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ABSTRACT Gear transmission is one of the most commonly used transmission methods in mechanical
equipment. By analyzing the vibration data of gearbox, an improved deep belief network (DBN) algorithm
for gear fault diagnosis based on wavelet packet energy entropy (WPEE) and multiscale permutation
entropy (MPE) is proposed. Firstly, the vibration data of gearbox with various fault types under multiple
working conditions are collected. Secondly, the energy entropy of wavelet packet and the entropy distribution
of multiscale permutation are calculated respectively to form a combined feature matrix. Then, the improved
threshold adaptive DBN is used to further extract the fault signal features, and finally the deep layer features
are classified. By analyzing the vibration data of multi-platform gearbox, a high and stable diagnostic
accuracy is obtained.

INDEX TERMS Gear fault, wavelet packet energy entropy, multiscale permutation entropy, deep belief
network.

I. INTRODUCTION
Gearbox is a vital component of rotating machinery [1].
The complexity of operation environment makes gear fault
occur frequently, which is very easy to cause equipment fail-
ure [2], [3]. The fault signal detection of gearbox under mul-
tiple working conditions is of significant practical meanings
to monitor the occurrence of serious faults and guarantee the
normal operation of mechanical equipment [4]–[6]. Because
the change of gear operation condition will cause the change
of vibration signal characteristics, and it is difficult to extract
the gear fault characteristics under variable load effectively
by traditional methods [7]–[10]. Therefore, in order to get
rid of the dependence on expert experience and the tedious
steps of feature extraction, it is very meaningful to find a
simple intelligent diagnosis algorithm, which can realize the
vibration state detection of multi working condition gearbox.

In recent years, deep learning develops rapidly [11]–[16],
more and more people apply it to the field of gearbox fault
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diagnosis, and complete diagnosis and classification based on
data-driven [17]–[23].Wang et al [24] presented an intelligent
fault diagnosis method combining generation countermea-
sure network and stack de-noising automatic encoder (SDAE)
to identify fault modes of planetary gearbox from frequency
spectrum. Han et al [25] fused the multistage wavelet packet
coefficients of planetary gearbox with a dynamic integrated
convolutional neural network (CNN) to diagnose faults.

Li et al [26] used the DBN to realize the fault diagno-
sis of the gearbox and bearing with time frequency charac-
teristics. Chen et al [27] applied the CNN to sort out the
health conditions of the gearbox with time frequency fea-
tures. Shao et al [28] constructed an optimized DBN for the
bearing diagnosis faults, and 18 time domain characteristics
are enhanced. Guo et al [29] proposed a layered deep CNN
to monitor the health states of bearings. Tang [30] studied
the hybrid domain of wind turbine gearbox vibration and
Shannon wavelet support vector machine to diagnose gear-
box faults. Lei et al. [31] calculated 10 statistical parame-
ters describing bearing state, and input these characteristics
into neural network for fault classification. Chen et al [32]
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combined with empirical mode decomposition and Teager
Kaiser energy operator to extract and select features at the
same time, and used DBN to realize fault classification of
planetary gearbox. Zhao et al [33] established a deep resid-
ual network to diagnose planetary gearbox faults based on
wavelet packet coefficients in different frequency bands.

In this paper, an intelligent fault diagnosis method based
on improved DBN model combined with WPEE and MPE
is proposed. In view of the complex operation environment
of gearbox, in order to get rid of the extreme dependence of
traditional time-frequency feature diagnosis methods on arti-
ficial experience, the combination of wavelet packet energy
entropy and multiscale permutation entropy are selected.
To make the iterations of deep belief network set adaptively,
the improved deep belief network is used for diagnosis and
classification, so it gets rid of the problem. By analyzing
the vibration signal of the fault gear with variable load and
speed, the accuracy of fault diagnosis is greatly improved.
In the result analysis of two examples, this paper compares
the proposed method with some other existing classification
algorithms, and optimizes the parameters such as diagnosis
time, accuracy and stability.

