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ABSTRACT We present novel experimental evidence that demonstrates the effectiveness of exploiting
scene motion information for the analysis of scene structure in maritime imaging applications. We analyze
data captured by our novel airborne Multi-channel SAR (MSAR) system that is particularly suited to
sampling the velocity profile of scatterers in the maritime environment. While previous works have shown
the utility MSAR systems for correcting scene motion induced blurring artifacts, our work shows, for
the first time, how the information furnished by an MSAR system can systematically render accurate
classification of maritime scenes into different perceptual categories.We offer a methodology that is superior
to traditional classification techniques that are based purely on the spatial structure of an image. Furthermore,
the simplicity of the feature space involved together with the demonstrated classification performance on
imagery captured by our airborne MSAR system underscore the strength of the methodology.

INDEX TERMS Multi-channel synthetic aperture radar (SAR), ocean imaging, image classification.

I. INTRODUCTION
Two well-known issues in SAR imaging are the displacement
and blurring effects caused by uncompensated motion of
either the platform or the scene [1], [2]. While the effects of
platform motion can be compensated using information gath-
ered from inertial navigation units, scene motion is largely
handled, in single phase center SAR systems, by employ-
ing blind deblurring algorithms that exploit statistical and
physics-based models to capture spatially varying motion
signatures, with varying degrees of success [3], [4]. The
deleterious effects of scene motion (on the quality of SAR
image formation) is particularly accentuated in maritime
imaging applications where virtually every scatterer in the
scene undergoes motion governed by complex physical pro-
cesses that are difficult to characterize. In such cases, tra-
ditional approaches to scene induced motion compensation
are known to be inadequate [5]. Recently, Multi-channel
SAR (MSAR) imaging has been demonstrated as a powerful
approach to systematically ameliorating the aforementioned
scene induced motion error problem [5]–[10]. In particular,
the additional along-track receivers provide new, independent

The associate editor coordinating the review of this manuscript and
approving it for publication was Junjie Wu.

information about the scene that can be used to correct auto-
matically for the underlying scene motion.

Based on this foundation, we address a fundamental
question as to whether the in-scene motion information
derived from an MSAR with along-track phase centers can
be effectively exploited to extract higher-level perceptual
information–in particular to perform scene classification.
And, if so, can generic MSAR parameters be found that
provide useful, interpretable characterization of the in-scene
motions?

We answer these questions by demonstrating, for the
first time, an efficient and flexible classification algorithm
that utilizes the in-scene MSAR-derived motion information.
This method complements existing approaches to classifica-
tion [11]–[19] and image segmentation [20]–[27] that exploit
the spatial structure of static amplitude images. Our experi-
mental results, performed on imagery captured by the U.S.
Naval Research Laboratory (NRL) airborne MSAR system
[5], [8], [9], demonstrate how the motion information fur-
nished by an MSAR system can be systematically used to
enhance maritime scene classification in a manner that is
superior to purely amplitude-based approaches.

The MSAR airborne system operates at X-band with a
center frequency of 9.875 GHz and uses linear frequency
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modulated chirped waveforms with a bandwidth of 220 MHz
to achieve a range resolution of approximately 0.7 m. The
peak radiated power is approximately 1.4 kW, while the
aggregate pulse repetition frequency (PRF) of 25 kHz and
pulse length of 6 µs produced an average power of 210 W.
The system flies on a Saab 340 aircraft using a belly-mounted
radome with a nominal incidence angle of 70◦. Typical
altitude and airspeeds are 914 m (3000 ft) and 70 m/s,
respectively. The system use a linear array of 16 receive
antennas with a transmit horn located at each end. During
each pair of pulse intervals (one for each horn), four of the
16 receive antennas are connected to a four-channel receiver
and sampled by a high-speed data recorder. After each pair
of pulses, a bank of microwave switches is reconfigured
to connect the next group of four receive antennas to the
receiver and data recorder. In this manner, 32 phase centers
are generated, one corresponding to each combination of
transmit and receive antennas, and each are sampled at a rate
of 3.125 kHz. This is sufficient to allow production of 32 SAR
images, one corresponding to each phase center, that are free
from azimuthal ambiguities.Further details of our MSAR
system and its performance are given in [8].

