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ABSTRACT Video streaming is becoming increasingly popular due to the emergence of different video
applications and services and the exponential growth in demand for multimedia applications. Streaming
video over an error-prone network is technically challenging due to unpredictable channel conditions
and demands for different types of quality of service (QoS) from various types of applications. The
traditional Open System Interconnection (OSI) layered approach is designed for data transfer, and it performs
specific operations independent of other layers. This approach may not work efficiently for wireless video
streaming applications in which video quality is greatly affected by the network condition, link quality, and
ability of the system to adapt to the channel conditions. This paper is primarily aimed at developing an
algorithm to enhance video streaming over wireless local area networks using a biocooperative video-aware
QoS-based multiobjective cross-layer optimization (MO-CLD) approach. First, the wireless video streaming
optimization problem is formulated and modeled. To solve the optimization problem, we proposed a
bioinspired optimization algorithm to jointly optimize the source rate and packet rate loss using dual
decomposition. The simulation results show that the proposed biocooperative multiobjective optimization
scheme using particle swarm optimization (PSO) relatively maintains and enhances the video streaming
quality in error-prone transmission environments to ultimately support wireless multimedia applications
and services. More importantly, the end-to-end delay and complexity are reduced significantly, which
eventually lead to improvements in the scheme efficiency and video quality compared to basic cross-layer
optimization (B-CLD).

INDEX TERMS Biocooperative, energy efficient, multiobjective cross-layer optimization, particle swarm
optimization, quality of service, wireless network.

I. INTRODUCTION
The demand for multimedia streaming applications and
service is increasing exponentially and has dramatically
reshaped the telecommunications industry to new dimen-
sions with the development of various video applications.
Future wireless communication systems are expected to pro-
vide a broad range of multimedia services, including voice,
video, and data [1]–[3]. This will have a profound impact
on the way individuals communicate and access information.
Many applications and devices use wireless media to share
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information and to transport data across the network. The
advancements in video coding, electronics and networking
will lead to the development of new wireless multimedia
applications and services [3], which will require more effi-
cient strategies to transport video applications over wireless
networks.

Multimedia applications have been used in surveil-
lance, education, entertainment, security, and monitoring.
It is extremely important to provide adequate quality of
service (QoS) to support these applications, especially in
wireless communication media [4]–[6], due to the video
application delay constraint [22]. Video applications primar-
ily include video-on-demand, distance learning and training,
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interactive gaming, remote shopping, video telephony, video
conferencing, and remote surveillance. The high demand
and need to support different kinds of devices with different
QoS, throughput and heterogeneous terminals with a wide
range of capabilities and user preferences is very crucial. The
ability to access multimedia content requires adaptation of
media content based on user interactivity. There is a need
to bridge the gap between the media content and techniques
used. The possibility of ensuring QoS in wireless multimedia
networks depends greatly on the robustness and resilience of
the scheme used [10]. Thus, there is need for highly efficient,
robust and adaptable strategies to ultimately support video
applications and services. Transporting video over wireless
networks is challenging and difficult due to the wireless
network dynamics and heterogeneity [3], [7], [8], [52], [55].

To ultimately support and transport video data over a
wireless network, a more in-depth knowledge, comparative
evaluation and development of new strategies are necessary
to critically assess the possible trade-offs in multimedia qual-
ity, implementation complexity, and power consumption [9].
Hence, more efficient strategies are needed to mitigate the
impact of time-varying channels on the transmitted video
data. Interestingly, cross-layer design (CLD) has been pro-
posed as a possible solution to adapt to channel conditions
and to provide the required QoS needed [11], [25], [46]–[51]
for wireless multimedia communications. The need for a sim-
ple but highly sophisticated system to efficiently manage the
available resources within the network andwireless devices is
a very crucial and extremely important issue to be addressed.

Multiobjective optimization has been applied to many dif-
ferent fields to solve complex problems [12]. To the best of
the authors’ knowledge, little research has been done on the
application of multiobjective particle swarm optimization to
wireless video streaming. This paper explores the potential
application of the aforementioned optimization scheme in
wireless multimedia communication since there is a need
to enhance system performance and manage resources effi-
ciently. Interestingly, bioinspired algorithms have the capa-
bility to significantly improve the performance of wireless
communication networks due to their dynamic features, such
as adaptability, stability, and simplicity – which eventually
reduce the computational complexity. The proposed multiob-
jective cross-layer optimization scheme is based on particle
swarm optimization (PSO). PSO [13], [14], [23] dramatically
reduces the computational time when compared to other opti-
mization techniques and can be extremely useful for delay
constraint applications such as video streaming. PSO is a
well-known bioinspired optimization technique that is based
on a simple model of bird flocking.

Much of the research effort on multiobjective optimization
focuses on different techniques to achieve optimal perfor-
mance. More importantly, many PSO schemes have been
used in solving different multiobjective problems [31]–[33].
In [34], the authors proposed a PSO-based approach that
induces stability to allow identification of optimal solutions
and also to ensure effective distribution of decision and

objective spaces. Xue et al. [15] proposed an approach for
feature selection using PSO to ultimately enhance perfor-
mance. Reference [16] used decomposition to simplify the
multiobjective optimization problem by scaling the multiple
problems into sub-problems and taking into consideration
the information from neighboring sub-problems. In [17],
variable length PSO has been proposed for feature selection
by enabling particles to have different lengths to improve
the PSO and classification performance. The scheme can
skip local optima and move toward more effective solu-
tions. Furthermore, [18] proposed an adaptive local searching
approach, which will ensure fast convergence when dealing
with multimodal function problems, which are complex in
nature and difficult to be solved in optimization.