II. THEORETICAL BACKGROUND AND THRESHOLD
ADAPTIVE IMPROVED DBN METHOD
A. DBN MODEL
The DBN was proposed by Hinton in 2006 [28], [34], which
is a probability generation model, as shown in Fig.1. It can be
used as a classifier when there is supervised learning. DBN
consists of several restricted Boltzmannmachines (RBM) and
softmax regression layers, as shown in Fig.2.

FIGURE 1. DBN structure diagram.

RBM is a randomly generated neural network structure,
which is intrinsically an undirected graph model composed
of one layer of visible neurons and one layer of hidden
neurons. It only has a connection between hidden layer and
visible layer neurons but no connection between visible layer
neurons and hidden layer neurons, as shown in Fig. 2. More-
over, hidden layer neurons generally take binary and obey
Bernoulli distribution. The vibration signal data are real val-
ues, which can be selected as the input of the visible layer
neurons.

FIGURE 2. RBM structure diagram.

The DBN model mainly consists of two steps: unsuper-
vised pre training based on RBM and supervised reverse
optimization.
Step 1: unsupervised pre training based on RBM.Using the

CD-K algorithm (contrast divergence algorithm) to initialize
theweights is as follows. Hinton found that whenK is 1, it can
get a better learning effect.

1) Random initialization weights {W , a, b}, where X , W
and a are the input sample data, the weight vector and the
bias vector of the visible layer respectively, and b is the bias
vector of the hidden layer.

X = v =


v1
v2
. . .

vM

 , h =

h1
h2
. . .

hN

 ,

W =


W1,1 W2,1 . . . WM ,1
W1,2
. . .

W2,2
. . .

. . .
WM ,2
. . .

W1,N W2,N . . . WM ,N

 ,

a =


a1
a2
. . .

aM

 , b =

b1
b2
. . .

bN

 (1)

where,M andN are the number of neurons in the visible layer
and the hidden layer, respectively. Initialize W based on the
normal distribution N (0, 0.01), and initialize ai according
to ai = log pi

1−a1
, where pi is the proportion of the samples

whose the i-th sample is in the active state (i.e. the value is 1),
and b is initialized to 0. The calculation of the activation value
h of the hidden element is:

h = (W · X + b)

=


W1,1 · v1 +W2,1 · v2 + . . .+WM ,1 · vM
W1,2 · v1 +W2,2 · v2 + . . .+WM ,2 · vM

. . . . . . . . .

W1,N · v1 +W2,N · v2 + . . .+WM ,N · vM



+


b1
b2
. . .

bN

 =

h1
h2
. . .

hN

 (2)

131300 VOLUME 8, 2020



D. Han et al.: Intelligent Fault Diagnosis Method of Variable Condition Gearbox Based on Improved DBN Combined With WPEE and MPE

The calculation of visual layer neuron value v can be
expressed as follows:

v =
(
W T
· h+ a

)

=


W1,1 · h1 +W1,2 · h2 + . . .+W1,N · hN
W2,1 · h1 +W2,2 · h2 + . . .+W2,N · hN

. . . . . . . . .

WM ,1 · h1 +WM ,2 · h2 + . . .+WM ,N · hN



+


a1
a2
. . .

aM

 =

v1
v2
. . .

vM

 (3)

2) Assign X to v(0), and calculate the probability that it
turns on the hidden element:

p
(
h(0)j = 1 | v(0)

)
= σ

(
Wj · v(0) + bj

)
(4)

The superscript in equation (4) represents the vector, and
the subscript represents the dimension of the vector.