Our new classification approach aims to identify targets
and surface features through differences in the number and
velocity of their scattering centers. Employing data from an
MSAR system that supports M along-track phase centers,
we construct an M × M covariance matrix at each pixel
to quantify the complex (i.e. magnitude and phase) corre-
lations amongst the M signals. These correlations promise
to be very useful target/clutter discriminators. As with many
classification schemes such as SAR polarimetry [28], eigen
analysis of this covariance matrix serves as the basis of our
approach. We derive new classification parameters from the
obtained eigenvalues and eigenvectors. Our empirical results
indicate that the entropy of the covariancematrix, coefficients
and phases of the eigenvector components, and eigenvalue
spectrum provide a basis for maritime scene characterization.

The novelty of our approach stems from the inclusion
of motion information, rather than purely amplitude and
amplitude texture information, for scene classification. Our
covariance matrix is unique in that it correlates the returns
from multiple along-track channels. Additionally, apart from
improving image quality, the MSAR processing corrects both
motion distortions and motion-induced displacements, which
improves the coherence of our covariance matrix [8].

We provide the first demonstration of this technique using
our airborne NRL MSAR dataset that was captured with
multiple along-track phase centers. The approach shown here
can be easily extended to an MSAR system that supports
both along-track and cross-track phase centers which would
produce data with a covariance matrix rich with information
on both motion and height. It is anticipated that this will
allow even better classification of the dynamic sea surface
in addition to the vessels that ride on it.

The rest of this paper is organized as follows. In Section II,
we provide a detailed description of our classification

methodology that forms the basis of our image classifica-
tion algorithm. Sections III and IV develop the MSAR fea-
tures used for classification and the classification algorithm
employed. In Section V, we demonstrate the performance of
our maritime scene analysis algorithm applied to the NRL
MSAR datasets. Finally, we conclude in Section VI with a
summary of our results together with directions for future
research.

II. METHODOLOGY
Our scene classification methodology takes advantage of the
motion characteristics of maritime scenes. The classes of
interest (vessels, ambient water, etc.) all have time dependent
characteristics that are exploitable by the unique motion-
sensing properties of the MSAR system.

A. MOTION RELATED POSITION CORRECTION
The displacement effect in SAR imagery is described by the
well-known Doppler shift δa[4]

δa = R ∗ Vr/Vp (1)

where R is the range from platform to target, Vr is the target
range speed, and Vp is the SAR platform speed. The motions
associated with a scatterer results in a spatial spreading and
shifting of the target signature within the image. Therefore
a purely spatial analysis of the image will not allow an
accurate inference of the time varying motions associated
with each scatterer comprising the scene. The first step is
to reposition target signatures back to their true location in
the image. We utilize MSAR’s imagery from multiple along-
track phase centers to correct motion-induced displacements.
These position corrections can be achieved using methods
such as Velocity SAR (VSAR) [5]–[10] or Along-Track Inter-
ferometry (ATI) [5], [29]. Here we use the VSAR algorithm
which repositions all of the backscatter generated from a
given target, regardless of its associated Doppler velocity and
displacement, to a more compact, corrected position. The
VSAR procedure has been extensively described elsewhere
[5]–[10], although here we retain the complex pixels through-
out. Specifically our VSAR processing steps are 1) Form
image stack using each of the M phase center images. 2)
Perform the FFT for each pixel along the time stack. 3) Shift
each velocity component back to the origin in order to enforce
stationarity, 4) Trim edges to remove non-overlapping por-
tions. The VSAR-based repositioning of target backscatter
returns to the appropriate complex image pixel positions
allows coherent analysis of target motion via eigen analysis
of theM ×M covariance matrix.

B. COVARIANCE MATRIX
To capture motion information at each pixel, (i, j), we start
by constructing the covariance array for all phase-center
pairs (m, n):

Cijmn =< IijmI∗ijn > . (2)
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The spatial averaging implied in (2) is over a window smaller
than the smallest targets of interest. In practice, we use a
5× 5 pixel window for spatial averaging in (2). For practical
purposes, we subsequently subsample to half the smoothing
window size to reduce final pixel dimensions. At each pixel,
(i, j) we generate the M eigenvalues λm and eigenvectors
−→vm(m = 1 toM ) of the covariance matrix C

C−→vm = λm−→vm (3)

for use in our classification procedure. We dropped the (i, j)
indices for brevity. The eigenvalues and eigenvectors char-
acterize the in-scene motions at each pixel throughout the
MSAR collection time.