Khan et al. [35] proposed a joint optimization scheme,
which considers the application, data link, and physical layer
to maximize user satisfaction in hiperLAN. Additionally,
Huh et al. [36] demonstrated that CLD can be applicable
to real-time streaming for pre-encoded video with different
clients in wireless networks using code division multiple
access (CDMA). In [39], rate-distortion optimization was
utilized to solve the problem of video streaming over pack-
etized media. In addition, [45] proposed a cross-layer design
approach that allows optimization of perceptual quality for
delay constraint video transmission and ultimately ensures
channel adaptation, which provides a tradeoff between play-
back and quality. Choi et al. [37] presented a technique
for abstracting parameters from application, data link, and
physical layers to deliver video over multiuser environments.
In [38], similar approaches have been reported. The scheme
proposed in [44] maximizes the perceptual video quality of
the video stream through QoS mapping. More importantly,
fair distribution amongst the end users is also accomplished.
In [40], a joint cross-layer optimization scheme is proposed
to enhance video quality and to reduce the complexity by
off-line training. Reference [41] proposed a multiobjective
optimization approach that uses dynamic programming and
Lagrangian relation to select the best video quality and con-
tent coverage to meet up with the delay constraint. In addi-
tion, [54] has proposed a structural similarity (SSIM)-based
approach that considers the dynamics of the transmission
environment and perceived video quality to support effective
video streaming over wireless. Furthermore, [48] proposed
a cross-layer approach for subcarrier assignment to maxi-
mize the information rate and video quality for MU-MIMO
OFDMA to support video communications.

The proposed scheme is primarily aimed at improving
video quality in wireless environments by keeping track of
the channel condition and to strategically adapt to achieve
an optimal streaming rate. Our approach to wireless video
streaming problems is entirely different from other schemes;
we formulated the video streaming rate maximization and
used multiobjective particle swarm to solve the optimiza-
tion problem. Second, the source rate is adjusted based on
the packet error rate and packet delay. The performance
of the proposed multiobjective cross-layer particle swarm
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optimization algorithm is evaluated and investigated using
high, medium and low motion video samples to evaluate its
efficiency.

The remainder of this paper is organized as follows:
Section 2 mainly focuses on the concept of PSO and related
work. Section 3 describes the multiobjective optimization
problem and its mathematical foundation. The performance
of the proposed multiobjective cross-layer particle swarm
optimization algorithm is analyzed, simulated and inves-
tigated in Section 4. Finally, conclusions are provided in
Section 5.

II. PARTICLE SWARM OPTIMIZATION
PSO is alarmingly becoming an important optimization tool,
with applications ranging from neural network training [42]
to control and engineering [43] due to aforementioned fea-
tures. Bioinspired algorithms have developed mainly based
on the successful evolutionary behavior of natural systems,
which naturally mimic nature and adapt dynamically with
the environment. These algorithms can be used in solving
complex problems with high precision and sophistication
due to their unique characteristics. The ability to mimic the
behavior of ant colonies, bird flocking, fish schooling, hon-
eybees, bacteria and animal herding is an extremely useful
tool in tackling optimization problems with high precision
and sophistication. In fact, PSO is very fast in terms of con-
vergence and simple to implement when compared to other
algorithms [27]. It is very obvious that to enhance the per-
formance of wireless multimedia applications, many param-
eters and factors should be considered. Hence, multiobjective
optimization PSO can eventually solve a variety of multiob-
jective problems to achieve optimal performance [28]. More
importantly, multiobjective PSO can effectively search and
determine the set of optimal solutions simultaneously. The
wireless channel characteristic can be represented by highly
non-linear objectives and constraints to genuinely consider its
impact on the transmitted data or information.

Particle swarm optimization uses stochastic search to solve
the optimization problem, which has been a very efficient
and powerful tool for searching the optimal solution to a
given particular problem. In general, most problems used
to have one objective function, but due to conflict between
the objective functions, there is need for multiobjective opti-
mization to determine the best possible solution. Therefore,
PSO can solve a multiobjective optimization problem since it
can search the multidimensional space. The set of solutions
produced are all potential solutions to the multiobjective
optimization problem. Problems dealing with multiple objec-
tive function can be solved using multiobjective PSO with
relative ease and high searching capability for optimum solu-
tions [19], [53]. More importantly, it is computationally inex-
pensive due to its low complexity and memory requirement,
which is good for delay constraint applications. Multiobjec-
tive PSO can be used in wireless networks to dynamically
adapt with the environment to support multimedia applica-
tions and services.

Furthermore, it is very important to note that each particle
represents a potential solution and its changes according to
previous experience. For instance, if it has been assumed that
the search space is n-dimensional with i number of particles,
this can be represented as n-dimensional vector X = (x1,
x2,. . . xn)T. The change in velocity of the particles can be
expressed in terms of vectorV= (v1, v2,. . . vn)T. In addition,
the best position of the particles can be represented as P =
(p1, p2,. . . pn)T. The velocity and position of a particle at
time t can be represented by v(t) and x(t). More importantly,
the velocity and position of the particle at time t+1 can be
determined using the expressions in equations (1) and (2),
respectively.

v(t+ 1) = ωv(t)+ c1(pl − x(t))+ c2(pg − x(t)) (1)

x(t+ 1) = x(t)+ v(t+ 1) (2)

where c1 and c2 are the acceleration coefficients, vector Pl is
the best previous position of particle, i known as the personal
best position within the local search space, and vector Pg is
the best position among the personal best positions of the
particles in the population and is known as the global best
position [29]. Generally, the value of v(t+1) is restricted
between −vmin and vmax to confine the search space. The
inertia weight ω is primarily introduced to accelerate the
convergence speed of the algorithm [30].