3) Perform one-step Gibbs sampling based on the obtained
probability distribution, and the corresponding value is
selected for each unit of the hidden layer from {0, 1}, which
satisfies h(0) ∼ p(h(0)|v(0)). The process is as follows:
First generate a random number rj on [0, 1], then determine

the value of hj as follows:

hj =

{
1, if p

(
h(0)j = 1 | v(0)

)
> rj

0, otherwise
(5)

4) Reconstruct the visible layer with h(0), first calculate the
probability density, and then perform Gibbs sampling. The
visual layer neuron is a Bernoulli visual layer neuron, so it
satisfies:

p
(
v(1)i = 1 | h(0)

)
= σ (W T

i h
(0)
+ ai) (6)

5) Based on the obtained probability distribution, perform
another Gibbs sampling to select the corresponding values
from the {0, 1} neurons in the visible layer for sampling
reconstruction, that is, first generate {0, 1} random number,
then determine the value:

vi =

{
1, if p

(
v(1)i = 1 | h(0)

)
> rj

0, otherwise
(7)

6) Compute the probability of the neuron being turned
on using the reconstructed explicit element according to the
following formula:

p
(
h(1)j = 1 | v(1)

)
= σ

(
Wj · v(1) + bj

)
(8)

7) Update the weights and offsets according to the follow-
ing formula to get new weights and offsets:

W ← W+ λ[p
(
h(0) = 1 | v(0)

)
v(0)T

−p
(
h(1) = 1 | v(1)

)
v(1)T]

b ← b+ λ[p
(
h(0) = 1 | v(0)

)
−p

(
h(1) = 1 | v(1)

)
]

a ← a+ λ
[
v(0) − v(1)

]
(9)

where λ represents the learning rate.
This step completes the supervised pre-training process on

a basis of RBM.
Step 2: supervised reverse parameter adjustment. In this

step, a certain output is obtainedwith the forward propagation
algorithm, and then the weight value and bias value are
updated by using the back propagation algorithm.

1) Get output values in forward propagation. First, the
{W , b} determined in Step 1 is used to determine whether
the hidden element is open or not. Then the activation value
can be expressed as:

h(l) = W (l)
· v+ b(l) (10)

where l represents the layer index of neural network. The W
and b can be expressed as:

W =


W1,1 W2,1 . . . WM ,1
W1,2
. . .

W2,2
. . .

. . .
WM ,2
. . .

W1,N W2,N . . . WM ,N

 , b =

b1
b2
. . .

bN

 (11)

where Wi,j refers to the weight between the i-th visible layer
neuron and the j-th hidden layer neuron.

The activation values of each hidden layer neuron are cal-
culated in turn. The sigmoid function is used as the activation
function to complete the standardization, as follows:

σ (hj)(l) =
1

1+ e−hj
(12)

Finally, the activation value h(l) and output of the output layer
X̂ can be obtained:{

h(l) = W (l) · h(l−1) + b(l)

X̂ = f
(
h(l)
) (13)

where f (·) represents activation function of the output layer,
and the activation functions used in this model are sigmoid
functions.

2) Update weight and offset values in back propagation.
Firstly, update all network parameters with backward prop-
agation algorithm following the principle of minimum mean
square error, and the expression of cost function is as follows:

E =
1
N

N∑
i=1

(
X̂i
(
W (l), b(l)

)
− Xi

)2
(14)

where E represents the mean square error of learning, X̂i and
Xi are the output of output layer and ideal output respectively,
and i represents the sample index.

(
W (l), b(l)

)
represent the

weights to be learned and the parameters of the offsets in the
l layer.
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Finally, the gradient descent method is selected to update
the weight and bias parameters, as shown below:(

W (l), b(l)
)
←

(
W (l), b(l)

)
− λ ·

∂E

∂
(
W (l), b(l)

) (15)

where λ is the learning rate.
The final DBN model can be obtained by selecting the

appropriate number of hidden layers, layer neurons and learn-
ing rate, and then iterating a certain number of times for
training.