C. POINT TARGET VELOCITY ANALYSIS
After VSAR processing, the set of MSAR images, each
spatially co-located but offset in time, form an along-track
interferometric image stack. The phase differences between
pairs of images in the stack provide estimates of the average
radial displacement of the dominant scatterers for a given
pixel. The phase difference depends on the time difference
between the pair of images, the average velocity of the domi-
nant scatterers, and the imaging geometry, i.e. look direction
and incidence angle. The imaging geometry and in-scene
scatterer velocity determine the radial velocity, vradial , of the
scatterer toward, or away from, the radar. Therefore, the radial
displacement of the scatterer, 1d , is vradial · 1t , where 1t
is the time difference between the interferometric pair. The
absolute along-track interferometric phase difference is then

1φabs. = 2 ·1d
/
w =

(
2 ·1t

/
w
)
vradial (4)

where w is the radar wavelength. The observed phase differ-
ence, 1φobs., lies within the range [0, 2π ]. Therefore,

1φobs. = 1φabs. + (2πn) (5)

where n is an integer. For a point scatterer moving at con-
stant velocity, the observed phase difference,1φobs. (modulo
2π ), and time difference, 1t , will generate the same radial
velocity, vradial , independent of the pair of images chosen
from the stack. Therefore, at each pixel, the phases of the
interferometric image stack advance linearly in time. This,
of course, assumes that the scattering does not significantly
de-correlate during the imaging time and that the imaging
geometry remains relatively fixed.

For the specific case of our MSAR images, the time differ-
ence between adjacent images is fixed, 1t ∼ 0.001 seconds,
as is the radar wavelength, w ∼ 3 centimeters. For a pixel
containing a coherent, dominant scatterer, the MSAR image
stack will be proportional to

S ∝
[
1, ei1φ, ei21φ, ei31φ, . . . , ei(M−1)1φ

]
(6)

using M images, and the resulting covariance matrix is then

C = S† · S ∝


1 ei1φ · · · ei(M−1)1φ

e−i1φ 1
...

...
. . .

e−i(M−1)1φ · · · 1

 (7)

where S† is the Hermitian conjugate of S.
Eigen analysis of this covariance matrix identifies a single

large eigenvalue and its associated eigenvector. By inspec-
tion, the associated eigenvector of the rank-1 matrix in (7)
is proportional to

[
1, e−i1φ, . . . , e−i(M−1)1φ

]
. The phases of

the eigenvector components are determined directly from the
phases of MSAR images; they progress linearly from the
first to the last component. This is the ideal case for a rank-
1 covariance matrix with no spatial decorrelation. In practice,
we find that the covariance matrices are often nearly rank-1.
The secondary eigenvalues are much weaker than the primary
eigenvalue and thus the secondary eigenvectors do not affect
the analysis of the dominant eigenvector. However, if there
is no dominant scatterer, or the scattering decorrelates, or the
in-scene motion is not uniform, then the phases of the eigen-
vector components become random and the in-scene scatterer
velocities are not retrieved by eigen analysis.

The sum of all eigenvalues, λm, at a given pixel is the
total power backscattered by the full set of MSAR images
averaged over the 5 × 5 window mentioned in Section II.B.
For a rank-1 covariance matrix, only the first eigenvalue, λ1,
is non-zero. As the rank of the covariance matrix increases,
additional eigenvalues become non-zero. However, in many
cases we find that the eigenvalue spectrum rapidly decays, i.e.
λ1 � λ2 � λ3 � λ4 · · · λM ∼ 0.