The velocity equation can be simplified further as v(t+1)
= v(t)+ϕ(p-x(t)). In addition, we can represent equation (1)
as v(t+1)= v(t)+ϕk(t), where k(t)= p-x(t). The velocity and
position equations at time t+1 can be represented in conical
form as shown in equation (3)[

v(t+ 1)
k(t+ 1)

]
=

[
1 ϕ

−1 1− ϕ

] [
v(t)
k(t)

]
(3)

Essentially, equation (3) relates the velocity and update of
the particles at time t+1. The learning factors are represented
by ϕ to simplify equations (1) and (2).

III. VIDEO-AWARE QOS PROBLEM FORMULATION
A. VIDEO-AWARE QOS MODEL
The optimization problem is primarily aimed at improving
video quality and reducing delay. Hence, the parameters
considered primarily include delay and packet error rate.
Determining the optimal solution for these parameters can
reasonably maintain video quality and reduce packet loss
and computational complexity. Therefore, we represent the
problem using decomposition theorem, which is purely based
on divide and conquer. Figure 1 shows the typical strategy
used to solve the multiobjective problem for wireless video
streaming.

In general, decomposing the video streaming problem into
sub-programs helps tremendously in the design by dividing
the problem into layers or elements. In this case, vertical
decomposition is considered to control multiple functions or
layers. It is a known fact that vertical decomposition is used
for joint control applications [20], [21]. Minimizing delay
and packet error rate improves the network performance
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FIGURE 1. Typical wireless video streaming multi-objective problem.

FIGURE 2. Multiobjective problem decomposition.

and video quality. The scheme is aimed at ensuring optimal
throughput so that video quality is maintained in time-varying
channel condition.

The multiobjective PSO problem can be decomposed into
a sub-objective function to reduce complexity and to sim-
plify the problem. To achieve this goal, two main parame-
ters were selected to optimally support video streaming over
wireless networks. These parameters include packet error
rate and delay. The above problem can be further split into
sub-functions as shown in Figure 2, and each sub-objective
function represents the parameters needed to achieve optimal
video streaming quality.

B. VIDEO-AWARE QOS OPTIMIZATION PROBLEM
The problem can be represented as G=(N,L), where N
denotes the set of nodes, and L is the set of communi-
cation links connecting the nodes together. The modulus
of N N and L L can be used to represent the number of nodes
and links interconnecting the nodes. It has been assumed that
S is the sets of video sources through which nodes stream the
video content and L(s) is the link used by the source s. Addi-
tionally, the video sources that send the streaming content via
the link l can be represented as {sεS | lε L}. For any source
to stream the video content, the packets are first queued in the
buffer before they are served. The delay anticipated after the
source places a request for the video content is termed as τ ,
where τ = {τ1,. . .τn}. The total delay Dm can be computed
by summing the queue waiting and transmission times. The
packet error changes as the channel condition varies and can
be represented as a set, where P = {p1,. . . pn}. The packet

error rate P should be less than the maximum packet error
rate (PERm), and hence, the link quality between the source
and node can be determined. Based on the aforementioned
scenario, the problem can be formulated and presented math-
ematically as follows:

ϑ = arg minψ(P, τ )

Subject to : (4)

τ ≤ Dm
P ≤ PERm
xl ≥ 0 (5)

Equation (4) is the utility function, which comprises two
functions, namely, packet error rate pi and delay τi. The con-
straints are represented by equation (5), which ensures that all
the parameters are computed within the packet deadline and
the maximum packet error rate is not exceeded. Additionally,
the available link rate should be greater than zero (i.e., xl ≥0).

For multiobjective optimization problems, twomain objec-
tives need to be achieved at the shortest possible packet
deadline. Computing the minimum average delay and packet
error rate based on the media content (video) and network
condition will provide the necessary QoS to achieve optimal
performance within the network. Multicriteria decisions are
implemented at the base station due to fact that the video
packets to be transmitted can be effectively controlled from
the source. More importantly, it has more processing power
for fast computation when compared to mobile devices.

Objective
• Minimize the delay tomeet with the application deadline
• Minimize the total number of packets lost
• Maximize the streaming rate by reducing the delay and
packet error rate

Constraint
• Packet deadline constraint has been considered
• Packet error rate constraint
Suppose that the above objectives and constraint functions

can be differentiated continuously, and the optimal condition
for the multiobjective optimization can be represented in a
first or second partial differential equation. For simplicity,
we consider the first-order optimality condition. Therefore,
the necessary condition for pareto optimal can be described
as in [24]. It is very important to note that the necessary
condition for x∗ to be pareto optimal is that there are vectors
ϑi ≥0 and ui ≥0 such that the following conditions are true:

l∑
i=1

ϑi∇f i
(
x∗
)
−

K∑
k=1

ϑk∇f k
(
x∗
)
= 0 (6)

ukgk (x∗) = 0 for all k = 1, 2, . . .K (7)

For an unconstraint multiobjective optimization, the con-
straint portion of equation (6) can be neglected, which subse-
quently yields equation (8):

l∑
i=1

ϑi∇f i(x
∗) = 0 (8)
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The vector can be represented in matrix form if it has N
objective and n variables.

∂k f1
∂xk1

. . .
∂k fN
∂xk1

...
. . .

...

∂k f1
∂xkn

. . .
∂k fN
∂xkN




ϑi
.

.

.

ϑN

 =

0
.

.

.

0

 (9)

In a situation where by n is equal to N , the pareto optimal
solution should satisfy the following determinant condition:∣∣∣∣∣∣∣∣∣∣∣∣

∂k f1
∂xk1

. . .
∂k fN
∂xk1

...
. . .

...