B. EARLY STOPPING BASED ON ITERATIVE ERROR
THRESHOLD
In view of the over fitting phenomenon of DBNmodel due to
over training, a method of early stopping based on iterative
error threshold is proposed to prevent over fitting in this
paper. In references [35] and [36], Kamada and Carlson et al.
found that hidden layer bias b plays a key role in RBM
training convergence, and has the following relationship:

F
({
ak , b,W k

})
≤ F

(
θK
)
+ 〈∇bF(θk ), b− bk 〉

+
n
2

∥∥∥b− bk∥∥∥2
∞

(16)

which is derived from the Lipschitz continuous (please
see [28] for details), where,

{
ak , b,W k

}
represent the bias

vector of visible layer, the bias vector of hidden layer and
weight respectively.

Through observation, it is found that the optimal model
training result can be achieved when the relationship between
cumulative iteration error and hidden layer bias b satisfies the
formula (17):

ε ≤
n
2
×

n∑
i=1

b2i (17)

where ε is the iteration error of single iterative training for a
single RBM according to n training samples, and b is the bias
vector of the hidden layer.

Therefore, this paper proposes to determine the stop time
by observing the cumulative error ε of multiple iterations,
and proposes to use the hidden layer bias b to judge whether
the threshold of cumulative error ε is reached and stop the
iteration.

Therefore, it is proposed to use the hidden layer bias b to
judge whether the accumulated error ε threshold is reached
and stop the iteration. The implementation process is shown
in Fig. 3. Among them, the meaning of v1, v2, b are men-
tioned in formula (1).

The main implementation steps of iterative optimization
algorithm on the basis of loss threshold can be described as:

(1) Parameter setting before RBM pre training: set the ini-
tial value i of the number of iterations and themaximum value
T of the number of iterations according to the experience
value, so as to ensure that the model is optimal after T cycles.
(2) Start RBM pre training. After Step 1 in Section 2.1 of

Chapter 2, the single training iteration error is obtained

FIGURE 3. Variation of iteration error and threshold for each layer during
layer-by-layer training.

according to formula (18) below.

ε =
∑

(v1 − v2)2 (18)

(3) Determine whether ε ≤ n
2 ×

n∑
i=1

b2i is satisfied. If the

result is true, the model training is considered to be optimal
and the iteration is stopped. Otherwise, continue the iteration
according to the new iteration error, where the iteration of ε
is realized according to the following formula:

ε = ε +
∑

(v1 − v2)2 (19)

Repeat Step 2 until the number of iterations i reaches the
preset maximum number T , RBM pre training stops.
Fig. 4 can be obtained by data verification. It is found

that the model stops iteration when ε satisfies formula (17),
which not only guarantees the sufficiency of model training,
but also greatly shortens the training time. At the same time,
the setting of training times t also achieves the adaptive effect.
The number of iterations corresponding to the intersection of
the two lines is the number of iterations stopped during RBM
pre training.

Taking the gear vibration signals collected on the QPZZ-II
platform as an example, when classifying gear diagnosis
signals of 6 states, on the premise that the optimal diagnosis
results can be achieved, an

optimization algorithm based on the ε threshold and a tradi-
tional algorithm are used. Perform classification experiments
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FIGURE 4. Variation of iteration error and threshold for each layer during
layer-by-layer training.

on the signals. The diagnostic time and diagnostic accuracy
are recorded in the tables below:

From Tables 1 and Table 2, it can be found that when an
optimization algorithm based on the ε threshold is used to
ensure higher diagnostic accuracy. Compared with traditional
algorithms, the diagnosis time is also greatly reduced, and the
ideal effect of preventing overfitting is achieved.

TABLE 1. Comparison 1 of experimental results under different methods.

TABLE 2. Comparison 2 of experimental results under different methods.

