investigating novice programming
mistakes: Educator beliefs vs. Student data,’’ in Proc. 10th Annu. Conf.
Int. Comput. Edu. Res. ICER, 2014, pp. 43–50.

[44] A. Vihavainen, ‘‘Predicting Students’ performance in an introductory
programming course using data from Students’ own programming
process,’’ in Proc. IEEE 13th Int. Conf. Adv. Learn. Technol., Jul. 2013,
pp. 498–499.

[45] S. Dasuki and A. Quaye, ‘‘Undergraduate Students’ failure in program-
ming courses in institutions of higher education in developing countries: A
nigerian perspective,’’ Electron. J. Inf. Syst. Developing Countries, vol. 76,
no. 1, pp. 1–18, Sep. 2016.

[46] T. Crow, A. Luxton-Reilly, and B.Wuensche, ‘‘Intelligent tutoring systems
for programming education: A systematic review,’’ inProc. 20th Australas.
Comput. Edu. Conf. ACE, 2018, pp. 53–62.

[47] J. L. Duffany, ‘‘Application of active learning techniques to the teaching of
introductory programming,’’ IEEE Revista Iberoamericana de Tecnologias
del Aprendizaje, vol. 12, no. 1, pp. 62–69, Feb. 2017.

[48] S. I.Malik, ‘‘Assessing the teaching and learning process of an introductory
programming course with Bloom’s taxonomy and assurance of learning
(AOL),’’ Int. J. Inf. Commun. Technol. Edu., vol. 15, no. 2, pp. 130–145,
Apr. 2019.

[49] M. Sabin et al., Information Technology Curricula 2017: Curriculum
Guidelines for Baccalaureate Degree Programs in Information Technol-
ogy. New York, NY, USA: Association for Computing Machinery, 2017.

[50] J. Polack-Wahl, S. Davies, and K. Anewalt, ‘‘A snapshot of current
languages used in industry,’’ inProc. Frontiers Edu. Conf. Proc., Oct. 2012,
pp. 1–6.

[51] W. Farag, S. Ali, and D. Deb, ‘‘Does language choice influence the
effectiveness of online introductory programming courses?’’ in Proc. 13th
Annu. ACM SIGITE Conf. Inf. Technol. Edu. - SIGITE, 2013, pp. 165–170.

[52] R. Mason, G. Cooper, and M. de Raadt, ‘‘Trends in introductory
programming courses in australian universities: Languages, environments
and pedagogy,’’ in Proc. 14th Australas. Comput. Edu. Conf., Darlinghurst,
Australia, Australian Computer Society, vol. 123, 2012, pp. 33–42.

[53] L. Marshall, ‘‘A topic-level comparison of the ACM/IEEE CS curriculum
volumes,’’ in Proc. Annu. Conf. Southern Afr. Comput. Lecturers’ Assoc.
Springer, 2017, pp. 309–324.

[54] J. Renzella, A. Cummaudo, A. Cain, J. Grundy, and J. Meyers,
‘‘SplashKit: A development framework for motivating and engaging
students in introductory programming,’’ in Proc. IEEE Int. Conf. Teaching,
Assessment, Learn. Eng. (TALE), Dec. 2018, pp. 40–47.

[55] A. K. Veerasamy, D. D’Souza, R. Lindén, andM.-J. Laakso, ‘‘Relationship
between perceived problem-solving skills and academic performance of
novice learners in introductory programming courses,’’ J. Comput. Assist.
Learn., vol. 35, no. 2, pp. 246–255, Apr. 2019.

[56] J. Heliotis and R. Zanibbi, ‘‘Moving away from programming and towards
computer science in the cs first year,’’ J. Comput. Sci. Colleges, vol. 26,
no. 3, pp. 115–125, 2011.

[57] C. Heiner, ‘‘Mining student responses to learn answermodels: A case study
using data from an introductory programming course,’’ J. Comput. Sci.
Colleges, vol. 29, no. 2, pp. 17–25, 2013.

[58] D. Gudmundsen, L. Olivieri, and N. Sarawagi, ‘‘Reducing the learning
curve in an introductory programming course using visual logic,’’ J.
Comput. Sci. Colleges, vol. 27, no. 6, pp. 10–12, 2012.

[59] M. Ateeq, H. Habib, A. Umer, andM.U. Rehman, ‘‘C++ or Python?Which
one to begin with: A Learner’s perspective,’’ in Proc. Int. Conf. Teach.
Learn. Comput. Eng., Apr. 2014, pp. 64–69.

[60] D. Krpan and I. Bilobrk, ‘‘Introductory programming languages in higher
education,’’ in Proc. 34th Int. Conv. MIPRO, May 2011, pp. 1331–1336.

[61] M. Corney, R. Lister, and D. Teague, ‘‘Early relational reasoning and the
novice programmer: Swapping as the hello world of relational reasoning,’’
in Proc. 13th Australas. Comput. Edu. Conf., Darlinghurst, Australia:
Australian Computer Society, vol. 114, 2011, pp. 95–104.

[62] R. Mason and G. Cooper, ‘‘Why the bottom 10% just can’t do it: Mental
effort measures and implication for introductory programming courses,’’ in
Proc. 14th Austral. Comput. Edu. Conf. (ACE), Melbourne, VIC, Australia,
vol. 123, 2012, pp. 187–196.