∂k f1
∂xkn

. . .
∂k fN
∂xkN

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (10)

In addition, the determinant should always be zero to deter-
mine the pareto optimal solution.

C. OPTIMALITY CRITERIA
To determine the pareto optimal for the multiobjective opti-
mization with constraint, the minima of the objective func-
tion f (x) can be determined depending on what is to be
achieved. It is essential to analytically define the scheme to
test the optimality of a given solution. Hence, the scheme
can be defined analytically using the procedure described by
the mathematical expression in equation (11). The optimal
stream rate problem can be represented mathematically as
follows:

Minimize f (x) =
∑
l=L

ψ(P, τ )

Subject to: ∑
l=L

τl ≤ DM ∀l ∈ L∑
l=L

Pl ≤ PERM ∀l ∈ L

xl ≥ 0 ∀l ∈ L (11)

Basically, the problem can be represented by equation (12)
as follows:

L (I , x, λ) =
∑
l∈L

ψ (P, τ )+
∑
l∈L

xl

(∑
l∈L

τl − DM

)

+

∑
l∈L

λl

(∑
l∈L

Pl − PERM

)
=

∑
l∈L

ψ (P, τ )+
∑
l∈L

xl
∑
l∈L

τl −
∑
l∈L

xlDM

+

∑
l∈L

λl
∑
l∈L

Pl −
∑
l∈L

λlPERM

=

∑
l∈L

(
ψ (P, τ )+ τl

∑
l∈L

xl + Pl
∑
l∈L

λl

)
−

∑
l∈L

xlDM −
∑
l∈L

λlPERM (12)

If ql = τl
∑
l∈L

xl + Pl
∑
l∈L
λl , the equation above can be re-

written as

=

∑
l∈L

(ψ(P, τ )+ ql)−
∑
l∈L

xlDM −
∑
l∈L

λlPERM (13)

where q = [q1, q2,. . . . . . ql], and hence, the Lagrange of the
dual function to the optimization problem can be represented
mathematically as follows:

G (I , x, λ)

= min(L (I , x, λ))

= min

(∑
l∈L

(ψ(P, τ )+ ql)−
∑
l∈L

xlDM −
∑
l∈L

λlPERM

)
(14)

By setting equation (14) to zero and re-arranging the terms
in the equation, it eventually yields:∑

l∈L

(ψ(P, τ )+ ql) =
∑
l∈L

xlDM +
∑
l∈L

λlPERM (15)

The update of the dual variables is achieved using
equations (16) and (17), as shown below:

x(n+1)l = min

(
x(n)l − θ

(n)

(
DM −

∑
l∈L

λl

))
, ∀l ∈ L

(16)

λ
(n+1)
l = min

(
λ
(n)
l − θ

(n)

(
PERM −

∑
l∈L

Pl

))
, ∀l ∈ L

(17)

where θ (n)θ (n) is the step size at nn iteration, and it should be
greater than zero. The values of x and λ can be computed at
any particular time (t+1) using the mathematical expressions
in equations (16) and (17), respectively.

Hence, the optimal streaming rate can be expressed as
follows:

Ropt = ζTf (1− min (ψ))

= ζTf

(
1−min

(
α ·

1
N

∑N

i=1
(p1 − pi−1)

+β ·
1
N

∑N

i=1
(τ1 − τi−1)

))
(18)

where the optimal streaming rate depends on the packet error
rate and the delay anticipated within the network. The product
of theminimum optimal computed packet error rate and delay
is represented by ψ , as shown in equation (18), and ζTf
represents the packet arrival rate. The optimal streaming rate
Ropt can be achieved when ψ is negligible, and it is repre-
sented by the terms shown in equation (18) above. Ropt has to
satisfy the necessary constraints attached to the optimization
problem. The mathematical formulation clearly shows that
the optimal streaming rate can be obtained by minimizing
the delay and packet error rate in the network, at the same
time conforming to the packet deadline requirement of the
streaming application.
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D. BIOCOOPERATIVE VIDEO-AWARE QOS CROSS-LAYER
OPTIMIZATION ALGORITHM
The algorithm below elaborates more on the bioinspired
video-aware QoS multiobjective cross-layer optimization
algorithm using PSO. More importantly, it clearly shows
how the local and global bests of the objective functions
are computed. The conceptual difference between the local
and global best algorithms is the size of the neighborhood.
In multiobjective PSO, the functions are related through the
personal global best for each function. In a nutshell, the global
best Pg computed in the first objective function is substituted
into the vd and vice visa. The goal is mainly to establish a
relationship between the two objective functions. Logically,
the packet error rate and delay are very much related such that
a greater delay will result in higher packet error rate. Hence,
these parameters can be used in developing themultiobjective
optimization problem for a multimedia streaming applica-
tion over a wireless network. By identifying the relationship
between delay and packet error rate, it can be used in formu-
lating the mathematical expression to determine the optimal
streaming rate as it has been described in equation (18). The
fitness for both the delay and packet error rate objective
functions is represented as ψ = α · 1

N

∑N
i=1 (p1 − pi−1) +

β · 1N
∑N

i=1 (τ1 − τi−1).
The objective function described above consists of the

packet error and delay components. Hence, it can be repre-
sented by ψ . α and β represent the weight attached to the
packet error and delay components in the objective function.
The sum of α and β both should be unity. To ensure fairness,
both α and β have been set to 0.5. Therefore, the packet error
rate and delay have the same weight, which implies that each
of the parameters has been fairly given equal priority in regard
to decision making for the optimal solution to the problem.