C. WAVELET PACKET ENERGY ENTROPY
When the high frequency band of wavelet transform is further
decomposed, the signal can be analyzed more precisely, and
the frequency band can be divided in the full band range, fur-
ther improving the frequency resolution [37], [38]. Therefore,
the wavelet packet decomposition based on the orthogonal
wavelet basis function can not only decompose the signal in
the low-frequency and high-frequency parts at the same time
but also select the resolution of the signal in different fre-
quency bands adaptively. The signals in each decomposition
frequency band are independent of each other without redun-
dancy or omission. The wavelet packet decomposition obeys

the energy conservation criterion [39], [40]. The expression
orthogonal wavelet packet decomposition is as follows:

c2n (t) = 21/2
∑
k∈Z

h (k) cn (2t − k)

c2n+1 (t) = 21/2
∑
k∈Z

g (k) cn (2t − k)
(20)

where h(k) and g(k) represent high pass filter and low pass
filter respectively, g (k) = (−1)k h (1− k) and the two coef-
ficients are orthogonal.

When n = 0, c0(t) degenerates to scale function ϕ(t) and
c1(t) degenerates to wavelet basis function ψ(t). Therefore,
the function system {cn(t)} is named the orthogonal wavelet
packet.

If the data length of the original signal x(t) is N , the data
length of the discrete signal xk,m (i) in the decomposition
band is reduced to 2−kN , and its energy can be expressed as:

E
(
xk,m (i)

)
=

1
2−k (N − 1)

∑2−kN

i=1

(
xk,m (i)

)2
(21)

where k represents the number of decomposition, m = 0, 1,
2, . . . , 2k − 1, indicating the position sequence number of
the decomposition band. The relative energy of the m-band
decomposition signal can be expressed as:

Em =
E(xk,m(i))
E(x(t))

(22)

In the formula (22), E(x(t)) is the sum of total energy.
According to the principle of conservation of energy,
2−k∑
m=0

Em = 1.

WPEE is to take the normalized energy feature of wavelet
packet as the probability distribution of vibration signal, carry
out information entropy operation and extract the vibration
signal feature [41]–[43]. The advantage of this method is that
one-dimensional data of energy entropy is used to replace
the number of eigenvectors that may be multi-dimensional,
which makes the algorithm simpler and faster when it is
used for state monitoring and prediction. In the fault feature
extraction of bearing, the method of obtaining the wavelet
packet energy entropy can be described as:

(1) The fault data of rolling bearing is decomposed by
wavelet packet in layer i, and the signals of 2i frequency bands
are obtained, which are arranged in order from low frequency
band to high frequency band.

(2) After the coefficients of each band are reconstructed,
the band energy is computed; the total energy of each layer
is obtained by accumulation. The total energy of layer I was
normalized.

(3) According to formula (22), the information entropy is
calculated, and the eigenvectors of each state of vibration
signal are obtained:

Ep = {Em,m = 1, 2, . . . ,M} (23)

where, p represents the serial number of signal acquisition,
p = 1, 2, 3, . . . , p.
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(4) Definition of WPEE: due to different wavelet packet
energy distribution of different faults, each fault state can be
represented by different HE .

D. MULTISCALE PERMUTATION ENTROPY
Multiscale permutation entropy is defined as permutation
entropy at different scales [44]–[46]. This method can be
described as:

(1) There is a time-series signal {x (i) , i = 1, 2, . . . ,N },
and coarse-grained processing is performed to obtain a
coarse-grained sequence {yTj }.
yTj is expressed as:

y(τ )j =
1
τ

∑jτ

i=(j−1)τ+1
xi j = 1, 2, . . . , [N/τ ] (24)

where [N/τ ] means rounding N/τ and it is a scale factor,
τ = 1, 2, . . .. Obviously, the coarse-grained sequence is
the original sequence at τ = 1; the original sequence is
coarse-grained into a coarse-grained sequence with a length
of [N/τ ] at τ >1.
(2) The permutation entropy of each coarse-grained

sequence is calculated and plotted as a function of scale
factor. The process is called multiscale permutation entropy
analysis.

Generally, the maximum value of scale factor is more than
10 [47], [48]. To keep entropy independent of the length of
coarse-grained sequence [N/τ ], τ = 12 is selected in this
paper. If the value of m is too small, PE value will decrease
with the increase of scale factor, but the larger m is, the more
time-consuming the calculation is. In this paper, m = 4 is
selected.