III. FEATURE EXTRACTION: PRELIMINARY
OBSERVATIONS
Given the phase history data received at the various phase
centers of the MSAR system, we form a complex image for
each phase center using a chirp-scale algorithm (though in
general, any SAR imaging algorithm, such as backprojection,
can be used). The VSAR processing then corrects this image
stack, repositioning the targets to their actual in-scene loca-
tions. The VSAR procedure has been presented previously
[5]–[10], however in the method presented here we perform
the VSAR correction retaining the coherent, complex data
for each channel. This allows the M × M covariance matrix
of the VSAR corrected image pairs to characterize the in-
scene motions observed by the MSAR system. After the
spatial averaging mentioned in Section II.B, eigen analysis
of the covariance matrices generates the eigenvalues λm and
eigenvectors −→vm(m = 1 toM ), as in (2)–(3).

To motivate our feature extraction approach, we consider
the sample image in Fig. 1 where we examine a region,
highlighted by the yellow box, of an MSAR dataset collected
using the NRL airborne MSAR system) that contains iden-
tifiable ambient water, surf, boats and their wakes, beach
and land. The system collected 32 MSAR phase centers,
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FIGURE 1. The highlighted region of this MSAR dataset is used for
classification validation. The region contains areas of ambient water,
land, beach, surf, boat and their wakes.

here we use M = 8 of the phase centers for our analysis.
Preliminary testing showed that higher M was not necessary
for our purposes here (although our analysis is extensible to
any arbitrary number of phase centers).

The key idea is to perform an eigen analysis of the mul-
tichannel covariance matrix associated with each scatterer
in the image. This is indeed a novel idea in the realm of
multichannel processing which was inspired by earlier works
in polarimetric analysis of SAR images [28]. The explicit
form the boxcar averaged covariancematrices that we employ
is given by:

C i,j
m,n =

∑1x

k=−1x

∑1y

l=−1y
Ci−k,j−l;m,n (8)

where1x ,1y are the local spatial windows along the respec-
tive image axes, and Ci−k,j−k;mn are the rank-1 covariance
matrix from (2). The calculation in (8) serves the two-fold
purpose of reducing image speckle and increasing the rank of
the covariance matrix, C i,j

m,n, by aggregating motion informa-
tion in a localized neighborhood of each pixel. The resulting
eigenvalues and eigenvectors, as shown in Fig. 2 and Fig 3,
reveal valuable information relating to the signature motion
characteristics of the classes of interest.

A. CLASS EIGENVALUES
Fig. 2 shows plots of the normalized eigenvalue means and
standard deviations for 5× 5 pixel boxes in the image within
six different classes - ambient water, surf, boat, wake, land
and beach areas. (Specific class regions are identified on the
image in Fig. 6.) Fig. 2 shows individual eigenvalues normal-
ized by the sum all eight eigenvalues, i.e. λi = λ̂i/

∑
j λ̂j,

where λ̂i are the eigenvalues calculated from the averaged
covariance matrix. Overall the eigenvalues beyond the 2nd or
3rd are greatly reduced in magnitude for most classes. The
ambient water class is an exception; the eigenvalue spectrum
falls off slowly and the normalized dominant eigenvalue
is only about 0.4 owing to a more uniform distribution of
velocities. On the opposite extreme we see that the stationary
land region has almost all of its energy in a single dominant
component with a small standard deviation. The other classes
have eigenvalue distributions somewhere between these two
extremes. Both the plot shapes and the standard deviations
vary sufficiently to be useful as part of a classification
feature.

B. CLASS EIGENVECTORS
In Fig. 3 we plot the phases associated with the dominant
eigenvector components and their standard deviation for 5×5
pixel boxes in the image within six different classes - ambient
water, surf, boat, wake, land and beach areas. Overall we see
that the complex phases of the eigenvector components for
most of the classes are centered about zero. For ambient water
the complex phases vary widely (large error bars) owing to
non-uniform motion from pixel to pixel and to the signal
strength (RCS) approaching the noise floor. The tight error
bars of the land and boat phases imply that both display well-
defined, uniform motion throughout the MSAR collection
interval. For the boat, we find that the phases of the eigenvec-
tor components are tightly centered along a slope consistent
with the theoretical discussion in Section II.C. Only the boat
shows a non-zero velocity; the land is not in motion. The
remaining classes, i.e. surf, wake and beach, display phase
results intermediate between ambient water and land/boat
classes.