In a nutshell, the algorithm for the multiobjective cross-
layer optimization using particle swarm can be represented
as follows:

E. COMPLEXITY ANALYSIS
In this section, the complexity of the algorithm has been
evaluated both numerically and experimentally. There has not
been any technique tomap the complexity of an algorithm and
the power consumed as a result of using the algorithm. The
computational complexity can be used as a metric to predict
the power consumption. The actual time used by the central
processing unit (CPU) to execute the algorithm can be used
to measure its complexity. Hence, we adapt this technique
to measure the complexity of the developed algorithm. The
computational complexity is a measure used to determine the
efficiency or capability of an optimization technique to find
an optimal solution or terminate. Computational complexity
is the measurement of the time needed to solve the multiob-
jective problem. It is very important, especially while dealing
with applications that are sensitive to delay. This has been
used to characterize the nature of the problem and determine

Algorithm 1 Biocooperative Video-Aware QoS Cross-Layer
Optimization Algorithm
Objective: To maximize the video streaming rate based on
the packet error rate and delay
01. Initialize the size of the particle swarm n, and other

parameters
02. Initialize swarm with random positions and velocities

of n particles
03. While (ending criteria has not been reached) do
04. For i =1 to n
05. Compute the packet error rate Pi and delay τi at time t
06. Check if

∑
l∈L τl ≤ DM and

∑
l∈L Pl ≤ PERM

07. Determine the new position & velocity
08. Select local and global bests
09. Compute the fitness ψ = α. 1N

∑N
i=1 (p1 − pi−1) +

β. 1N
∑N

i=1 (τ1 − τi−1)
10. If the current fitness of the particle is less than the
previous, replace the previous with the new fitness
11. Update particle velocities and positions as follows:

v(t+ 1) = ωv(t)+ c1(Pl − x(t))+ c2(Pg− x(t))

x(t+ 1) = x(t)+ v(t+ 1)

12. end
13. end
14. end
15. Increase the loop counter, i+1
16. end // once stopping condition has been reached;
17. Output ϑ = arg minψ(P,τ )

whether it can be solved within the time frame. In addition,
this has provided the evidence for using PSO to solve the
multiobjective cross-layer optimization problem. It is obvious
that complex problems are difficult to solve, and finding such
a solution is costly in terms of time and space.

The computational time is juxtaposed with the packet
deadline of the application to determine if the optimization
algorithm can be able to converge within the speculated
period of time. Based on the numerical analysis, it has been
established that many parameters can culminate to increase
the computational complexity of the scheme apart from the
fitness function that describes the algorithm. The compu-
tational complexity of a PSO-based bioinspired algorithm
dependsmainly on the number of the objective functions, par-
ticles and constraints. The algorithm complexity can be char-
acterized and represented graphically as a linear, quadratic
or higher-order system. Hence, the complexity of the opti-
mization can be represented diagrammatically as shown in
Figure 3. As seen, the computational time increases as the
number of functions and constraint increase.

To analytically evaluate the complexity of the developed
scheme based on the computational time, we first assumed
that the objective functions f and constraints have been
known. The multiobjective optimization problem can be
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FIGURE 3. Timing diagram for computational complexity.

represented as f = (f1 . . . fk ), and it is assumed to be repre-
sented by a vector f : S →Rk . The quality of the output of the
search result with order Rk can be expressed as f (s) ≤ f (s′)
iff fi(s) ≤ fi(s′) for all iε {1,. . .,k}. The value of f (s) is minimal
with respect to the partial order and f (s′), and the pareto
optimal search point can have different objective vectors.

In general, equation (21) can be used to determine the
computational complexity numerically, but it is not as accu-
rate as using time lapse to execute the tested algorithm.
This is mainly because the complexity of one function is
different from another. Hence, the general formula to deter-
mine the complexity can be formulated and mathematically
represented as follows. Based on the experiment, it has
been assumed that the complexity ci = {mi, n2i } ε Ci for
i = 1, . . .K , as the complexity vector for the set of com-
plexity strategy vectors to perform a particular task. where
Ci = Ni × Mi and Mi = {m1,. . .mk} and Ni ={n21. . . n

2
k}.

It is obvious that the algorithm will determine the optimal
value in time proportional to the k number of objective func-
tions. As the number of constraints increases, the computa-
tional complexity will also increase. This has been described
in Figure 3, which clearly shows that the computational time
increases with an increase in the number of objective func-
tions. In this case, two objective functions are considered
for the optimal video streaming problem. Figures 4, 5 and 6
show the complexity analysis while using 2 to 4 objective
functions to solve the multiobjective problem based on the
developed algorithm. The graphs show that the proposed
algorithm seems to be exponential, which can be represented
asO(MN2). The complexity depends on the numbers of parti-
cles and objective functions. As shown in Figures 4, 5 and 6,
the computational time increases exponentially as the num-
bers of particles and objective functions increase. The com-
plexityC is given by the product ofM andN 2. The maximum
computational complexity of the optimization problem can be
obtained by differentiatingMN2 with respect to N, and it can
be expressed mathematically as follows:

∂C
∂N
=

∂

∂N

(
MN 2

)
= 2MN (19)

The maximum achievable computational time with
respect to the number of particles and the number of

FIGURE 4. Computational complexity for two objective functions.

FIGURE 5. Computational complexity for three objective functions.

FIGURE 6. Computational complexity for four objective functions.

objectives can be obtained and represented as shown in
equations (19) and (20), respectively.

∂C
∂M
=

∂

∂M

(
MN 2

)
= N 2 (20)
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In both equations (19) and (20), it is clearly indicated that
the number of particles contributed greatly toward increasing
the computational complexity of the optimization problem.
Therefore, the number of particles has been strategically
selected through numerical analysis.

