
Received June 9, 2020, accepted June 22, 2020, date of publication July 9, 2020, date of current version July 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3008256

CAxCNN: Towards the Use of Canonic Sign Digit
Based Approximation for Hardware-Friendly
Convolutional Neural Networks
MOHSIN RIAZ 1, REHAN HAFIZ 1, SALMAN ABDUL KHALIQ 1,
MUHAMMAD FAISAL 1, HAFIZ TALHA IQBAL 1, MOHSEN ALI 1,
AND MUHAMMAD SHAFIQUE 2, (Senior Member, IEEE)
1Computer Engineering Department, Information Technology University, Lahore 54700, Pakistan
2Institute of Computer Engineering, Vienna University of Technology (TU Wien), 1040 Vienna, Austria

Corresponding author: Rehan Hafiz (rehan.hafiz@itu.edu.pk)

This work was supported in part by the HEC (NRPU Project), AxVision-Application-Specific and Data-Aware Approximate-Computing
for Energy Efficient Image and Vision Processing Applications under Grant 10150.

ABSTRACT The design of hardware-friendly architectures with low computational overhead is desirable
for low latency realization of CNN on resource-constrained embedded platforms. In this work, we propose
CAxCNN, a Canonic Sign Digit (CSD) based approximation methodology for representing the filter
weights of pre-trained CNNs.The proposed CSD representation allows the use of multipliers with reduced
computational complexity. The technique can be applied on top of state-of-the-art CNNquantization schemes
in a complementary manner. Our experimental results on a variety of CNNs, trained on MNIST, CIFAR-10
and ImageNet datasets, demonstrate that our methodology provides CNN designs with multiple levels of
classification accuracy, without requiring any retraining, and while having a low area and computational
overhead. Furthermore, when applied in conjunction with a state-of-art quantization scheme, CAxCNN
allows the use of multipliers, which offer 77% logic area reduction, as compared to their accurate counterpart,
while incurring a drop in Top-1 accuracy of just 5.63% for a VGG-16 network trained on ImageNet.

INDEX TERMS Convolution neural networks, dedicated accelerators, approximate computing, canonic sign
digits.

I. INTRODUCTION AND RELATED WORK
Convolutional and Deep Neural Networks (DNNs) have
achieved significant popularity in the artificial intelligence
community for being particularly successful in challeng-
ing tasks such as handwritten digit recognition [1], object
classification [2], image recognition [3], super-resolution
[4]–[7] and autonomous driving [8]. Convolution layers of
a DNN comprise of filters whose weights are learned during
a training phase that typically involves backpropagation to
minimize the classification error. The trained CNN is then
utilized in the inference phase to perform the classification,
recognition, or other tasks. Deep CNNs are thus character-
ized by a large number of compute-intensive convolution
operations along-with enormous memory traffic and storage
requirements [9]. GPUs have been particularly successful in

The associate editor coordinating the review of this manuscript and

approving it for publication was Mitra Mirhassani .

speeding up the inference and training phases of DNNs [10].
However, their high energy demand has resulted in a growing
interest in the use of custom hardware designs, build using
ASICs and FPGAs. In particular, the recent push towards
emerging computing paradigms, such as Edge and Fog Com-
puting, is pushing the boundaries of the extent of compu-
tations that can be realized on devices that are constrained
with limited energy budget and are low on computational
resources [11]–[14]. Recently, Approximate Computing is
being employed to enable quality scalable designs on such
resource-constrained devices by relaxing the bounds of pre-
cise computing and provide new opportunities for improving
the area, energy, and performance efficiency of systems at
the cost of reduced output quality [15], [16]. In the con-
text of the realization of CNNs on such devices, researchers
are particularly devising schemes to reduce the computa-
tional complexity of CNN accelerators by quantizing their
filter weights. The reason is that the logic area and energy

127014 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-0980-5772
https://orcid.org/0000-0002-5062-3068
https://orcid.org/0000-0001-6642-4496
https://orcid.org/0000-0001-5254-4833
https://orcid.org/0000-0003-3594-950X
https://orcid.org/0000-0003-4809-8679
https://orcid.org/0000-0002-2607-8135
https://orcid.org/0000-0001-8512-6427

M. Riaz et al.: CAxCNN: Towards the Use of CSD Based Approximation for Hardware-Friendly Convolutional Neural Networks

FIGURE 1. The figure shows the effect of bit-width scaling on the
computational overhead of popular CNNs. Here Computational Overhead
is defined as the number of full adders required to implement the
convolution operation. A Substantial increase in the computational
overhead can be observed as we increase the bit-width. The inset
provides a magnified view of computational overhead for LeNet.