An important subtlety here is that amplitude and velocity
information may be correlated. Consider the ambient water
class, which has both low backscatter amplitudes and sur-
face motions random in speed and direction. Eigen analysis
separately addresses these effects. As the backscatter ampli-
tude approaches the system noise floor the covariance matrix
decorrelates generating random phases. If the backscatter is
significant, i.e. above the noise floor, then the randommotion
of the water surface decorrelates the covariance matrix. In
either case, the covariance matrix analysis retrieves uncorre-
lated motions, i.e. large phase error bars consistent with zero
velocity. Indeed, spatial SAR amplitude information, e.g. low
backscatter, has traditionally been exploited for SAR image
classification of ambient water. However, boat wakes appear
brighter than ambient water, but they still decorrelate due to
random surface motion. Conversely, the backscatter from a
small boat may blend into the returns from a rougher sea.
In this case, the boat may be detected due to its coherent
motion, rather than its backscattering amplitude. The point
is that amplitude and velocity information may be correlated
for a given class, but in different imaging scenarios and for
different classes the correlations change.

Our MSAR based analysis enables motion-based discrim-
inatory information to be elicited from the data, which pro-
vides target class separation measures complementary to the
standard amplitude information. This motion information
augments amplitude-based feature sets, providing new infor-
mation with which to classify SAR imagery. MSAR based
analysis, as will be demonstrated below, provides robust
classification performance over a range of target classes,
employing a richer set of features.

IV. MSAR BASED CLASSIFICATION ALGORITHM
Using the concepts and insights described in previous sec-
tions, in this section we describe our MSAR based classifica-
tion algorithm that makes judicious use of the discriminatory
information embedded in the MSAR covariance matrix.
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FIGURE 2. Eigenvalue spectrums for the six classes in the MSAR image. Shown are the means and standard deviations of eigenvalues averaged over the
highlighted areas in Fig. 6.

FIGURE 3. Means and standard deviations of the phases of the first (dominant) eigenvector components.

A. CLASSIFICATION ALGORITHM FLOW CHART

The overall flow chart of our algorithm is shown in Fig. 4.
Steps 1 and 2 of the flowchart describe the MSAR image
formation process that we described in Section II. Steps 3 and
4 of the flowchart describe the key steps of constructing the
MSAR covariance matrix and eigenvalue/eigenvector extrac-
tion described in Section III. In this section we fully delve
into step 5 of the flowchart that involves the critical steps of

feature extraction, from the underlying eigen-structure of the
MSAR covariance matrix, followed by classification of the
scene pixels.

B. CLASSIFICATION FEATURE CONSTRUCTION
We employ a judicious use of eigenvectors and eigenval-
ues described in Section III to construct the feature maps
that emphasize class characteristics. The simplest and most
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FIGURE 4. Flow chart of MSAR-based classification procedure.

straightforward idea is to directly input all eigenvalues and
eigenvectors into a classification algorithm and thereby put
the entire burden of finding useful class separations solely on
the classifier model. A more directed method is to construct
mappings derived from the eigen components that bring out
certain desired class features. By iteratively reducing the
number of features, we find that to build a robust classifier
it suffices (and is desirable) to limit ourselves to the largest
eigenvalues and associated eigenvectors. The other eigen-
parameters either add undesirable noise or have no useful
effect on confidence measures computed by the classification
model. We normalized the eigenvalues and concentrated on
the phases of the eigenvector components, since the phases
relate directly to in-scene motion typical of maritime scenes.
Guided by analysis such as that in Section III, we con-
struct eigen-feature maps to differentiate amongst the desired
classes. These mappings were culled from over 30 initial
features by removing features that did not significantly con-
tribute to classification quality via a Sequential Backward
Selection (SBS) procedure [30]. They can be categorized
into eigen-derived features (shown in Fig. 5) that characterize
different degrees of randomness in motion, spatial uniformity
and speeds.