Additionally, the complexity of the optimization
algorithm [24] can be computed using equation (21). As can
be noted, the complexity depends greatly on the number of
objective functions and the number of particles. Therefore,
the complexity increases increasingM and N :

O(MN 2) (21)

where M is the number of objective functions and N repre-
sents the number of particles. In this work, the number of
particles is determined experimentally and has been assigned
to 30 to suit the application requirement.

IV. SIMULATION RESULTS AND ANALYSIS
The proposed MO-CLD scheme has been developed and
studied using an NS-2 simulation environment. The per-
formance of MO-CLD is analyzed and compared with the
B-CLD scheme under different video traffic and settings. The
performance metrics, such as video quality, end-to-end delay
and buffer queue size, were used in evaluating the developed
biocooperative video-aware QoS multiobjective cross-layer
optimization algorithm. More interestingly, different scenar-
ios have been used to measure the performance of the devel-
oped scheme to thoroughly determine its efficiency when
subjected to different conditions.

A. SIMULATION SETUP
In the simulation of the proposed cross-layer approach,
the IEEE 802.11b MAC and physical layer protocols have
been adapted in the wireless LAN model [26]. The video
samples (Hall, News and Coast Guard) used for the sim-
ulation are encoded using H.264. The video model used
for the experiment primarily consists of an I-frame and
a 14 P-frame. All three (3) QCIF (176× 144) video samples
are encoded with the same group structure for the video
streaming application. Therefore, the pattern of the encoded
frames is IPPPP...PPPIPPP, and in between each I-frames,
there are 14 P-frames. The distance between two I-frames is
termed as the group of pictures (GOP). The first frame in
the group of frames is represented as i. The group can be
represented by G = {i, i+1, . . . , (i+n−1)}, where n is the
total number of frames in the group.

The optimization parameters have been set based on the
particle swarm parameter configuration. The population size
and total number of iterations were set to 30. The cognitive c1
and social c2 constants have been set to 1. The multiobjective
optimizer has been tested using different objective functions
to determine its efficiency and capability as the number
of objective functions increases. In addition, the impact of
increasing the number of iterations on the fitness value has
been investigated to identify the number of iterations required
to achieve optima and also conform to the delay constraint for

TABLE 1. PSO parameter settings.

TABLE 2. Simulation parameters.

TABLE 3. System specifications.

multimedia applications. Based on the experimentation, it has
clearly shown that the number of iterations to conveniently
meet the delay requirement is 30 iterations, and the PER has
been set to 0.01 [5].

The parameters and settings shown in Tables 1, 2 & 3 were
used in developing and simulating the MO-CLD scheme.

B. VIDEO QUALITY
Maintaining video quality is a crucial issue in wireless LAN,
as the optimization scheme ensures that maximum video
quality is achieved at the destination. The fact is that the
optimization process will require time to determine the opti-
mal solution, but it still depends on the efficiency of the
optimization scheme. The developed scheme is compared
with the B-CLD. In the B-CLD, the decision algorithms to
stream video traffic on the wireless medium are based on
threshold values. B-CLD uses queue and delay statistics and
subsequently adjusts the transmission rate to meet up with
the constraints of the video content. Although the scheme is
adaptive, the computational time is greater when compared to
MO-CLD.

Video quality is measured by comparing the original and
reconstructed video signals based on the peak signal to noise
ratio (PSNR), which presents the objective video quality of
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TABLE 4. Video quality comparison.

each video frame by a single number. The mean square error
(MSE) for each frame is converted to PSNR by mapping the
8-bit original signal. The actual difference or loss in video
quality can be determined using equation (22):

PSNR = 10log10

(
2552

MSE

)
(22)

where the MSE can be computed using the formula in
equation (23):

MSE =
1

W ∗ Z

W−1∑
i=0

Z−1∑
j=0

(Ys (i, j)− YD (i, j))2 (23)

YS (i,j) represents the original source frame, and YD(i,j) is the
reconstructed frame at the destination, which contains W∗Z
pixels. The video frame is composed ofW∗Z pixels (for QCIF
format, W = 176 and Z = 144). The larger the difference
between the YS (i,j) and YD(i,j), the lower the PNSR value and
vice visa.

More interestingly, it can be seen that the improvement
varies from one type of video sequence to another, but they
are all subjected to the same network condition and delay. The
video quality has been improved by 0.77, 0.22 and 0.17 dB
for low, medium and high motion sequences, respectively,
as shown in Table 4. This is attributed to the fact that many
features of CLD have been used in developingMO-CLD, and
the optimization scheme is the major conceptual difference
between the two schemes used to enhance the QoS over
the wireless network. The packet error rate and delay have
been reduced by adapting to the condition of the channel
and strategically adjusting the streaming rate. It is very clear
that the improvement in video quality decreases as the video
sequence motion and scene complexity increase.

The comparison in Table 4 is represented graphically in
Figures 7, 8 and 9. The comparison clearly shows the vari-
ation in video quality for the three (3) video sequences used
for the experimentation. The developedMO-CLD scheme has
been tested using different video test sequences to verify the
performance of the strategy in terms of PSNR. Table 4 shows
the comparison between MO-CLD and B-CLD for Coast
Guard, News and Hall sequences. In a nutshell, the improve-
ment in video quality increases with a decrease in complexity.
The proposed MO-CLD scheme shows better results than
B-CLD, but the video improvement depends mainly on the
type of video motion and scene complexity. In addition,
it can be concluded that motion and scene complexity play
an integral role in maintaining the video streaming quality.

As seen from Figures 7, 8 and 9, it is very obvious that
the MO-CLD has been able to consistently maintain the

FIGURE 7. Video quality comparison between B-CLD and MO-CLD, Low
motion sequence: HALL (176 × 144 @ 30fps).