III. FAULT DIAGNOSIS METHOD
In view of the dependence of traditional feature extraction
methods on expert experience and the long time-consuming
analysis of vibration data, a DBN fault diagnosis method
based on WPEE-MPE is proposed. The implementation pro-
cess is shown in Fig.5.

IV. EXAMPLES OF DIAGNOSIS
To demonstrate the effectiveness of this method in gear fault
diagnosis, this paper performs fault diagnosis experiments on
the rotary machinery vibration analysis fault diagnosis test
platform system namedQPZZ-II and amulti-stage gear trans-
mission system test bench. The device is shown in Fig.6 and
Fig.7.

Fig. 6 is a QPZZ-II rotating machinery fault diagnosis
test platform, which can simulate single gear fault such as
large gear pitting, large gear broken teeth, pinion wear, and
compound gear fault such as large gear broken tooth com-
pound small gear wear and Gear pitting compound pinion
wear fault. Fig.7 is a fixed-shaft variable-speed gearbox. The
test bench can simulate single fault of various gearboxes, such
asmissing gear teeth, gear cutting, and root cracks. This paper
collects vibration data through these two platforms, and uses

FIGURE 5. Flow chart of the proposed method.

FIGURE 6. QPZZ-II test platform.

the method proposed in this paper to diagnose and classify
them.

A. GEARBOX DATA OF QPZZ-II TEST PLATFORM
The types of gear fault collected on the QPZZ-II test platform
include normal status signals, three single fault signals, and
two composite fault signals, which are the gear pitting fault
signal, the gear breakage fault signal, the pinion wear fault
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FIGURE 7. Fixed-shaft variable speed gearbox.

FIGURE 8. WPEE feature distribution of the original signal.

FIGURE 9. MPE feature distribution of the original signal.

signal, and the gear broken tooth compound pinion wear fault
signal, large gear pitting compound pinion wear fault signal,
a total of 6 states of gearbox vibration signal data. For these
six signals, the wavelet packet energy entropy and multi-
scale permutation entropy distribution are obtained, as shown
in Fig.8 and Fig.9, and they are combined to form a feature
matrix as shown in Fig.10. Normalize the data according
to formula (25), and use them as training samples and test
samples.

y =
(ymax−ymin )× (x − xmin)

xmax − xmin
+ ymin (25)

FIGURE 10. WPEE-MPE-based combined feature distribution.

The training samples are input to the DBN neural network,
and the threshold is set according to formula (17) to prevent
over fitting of a single RBM during training. Where ε rep-
resents the cumulative error of a single iteration training of
a single RBM according to n training samples, and b repre-
sents the bias of the hidden layer. Comparison results of this
method and the other three methods are shown in Table 3 and
Fig. 11.

TABLE 3. Comparison results of this method and the other three
methods.

In Fig. 11, the method 1 is to select MPE for feature
extraction and SVM for fault classification; the method 2 is
to select MPE for feature extraction and DBN neural network
for fault classification; the method 3 is to select WPEE for
feature extraction and DBN for fault classification; the last
method is to select WPEE-MPE for feature extraction and
improved DBN for fault classification. From Table 3 and
Fig. 11, it can be found that for example 1 data, when six types
of faults are classified, the method proposed in this paper can
get 100% diagnosis results, and achieve stable and reliable
diagnosis results at a lower time cost.

B. MEDIUM SPEED GEARBOX DATA
Fig. 7 is a fixed-shaft variable-speed gearbox. This test bench
can simulate several single fault of the gearbox under var-
ious operating conditions, such as missing gear teeth, gear
cutting, cracks on the roots, etc. The vibration signals in the
four gear states collected under single working conditions
and multiple working conditions with variable speed and
variable load were analyzed to demonstrate the effectiveness
of the proposed method. First, by calculating the wavelet
packet energy entropy distribution of the vibration signal and
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FIGURE 11. Classification results of multiple methods.

the multiscale permutation entropy distribution, the feature
matrix is data normalized according to equation (25) to form
a feature matrix. Then determine training and test samples;
adjust the parameters of the DBN neural network; input
training samples into it and prevent overfitting during RBM
training according to formula (17) and further generate a
model. Finally, using the trained model to classify the test
samples.