After the SBS we arrived at six features directly related
to the largest eigenvalues and properties of their associated
eigenvectors at each pixel. The eigenvalue parameters provide
the spectral characterization of the covariance matrix. Since
only the first few eigenvalues differ significantly from zero,
they and their associated eigenvectors are all that is needed
to describe the covariance matrix. The information culled
from the eigenvectors relates directly to in-scene motion, i.e.
the phases and phase coherence of the eigenvectors com-
ponents. Finally, in order to capture local spatial variations
another four features are derived from local spatial standard
deviations. These spatial variations are reminiscent of the
coefficient of variation often used in SAR amplitude-based
classifications.

FIGURE 5. Byte-scaled feature maps of the 10 features described in
Section IV.

From our experimental design process we distilled the
following set of ten features. Keeping more features does not
produce better confidences or classifications, whilst remov-
ing additional ones shows rapid degradation of classification
quality. However we point out that the selected features are
not necessarily unique; alternative feature sets may produce
similar results provided that the new feature set captures the
same information. We relegate more detailed investigations
along these lines to future work.

In this paper, our aim is to provide a demonstration of the
classification potential of such MSAR-based velocity infor-
mation, not necessarily an ultimate or unique set of features.
We now outline each feature used inmore detail. In particular,
the following list presents the equations used for our MSAR
eigenvalues and eigenvector based classification method:

1) FEATURE 1-ENTROPY
Characterization of the eigenvalue spectrum can be accom-
plished via the (von Neumann) entropy

F1 = −
∑M

m=1
λm ln λm (9)

Entropy is related to the distribution of eigenvalues, λm, and is
a measure of the number and randomness of significant scat-
terers. For example in ambient regions, we expect distributed
scatterers rather than a single dominant scatterer leading to
high entropy. Uniform local motion (e.g. ship, land) will have
a dominant eigen component and low entropy. The entropy
provides an overall, average description of the eigenvalue
spectrum.
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2) FEATURE 2 TO 4-EIGENVALUE DIFFERENCES
The shape of the eigenvalue spectrum is also a useful char-
acteristic of the motion. This measure is somewhat related to
the entropy but more focused on the number of significant
scatterers, i.e. the strengths of the dominant and secondary
components, and the thus the rapidity of the spectral decay.
We found that the largest three eigenvalues (m = 1, 2,
3) characterize the eigenvalue spectrum; the remaining are
mostly noise, i.e. close to zero. We normalize as follows to
remove some scene amplitude dependencies included in the
first eigenvalue (see the discussion in Section II.C):

F2,3,4 = (λm − λm+1)/λ1, m = 1 to 3 (10)

3) FEATURES 5 TO 6-EIGENVECTOR COHERENCE
If the speed of the target is uniform over the collection
time then the images collected by the along-track apertures
will differ only by a phase; for evenly spaced apertures the
phase difference between adjacent apertures will be a single
constant. The coherence across elements of an eigenvector is
related to the uniformity of the speed over the entire collection
interval. Again, we consider the vector elements, labeled by
k , only for the first two eigenvectors (m = 1, 2) since these
relate most directly to target motion. Eigenvector coherences
will be high for classes such as land, boats, and regions of
uniform surf. Ambient water and wakes do not display strong
phase coherence across the components of the eigenvectors.

F5,6 =

∣∣∣∑M−1
k=1 vk,mv∗k+1,m

∣∣∣∑M−1
k=1

∣∣∣vk,mv∗k+1,m∣∣∣ , m = 1 to 2 (11)

4) FEATURES 7 TO 8-LOCAL EIGENVALUE VARIATION
Local (spatial) standard deviations of the eigenvalues for the
first two eigen components highlight information similar to
the coefficient of variation for amplitude-based classification.
As explained above, this captures information about the sur-
rounding region uniformity or texture.

F7,8 =

√
1
n

∑n

ij
(λij,m − ξm)2, m = 1 to 2 (12)

where the summation over ij is over the n pixels of a small
window centered at the pixel of interest, and ξm is the mean
of λm using the same averaging window.

5) FEATURES 9 TO 10-EIGENVECTOR PHASE SLOPE
As described in Section II.C and shown in Fig. 3, the eigen-
vector phase slope (related to velocity) discriminates between
some classes. To capture this information we derive features
using the local average phase slope divided by the local
average standard deviation of the phase slope. This feature
will be higher for moving targets such as boats where the
dominant and secondary scatterers are coupled by the boat’s
motion.