FIGURE 8. Video quality comparison between B-CLD and MO-CLD,
Medium motion sequence: NEWS (176 × 144 @ 30fps).

video quality above 29 dB despite the variation in channel
condition. The proposed scheme uses PER and delay statistic
in real time and subsequently adjusts the transmission rate to
meet up with the constraint of the video content and frame
type at any particular time. The Hall sample has exhibited
better video quality when compared to the News and Coast
Guard decoded video samples. This is mainly due to its low
video complexity. More interestingly, the Hall video quality
has been maintained close to 34 dB from the 50th to the 300th
frame, as can be seen in Figure 7. For the News video sam-
ple, the video quality is maintained at approximately 33 dB
from the 50th frame up to last frame in the video sample,
as shown in Figure 8. Additionally, it can be clearly noted
that the Coastguard sequence experiences low video quality
while streaming over the same wireless medium as the Hall
and News sequences. This is attributed to its high complex-
ity nature. In a nutshell, the improvement in video quality
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FIGURE 9. Video quality comparison between B-CLD and MO-CLD, High
motion sequence: COASTGUARD (176 × 144 @ 30fps).

increases with a decrease in complexity. Although the video
quality in the Coastguard sequence is affected by the channel
condition, better video quality is achieved while using the
MO-CLD scheme when compared to the B-CLD scheme.

Figure 10 shows the qualitative comparisons of the video
quality on a frame-by-frame basis, and it can be observed that
the video quality of the frames using the MO-CLD scheme
outperform the B-CLD scheme when the video samples used
for the experimentation were decoded and evaluated at the
destination. The sample decoded videos using the MO-CLD
scheme are presented on the left-hand side of Figure 10, while
the sample videos using the B-CLD scheme are on right-hand
side. Interestingly, the video samples used for the test show
that MO-CLD can adapt to the rapid dynamics of the channel,
and it provided the necessary QoS support for the streamed
videos. The simulation work shows that the complex nature
of the video samples can lead to delay – this can affect the
performance of MO-CLD and B-CLD due to increases in
computational complexity.

Since the primary object of the developed scheme is to
maximize streaming rate while taking into consideration both
the packet loss and delay to improve video quality, it is clear
that both quality assessment tools and visual inspection have
shown that MO-CLD has been able to accomplish better
video quality when compared B-CLD. The next objective is
to compare the proposed MO-CLD scheme and B-CLD in
terms of effective buffer management.

C. BUFFER QUEUING SIZE
To effectively test the capacity of the proposed scheme, the
network is subjected to the traffic generated by the video
samples, and the queue size is monitored. The queue size was
appropriately managed, which eventually culminated as low
traffic and congestion within the network, and consequently
increased the performance significantly. The queue size was
relatively low when compared to B-CLD. In the News and

FIGURE 10. Decoded sample frames for the reconstructed videos (Hall,
News, Coast Guard) for MO-CLD on the left and B-CLD on the right.

Hall video sequences in Figure 11, the queue size was evenly
distributed over the period of time. In addition, the processing
and queue management capability of MO-CLD outperform
those of B-CLD since the queue size is efficiently managed
to meet the QoS requirements and network conditions. This
is attributed to the capacity of the optimization scheme to
adapt to rapid variation in network parameters and act swiftly.
Interestingly, MO-CLD is designed to support Ad-hoc net-
working with optimal streaming throughput to achieve high
video quality. The traffic was managed appropriately, which
reduced congestion and unnecessary packet dropping.

The Coastguard sequence is unique when compared to
the other sequences in terms of pattern of the queue size,
where for consecutive times, packets were delayed for a short
period. Obviously, this effect was mainly the result of channel
condition, and more packets were transmitted initially, and it
posed when the channel condition deteriorated.
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FIGURE 11. Queue size comparison between B-CLD and MO-CLD for Hall,
News and Coast Guard video sequences.

Adaptability is one of the key features of PSO. More pack-
ets are transmitted when certain conditions are satisfied by
the network. For instance, the proposedMO-CLDwas able to
adapt to the transmission rate while streaming the Coastguard
sample video. From Figure 10, it can be seen that there were
more packets in the queue between times t=2s and t=2.5s.

Interestingly, packets were transmitted within the aforemen-
tioned period mainly due to good channel conditions, and
the QoS requirements needed to support the high traffic were
fulfilled.

In addition, it is clear that no packets were in the queue
between t=2.5s to t=4s – this condition will lead to packet
loss due to poor channel status. Furthermore, this behavior
could be observed between t=6s and t=7.3s, which indicated
that there was more traffic on the queue, a clear indication
of a good network condition and that packets are transmitted
over the network. This shows the capability of the proposed
MO-CLD to effectively manage the traffic based on the net-
work condition. The developed MO-CLD scheme deploys
this strategy when dealing with high traffic and complex
video samples, which requires more efficient and effective
queue management strategies. To clearly see the impact of
the queue size on delay, the end-to-end delay is evaluated in
the next section.

D. END-TO-END DELAY
End-to-end delay is used to measure the performance of the
scheme to compare their performance in terms of latency.
Although MO-CLD has to select the optimal parameters,
its performance is better when compared to B-CLD. The
delay was significantly reduced in all the sequences tested.
This clearly demonstrates the efficiency of the scheme in
terms of both high convergence capability and simplicity. The
average delay was computed by deducting the time a packet
is transmitted from the time the packet is received. In both
cases, the delaywas still within the time deadline for the video
streaming application, but still more has to be done reduce the
processing time to a minimum. It is very important to note
that only propagation delay was considered in this analysis
since the main focus of the research is on how to mitigate the
impact of transmission errors on video streaming quality. In a
nutshell, this feature for MO-CLDwill be extremely useful in
wireless multimedia network.