[63] E. de Jesus, ‘‘Teaching computer programming with structured program-
ming language and flowcharts,’’ in Proc. Workshop Open Source Design
Commun. OSDOC, 2011, pp. 45–48.

[64] V. K. Proulx, ‘‘Introductory computing: The design discipline,’’ in Proc.
Int. Conf. Informat. Schools, Situation, Evol., Perspect. Springer, 2011,
pp. 177–188.

[65] G. Venugopal-Wairagade, ‘‘Study of a pedagogy adopted to generate
interest in students taking a programming course,’’ in Proc. Int. Conf.
Learn. Teach. Comput. Eng. (LaTICE), Mar. 2016, pp. 141–146.

[66] Á. Matthíasdóttir and H. J. Geirsson, ‘‘The novice problem in computer
science,’’ in Proc. 12th Int. Conf. Comput. Syst. Technol. CompSysTech,
2011, pp. 570–576.

[67] E. Murphy, T. Crick, and J. H. Davenport, ‘‘An analysis of introductory
programming courses at UK universities,’’ 2016, arXiv:1609.06622.
[Online]. Available: http://arxiv.org/abs/1609.06622

[68] P. Bachiller-Burgos, I. Barbecho, L. V. Calderita, P. Bustos, and
L. J. Manso, ‘‘LearnBlock: A robot-agnostic educational programming
tool,’’ IEEE Access, vol. 8, pp. 30012–30026, 2020.

[69] M. S. Farooq, S. A. Khan, and A. Abid, ‘‘A framework for the assessment
of a first programming language,’’ J. Basic Appl. Sci. Res., vol. 2, no. 8,
pp. 8144–8149, 2012.

[70] J. G. C. Rangel, M. King, and K. Muldner, ‘‘An incremental mindset
intervention increases effort during programming activities but not
performance,’’ ACM Trans. Comput. Edu., vol. 20, no. 2, pp. 1–18,
May 2020.

[71] B. Isong, ‘‘A methodology for teaching computer programming: First year
students’ perspective,’’ Int. J. Modern Edu. Comput. Sci., vol. 6, no. 9,
p. 15, 2014.

[72] I. Mekterovic, L. Brkic, B. Milasinovic, and M. Baranovic, ‘‘Building
a comprehensive automated programming assessment system,’’ IEEE
Access, vol. 8, pp. 81154–81172, 2020.

ERUM MEHMOOD was born in Pakistan. She
received the M.Phil. degree in computer science
from NCBA&E, Lahore, Pakistan, in 2017. She
is currently pursuing the Ph.D. degree with
the University of Management and Technology,
Lahore.

She is also working as a Lecturer of computer
science with the Government Degree College
Lahore, Pakistan. Her research interests include
programming language education and design, big

data analytics, stream processing, and ETL and real-time data warehousing.
Her M.Phil. dissertation is in the area of stream processing for real-time data
warehousing.

125980 VOLUME 8, 2020



E. Mehmood et al.: Curriculum, Teaching and Learning, and Assessments for Introductory Programming Course

ADNAN ABID (Member, IEEE) was born in
Gujranwala, Pakistan, in 1979. He received the
B.S. degree from the National University of Com-
puter and Emerging Science, Pakistan, in 2001,
the M.S. degree in information technology from
the National University of Science and Technol-
ogy, Pakistan, in 2007, and the Ph.D. degree
in computer science from the Politecnico Di
Milano, Italy, in 2012. He spent one year in
EPFL, Switzerland, to complete his M.S. thesis.

He is currently an Associate Professor with the Department of Computer
Science, University ofManagement and Technology, Pakistan. He has almost
70 publications in different international journals and conferences. He has
served as a reviewer in many international conferences and journals. His
research interests include computer science education, information retrieval,
and data management. He is a member of the IEEE Education Society and
the IEEE Education Society. He is also an Associate Editor of IEEE ACCESS

journal.

MUHAMMAD SHOAIB FAROOQ (Member,
IEEE) was born in Lahore, Pakistan. He received
the M.Sc. degree from Quaid e Azam University,
Pakistan, in 1995, the M.S. degree in computer
science from the Government College University,
in 2007, and the Ph.D. degree from Abdul Wali
Khan University, Pakistan, in 2015. He possesses
more than 23 years of teaching experience in
the field of computer science. He is currently
an Associate Professor with the Department of

Computer Science, University of Management and Technology, Pakistan.
His research interests include theory of programming languages, big data,
the IoT, and computer science education. He is a member of the IEEE
Systems, Man, and Cybernetics Society.

NAEEM A. NAWAZ received the B.Sc. degree
from the University of Punjab, Pakistan, in 1997,
the M.Sc. degree in computer sciences from
Hamdard University, Pakistan, in 2000, the M.S.
degree in computer engineering fromMid Sweden
University, Sweden, in 2008, and the Ph.D. degree
from International Islamic University Malaysia,
in 2018. He received different diploma (DCS) and
certifications. He is currently a Lecturer with the
Department of Computer Science (CFY), Umm

Al-Qura University, Mecca. He has published research articles in renowned
journals and conferences. He is also serving as a reviewer for many journals,
conferences, and books. His teaching and research interests include WSN,
the IoT, crowd management, computer networks, and programing language.

VOLUME 8, 2020 125981