F9,10 =

∣∣∣∣ SmDm
∣∣∣∣ , m = 1, 2 (13)

Here Sm and Dm are the local (spatial) mean and standard
deviation of the phase differences between adjacent eigen-
vector components, 1k = φk − φk+1,.

Sm =
1

n(M − 1)

∑n

ij

∑M−1

k=1
1ij,k,m, (14)

Dm =
1

n(M − 1)

√∑n

ij

∑M−1

k=1

(
1ij,k,m − Sm

)2
, (15)

calculated over a small window centered at the pixel of
interest.

C. CLASSIFICATION PROCESSING DESCRIPTION
In this paper, we use supervised classification with 6 classes
(ambient, surf, boat, wake, beach, and land). Training data
is derived from small sections of the scene appropriate for
each class. This training data is fed into Support Vector
Machine (SVM) classifiers [17] to derive classification mod-
els. Among the several possible non-linear SVMmodels [17],
in our experiments we found the simple linear SVM model
to be sufficient for furnishing robust and consistent results.
The model is then applied to the entire scene to arrive at
the class map. It is important to note that our methodology
works equally well with other classification schemes and is
not limited to the use of SVMs.

Our experimental results below show that our algorithm
delivers much improved classification performance on data
captured by the NRLMSAR system. We expect better results
could be possible with the inclusion of height information
provided by adding a cross-track component to the MSAR
system (as proposed in future collections).

V. EXPERIMENTAL RESULTS
In this section we demonstrate the performance of our pro-
posedMSAR-based classificationmethod for theMSAR data
region shown in Fig. 1. The overall procedure follows the
flow chart in Fig. 4. The classification procedure employs
a straightforward supervised classification scheme with a
linear SVM model. Ground truth is derived from both in situ
observations [8] and precise geo-registration of the MSAR
imagery to optical Google Earth images.

A. GENERATE FEATURES
The feature maps used in the classification procedure were
generated from the eigenvalues and eigenvectors at each pixel
using the equations given in Section IV.B. The 10 feature
maps are shown in Fig. 5.

We see the entropy map (Fig. 5, Feature 1) is bright in
ambient regions where there are a large number of weak scat-
ters and motion is random. Features 2-4 shown in Fig. 5 are
eigenvalue differences which are bright in higher motion
regions (boat, wake, surf), but already much reduced by the
third eigenvalue difference. Features 5 and 6 from Fig. 5 show
the eigenvector coherence for the first two eigenvectors,
which are bright on land and boat regions. Again, these fall
off rapidly as we move away from the dominant eigenvec-
tor. Features 7 and 8 in Fig. 5 represent variations of the
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eigenvalues in a small window about each pixel giving some
textual information that is complementary to the correspond-
ing pixel-based information. Eigenvector phase information
is introduced by Features 9 and 10 for the two eigenvec-
tors. The dominant eigenvector phase slope (Feature 9) is
noisy except for the boats and land areas. The value on the
boats is significantly higher than anywhere else. On land
the eigenvector phase slope is very low, but very accurately
determined as shown by Feature 5 (consistent with what is
shown in Fig. 5 and the equations in Section II.C). Feature
9 benefits the class map generation by distinguishing boats
from land and is not present for an amplitude-only situation.
The second eigenvalue phase slope (Feature 10) highlights
the surf region, where the secondary scattering mechanism
displays velocity dependence.

B. SELECTING TRAINING DATA
Training data was generated using small regions of the image
for each class as shown in Fig. 6. The size of class windows
were chosen to be as small as possible while still capturing the
essential variations in motion. The windows for boats are by
necessity slightly smaller however boats have more compact
motion variations. The total area of the training windows is
kept small compared to the whole scene used for classifica-
tion testing. These training regions are extracted from each of
the 10 features and fed into the SVM classification learner.

FIGURE 6. Regions used for classification training containing classes
land, beach, surf, boat and their wakes.