As can be seen from Figure 12, the end-to-end delays
for the News and Hall video samples were relatively low
while streaming using theMO-CLD scheme. The delay while
streaming the Hall video sample was low at time t=2s to
t=4s, which leads to better video streaming quality. There
was an increment in delay from t=4s up to t=5.25s due
to traffic burst. In addition, the end-to-end delay decreased
greatly from t=5.24s upward. As a result of the deployment
of the MO-CLD scheme, the average end-to-end delay for
the Hall sample video was significantly reduced by 50.66%.
Similarly, the average end-to-end delay for the News video
sample was minimized by 22.83% while streaming using the
MO-CLD scheme.

Figure 12 shows similar behavior exhibited by the Coast-
guard video sample as in Figure 11, which also reflected in its
end-to-end delay performance evaluation. As mentioned ear-
lier, high-traffic videos can be effectively handled by select-
ing the best streaming strategy based on the delay and packet
error at every particular time t. Based on the constraints,
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FIGURE 12. Delay vs Sending time comparison between B-CLD and
MO-CLD for Hall, News and Coast Guard video sequences.

the optimal solution is determined, and the streaming rate is
eventually adjusted. For instance, τ (t) is thoroughly checked
and compared with τ (t−1) and Dm. The MO-CLD scheme
always determines the best time period to transmit, and once
that time period is established, it transmits the packets con-
tinuously until the channel condition worsens and becomes
unreliable. The reason why there were no delay data within

TABLE 5. End-to-end delay comparison.

the time period t=2.5s to t=3.9s and t=4.1s to t=5.9s is
due to the unreliable wireless connectivity. Hence, no packet
was transmitted, and the end-to-end delay was negligible.
This situation could lead to packet loss and retransmission
if packets are transmitted within those time periods. Conse-
quently, it may increase the overall network delay as well. It
can be seen that there was a data delay while streaming the
Coastguard video sample at t=6s and above, which indicated
that the network condition had normalized and was suitable
for transmitting the video packets. With the dynamics of the
network and a high-traffic video (such as the Coast Guard
video), it is difficult to manage such traffic, but PSO has
successfully been used tomake effective decisions since it has
high convergence capability. For each of the sample videos,
the average end-to-end delay was computed and is presented
in Table 5.

The proposed biocooperative scheme has reduced the end-
to-end delays by 50.66%, 22.83% and 12.4% for the Hall,
News and Coast Guard video samples, respectively. Based on
the simulation results, it can be concluded that the end-to-end
delay increases with the increases in complexity and queue
size. In summary, reducing the delay within the network will
lead to reductions in packet drop and error; ultimately, it will
significantly reduce the energy consumption as a result of
processing, retransmission and computation.

The energy efficiency of the MO-CLD scheme is accom-
plished based on two important steps included in the biocoop-
erative video aware QoS cross layer optimization algorithm:
the first step determines the condition when τl and Pl meet
up with the optimization criteria. Therefore, the algorithm is
executed only in a situation when the constraints of the opti-
mization problem in equation (5) have been satisfied – this
avoids unnecessary execution of the algorithm. This eventu-
ally allows comparison of the computed average delay and
packet error rate in time t with themaximum threshold values.
More interestingly, it is very important to note that these
two components are related to one another. The second step
involves the use of PSO to select the best delay and packet
error rate which will yield the optimal streaming rate when
substituted into the fitness function. The energy saving ability
of the scheme is accomplished by executing the two steps
which in turn, reduced the complexity and consequently lead
to low energy consumption in network since the energy and
resources needed have been effectively managed. Intuitively,
the QoS is dependent on the parameters τl and Pl . By deploy-
ing these two strategies, the network performance has been
enhanced significantly.

Finally, the complexity between the proposed MO-CLD
algorithm and the B-CLD algorithm was measured to
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compare the energy efficiency of the schemes. It is obvious
that more computational time will lead to more energy con-
sumption. The simulation experiment was conducted on the
system with specifications described in Table 3. The simu-
lation test was primarily aimed at determining the efficiency
of the two algorithms in terms of complexity. Therefore, the
energy efficiency of the proposed scheme has been measured
and compared with B-CLD in terms of time complexity. For
each of the schemes, a high-complexity video (Coastguard)
was used to test its complexity. The goal is to test and ensure
how effective the developed scheme is using high-traffic and
complex video samples. The computational times for the
two schemes were tested online: the average processing time
for MO-CLD was 15 ms while the processing time for the
B-CLD schemewas approximately 85ms. The computational
complexity when using MO-CLD was significantly reduced
by 82.3%, which clearly shows the energy efficiency of the
developed algorithm when compared with B-CLD.

V. CONCLUSION
In this paper, we proposed an efficient multiobjective cross-
layer optimization scheme using a biocooperative approach
to optimally support wireless video streaming. This paper
fundamentally presents a new design paradigm that improves
video quality by effectively managing the end-to-end delay
and the buffer queue size. First, the multiobjective problem
was formulated and solved using a bioinspired approach.
The proposed approach was analyze both mathematically and
using simulation to verify the performance of the bioinspired
optimization scheme in terms of video quality and complex-
ity. Considering the channel condition when transmitting the
video packet reduced the possibility of retransmission to a
minimum. More importantly, the throughput was maximize,
which led to high video quality. The proposed bioinspired
optimization algorithm for streaming applications is highly
efficient and adaptive, which makes it suitable for video
streaming applications in a time-varying changing environ-
ment. Extensive simulations have clearly shown an improve-
ment in video quality compared to the B-CLD approach.
Our future interest is to adapt this technique to develop a
hybrid multiobjective cross-layer optimization for wireless
multimedia communication.
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