First, classify the vibration data under a single operat-
ing condition. The signal takes vibration data with a speed
of 880 r/min under no load as the signal sample trains the
model through the above steps, and then inputs the test sam-
ple into the model to obtain the classification result shown

in Fig.12. Among them, the first label represents a vibration
signal in a normal state, and the second label, the third label,
and the last label respectively represent vibration signals
when a gear is missing a gear, a gear is cut, and a tooth root is
cracked. It can be found that because the working conditions
are single and the signal distribution is relatively simple,
when the proposed method is applied to classification, not
only can a high accuracy rate be obtained, but the diagnosis
results are very stable, and the standard deviation of the
accuracy of multiple diagnosis is 0.

FIGURE 12. Classification of single working conditions.

When classifying complex data of variable load, although
the signals are signals of the same fault type, but the operating
conditions are different, even if the vibration data of the
same fault type, the distribution will be dispersed, as shown
in Fig.13(1) and Fig.13(2). This situation is more obvious
under the condition of variable speed, as shown in Fig.13(2).
Experiments show that the proposed model can realize high
diagnostic accuracy and stable diagnosis results, no matter
under single operating conditions or multiple operating con-
ditions with variable speed and variable load.

Fig.14 is shown the distribution of the number of iteration
stops after optimization of 15 repeated experiments under
variable speed and variable load conditions, it can be seen
that after threshold-based adaptation is used to prevent over
fitting, in repeated experiments with variable speed, the solid
blue line indicates the change in the number of iteration stops
during training after threshold adaptation is used. The maxi-
mum number of stops is 69. Therefore, it can be considered
that when the adaptive method is not used, the model must be
trained at least 69 epochs to train themodel to the optimal. But
in some trainings, it only takes far less than 69 epochs to get
the optimal model. Too many epochs will not only waste a lot
of time, but also cause over fitting, making the classification
results inaccurate. This is the significance of the threshold-
based adaptive prevention of over fitting mentioned in this
article.

Comparison of the accuracy and standard deviation
of multi-method and multi-condition diagnosis are shown
in Fig.15 and in Table 4, in order to highlight the standard
deviation difference, the standard deviation of all methods is
expressed as 100 times the original standard deviation. The
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FIGURE 13. Classification results of gear fault under variable load
condition.

FIGURE 14. Distribution of the number of iteration stops after
optimization of 15 repeated experiments under variable speed and
variable load conditions.

FIGURE 15. Comparison of the accuracy and standard deviation of
multi-method and multi-condition diagnosis.

method proposed in this article is Method 4. Through com-
parison, it is found that the standard deviation of the accuracy
of the 15 diagnostic tests in a single working condition is 0,

TABLE 4. Comparison of accuracy and standard deviation of
multi-method and multi-condition diagnosis.

that is, in 15 consecutive diagnoses; the model classifies all
samples correctly, so the model is considered to have high
application reliability.

V. CONCLUSION
The gearbox has a complicated operating environment.
To improve the effectiveness and ease of feature extraction
of gear vibration signals, a feature extraction method based
on WPEE and MPE is proposed, and the iteration number is
adaptive through the method of preventing overfitting based
on the loss threshold. Set up the trained model to achieve the
best convergence effect and complete the fault classification
based on DBN. The validity and stability of the proposed
method are confirmed by two sets of variable-mode vibration
data collected on the QPZZ-II rotating machinery vibration
analysis fault diagnosis test platform system and a company’s
multi-stage gear transmission system test bench. The analysis
results show that this method not only simplifies the feature
extraction step of the gearbox vibration signal, not only can
accurately diagnose and classify the fault signal under vary-
ing conditions, but also greatly reduces the time spent on
diagnosis.
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