C. CLASS MAP
We applied our image classification algorithm on the region
of interest shown in Fig. 1, using the features shown in Fig. 5.
For comparison we also produced classifications using the
amplitude image and local standard deviation about each
pixel (for some texture information). The resulting classifi-
cation maps are shown in Fig. 7.

We observe that our algorithm does remarkably well at
finding ambient, boat and land regions. It also does remark-
ably well in distinguishing beach region from land and water.
Though the algorithm has some difficulty distinguishing dif-
ferent water disturbances (e.g. surf vs. wake), overall it ren-
ders an acceptable qualitative partitioning of these classes.
Furthermore, repeating this process on a different set of eight
phase centers using the first sets’ training model gave virtu-
ally identical results (not shown), which further indicates the
robustness of the approach.

FIGURE 7. Image (top), amplitude-only classification map (middle) and
MSAR eigen-feature derived classification map (bottom).

Fig. 7 shows a comparison between the amplitude derived
classification map and the corresponding classification map
derived from our MSAR based approach. We clearly see that
the amplitude based approach does not distinguish land from
boat since it has no direct access to velocity information
(derived from the phases of the eigenvector components) as
discussed in Section II. Furthermore the traditional amplitude
based approach fails to detect the wake outside of the training
box, and finally it fails to distinguish clearly the surf and
beach classes in comparison to our MSAR based approach.

The percentage of correctly identify targets is plotted
in Fig. 8. The MSAR-based approach (blue) provides a more
accurate classification of the targets than the amplitude only
classifier. The main differences between the two methods
involve moving targets, i.e. ambient water, surf and boat, and
to a lesser extent wakes and beaches. Only the land class
is similarly identified by both methods. In fact, if the eigen
features and amplitudes are combined to provide a super-set
of classification features, the classification improvement over
the MSAR feature classification is minimal, at best.

Our MSAR based classification algorithm is superior to
the traditional approach to SAR based image classification
in several respects. First, the selected features are well suited
to physical interpretation of in-scene scattering mechanisms.
The dominant eigenvector phases and their standard devia-
tions contain information that characterizes scatterer motion.
The ability to employ in-scenemotion information is a unique
aspect of our MSAR classification technique. The dominant
eigenvalue contains image amplitude information, similar to
that typically used in amplitude-only classifiers. As shown
is Figs. 7 & 8, the results employing our classification fea-
tures either with, or without, image amplitudes and standard
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FIGURE 8. Percentage of pixels correctly classified within test regions.

deviations are equivalent. Second, overall the size of the
training boxes is relatively small compared to the size of
the scene i.e. we demonstrate excellent classification per-
formance with limited training size. This feature renders our
algorithm especially suitable for large-scale image classifica-
tion problems. And, as pointed out earlier, classifiers trained
on one set of MSAR channels and applied to an MSAR scene
formed from a different, disjoint, set of channels produces
very good classification results. Finally, the basic approach,
eigen analysis of multi-channel covariance matrices, is eas-
ily extensible. Incorporating additional along-track channels
merely increases the dimension of the covariance matrix; the
analysis remains the same. Including cross-track channels
changes the interpretation of the phases of the eigenvector
components, but not the underlying methodology. Our tech-
niques can therefore render high quality image classification
when implemented in practical MSAR systems.

VI. CONCLUSION
In this paper, we describe a novel and robust classification
procedure for maritime scenes using anMSAR system, which
provides a powerful means of detecting motion in the scene.
While previous research on MSAR data analysis has focused
mainly on the imaging aspects, in this paper we demon-
strate the power of MSAR based analysis for classification
in maritime environments. Indeed our classification scheme
is ideal for the maritime environment where every location is
undergoing some form of motion.

We experimentally demonstrated, for the first time, the util-
ity of our motion-based image classification algorithm using
NRL MSAR imagery for a scene containing boats, wakes,
surf, land, beach and ambient water classes. Our unique
MSAR-based classification technique demonstrates great
promise in separating these different motion classes.

We emphasize that our technique compliments previous
approaches to image classification by exploiting motion
information provided by the MSAR’s unique along-track,
multi-aperture configuration that is highly sensitive to in-
scene velocities. In future work, our technique will be

extended to include height information via cross-track phase
centers and sparsity approaches to improve practicality.
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