requirements of a custom dedicated design scale with the bit
width [17]. To demonstrate this, we evaluate the computa-
tional overhead of convolutional operations of a few popular
CNN architectures for various bit-widths. For the sake of
comparison, we define computational overhead as the num-
ber of full adders required to implement the convolution oper-
ations, assuming the use of Wallace trees [18] for the imple-
mentation of multipliers. Figure 1 plots the estimated compu-
tational overhead for LeNet [19], AlexNet [3] and ResNet-
50 [20] for 8, 9 and 10 bit fixed point implementations.
We note two observations. Firstly, the computational over-
head increases substantially as the number of convolutional
layers increase (ResNet-50 has 49 layers compared to 5 for
AlexNet). Secondly, each additional bit in the bit-width of
the design can cause a significant increase in computational
overhead (30% for one additional design bit for ResNet-50).
This increased computational complexity further adds to the
area and latency overhead since each additional bit that is
used to represent a filter weight results in the generation
of an additional partial product that has to be added during
the multiplication operation. Thus, a single-bit reduction in
the bit-width of a fixed point CNN accelerator design can
significantly reduce the area, compute energy, and latency.

A. STATE OF THE ART AND THEIR LIMITATIONS
A significant class of work related to the efficient implemen-
tation of CNNs aims at reducing the precision of convolu-
tional filter weights to take benefit of arithmetic units with
lower computational overhead [21], [22]. Binary (−1, 1) and
ternary (−1, 0, 1) networks have been successfully explored
in this context [23]–[25]; however, they require special-
ized retraining procedures to perform the backpropagation.
Trinh et al. [26] proposed a 7-bit significant position encod-
ing (SPE) scheme to achieve a 12.5 percent storage gain,
as compared to an 8-bit fixed point binary representation.
The technique made use of differential encoding and weight
scaling to represent the filter weights using fewer non-zeros.
However, due to the encoded nature of data representation,
standard binary arithmetic was no more applicable for their
computational units. In a recent effort, Gysel et al. [22]
studied the effect of precision quantization, specifically in the
context of dedicated architectures for CNNs. They proposed

three variants: a dynamic fixed-point representation, a mini
float representation, and a multiplier-less scheme that utilized
coefficients approximatedwith the power of 2. They observed
that dynamic fixed-point representation coupled with retrain-
ing provides the best results. Note that all the quantization
strategies mentioned above provide a rigid CNNmodel since
the filter weights are required to be retrained for a particular
quantization level. Thus, if it is needed to scale down the
design to a lower energy mode, complete retraining has to
be performed at a lower quantization level. consequently,
a separate corresponding set of weights has to be stored. This
limitation makes the state-of-art schemes less favorable for
quality-scalable accelerators that require configurable quality
modes [27], [28] to exploit performance/area trade-off for
resource-constrained devices. Thus, there is a need for a com-
plementary scheme that builds upon the existing pre-trained
network and tries to reduce further the computational over-
head irrespective of the quantization method used. Further-
more, to enable quality scalable design, it is also desired
that the scheme provides a systematic way to enable scalable
designs with various accuracy levels that can be selected as
per accuracy/resource requirements.

B. NOVEL CONTRIBUTIONS
In this paper, we propose CAxCNN, a Canonic Sign Digit
based Approximation methodology for Convolutional Neural
Networks. In particular, we analyze the use of our proposed
Sign Digit (CSD) representation for the filter weights of
CNNs and provide an associated error bound. The approxi-
mation aids in decreasing the number of non-zero terms in
the CSD representation, subsequently resulting in arithmetic
units with lower computational overhead. Our approach is
complementary and can be applied to quantized weights
obtained using the existing state of the art quantization
schemes and do not require further retraining/fine-tuning.
Furthermore, when employed with one of the proposed
approximate CSD representation, representation, CAxCNN
can aid in the design of quality-scalable architectures by
supporting multiple accuracy levels. Our CAxCNN tool-set
is provided as an open-source contribution [29] to aid in
reproducing the results and further research.

II. PROPOSED CAxCNN APPROXIMATION
METHODOLOGY
In the following, we first provide a few relevant properties
of CSD representation, followed by its relevance to CNNs.
Then we present our approximate CSD representation and
its associated error model. The section concludes with our
CAxCNN methodology that aids in designing of hardware
accelerators with reduced computational overhead.

A. CSD REPRESENTATION FOR FILTER WEIGHTS
Canonic sign digit representation uses ternary weights
{−1, 0, 1} to represent a binary number [30]. There are two
important properties of CSD numbers: Firstly, for an N-bit
binary number, its CSD representation has the least number

VOLUME 8, 2020 127015

M. Riaz et al.: CAxCNN: Towards the Use of CSD Based Approximation for Hardware-Friendly Convolutional Neural Networks

FIGURE 2. Multiplication of an input Y with a coefficient (with value 159)
represented in (a) Binary (b) Accurate CSD (c) Approximated CSD (φx =
2) and (d)Approximated CSD
(φx = 1) representation.

of non-zeros (−1,1). Secondly, adjacent bits in the CSD
representation cannot be both non-zero. An N-bit fixed-point
binary number, P, with m integer and n fractional bits can be
represented in an equivalent CSD representation as:

P = 2−n
N∑
i=0

pi2i (1)

where pi. ∈ {−1, 0, 1}. Since CSD representation re-codes
a binary number in a representation that requires φ (with
φ < N) non-zero digits, it helps reduce the computational
cost of various arithmetic operations. This representation is
particularly useful for the case when a number has to be
multiplied with a constant since the number of partial prod-
ucts is equivalent to the reduced number of non-zeros (φ).
These benefits can be exploited for the case of Deep CNNs
since the filters weights are static (once trained) and hence
can be converted to an equivalent CSD representation. The
ternary representation of-course requires N + 1 + φ bits to
be stored for each number: N + 1 bits to store the position
while φ bits to store the polarity (−1 or+1) of non-zero bits.
The benefit achieved in terms of reducing the computational
complexity is illustrated in Fig. 2. Let us assume an input
value Y being multiplied by a filter weight with value 159.
Assuming N=8, the multiplier is represented as 10011111 in
binary, and its dedicated circuit requires six shifts and five add
operations (Fig 2(a)). The corresponding CSD representation
for this constant multiplier is 10100001 with φ = 3. Here,
1 represents a negative weight (-1). It can be observed in fig
2(b) that CSD based representation results in a circuit that
requires just φ shifts and (φ − 1) add operations for the
same multiplication, thus reducing the overall computational
overhead.

B. APPROXIMATE CANONIC SIGN DIGIT
REPRESENTATION
Let P be a binary number accurately represented in CSD
using φ non-zeros. Its corresponding approximate repre-
sentation (CAx) is formulated by representing it using φx
non-zero ternary bits, where (φx < φ). Fig 2 (c and d) illus-
trate two approximate CSD representations for a coefficient
value of 159. We propose three approximation strategies,
as described below:
• CAxt , Truncated CAx : Provided a φx , only the most sig-
nificant φx non-zero ternary digits are retained. Similar
to a truncation operation, the rest of the least significant
non-zero digits are discarded.

Algorithm 1 CAxm Approximation
Input: W : Weight Matrix, φx : CSDNon-Zeros Limit,Qm.n:

QFormat, m Integer and n Fractional bits
Output: Wapprox : Approximated Weights
1: procedure CAxm (Win, φx ,Qm.n)
2: Wb← toBinary(W ,m, n)
3: WCSD← toCSD(Wb)
4: for each wCSD in WCSD do
5: NZIndices← NonZerosIndices(wCSD)
6: wApprox ← wCSD
7: NZCount ← CountNonZeros(wApprox)
8: i← 0
9: while NZCount > φx do
10: wCSD(NZIndices(i))← 0
11: NZCount ← NZCount − 1
12: i← i+ 1
13: end while
14: loss← |wCSD − wapprox |
15: wapprox ← Minimize(loss,win, φx ,m, n)
16: end for
17: end procedure

• CAxe , Exhaustive CAx : A truncated CSD representation
CAxt , of a binary number, may not necessarily be its clos-
est representation inφx non-zero ternary bits. Since there
may exist multiple approximate CSD representations for
a number, an analytical form solution may not be trivial.
Thus, for CAxt we perform an exhaustive search across
all possible φx non-zero digit CSD combinations to find
the closest match with the least error.

• CAxm , Minimal Search CAx : In minimal search approxi-
mation, we first computeCAxt , and then perform a local-
ized search in the neighborhood of the number P to find
a better candidate. This method reduces the search time
as compared to CAxe while providing an approximate
representation that is close to the original number. The
procedure is described in Algorithm 1.

Since we shall be applyingCAx approximation to the filters
of CNN, the floating-point weights are first converted to
binary with m integer and n fractional bits. A matrix of
such trained weights is passed to the CAxmApproximation
procedure, along-with its fixed-point bit-width information
(m, n) and the desired φx . The procedure converts the number
to an equivalent CSD representation using [30]. For each
number, the positions of non-zero digits are counted. The
desired number(φx) of most significant non-zero digits are
kept while rest are discarded by assigning a value of zero. This
representation matches that of CAxt . A loss function is then
computed that provides the measure of error incurred due to
approximation. A Loss Minimization procedure, Algorithm 2,
is then employed to search other CSD combinations that
lie within a neighborhood of window defined by the loss
function. Finally, the representation with minimum loss and
with a count of non-zeros equal to or less than φx is returned
as the approximated weight.

127016 VOLUME 8, 2020

M. Riaz et al.: CAxCNN: Towards the Use of CSD Based Approximation for Hardware-Friendly Convolutional Neural Networks

Algorithm 2 CAxm : Loss Minimization
Input: loss: Approximation error, win: Input weight, φx :

Non-Zero Limit Qm.n: Q-Format, m Integer and n Frac-
tional bits

Output: wapprox : Approximated CSD Weights
procedure Minimize(loss,win, φx ,Qm.n)
1: Generate all CSDs in range win-loss to win+loss
2: Remove Non-Zeros upto φx for all CSDs
3: Calculate lossnew for each approximated CSD
4: Return CSD with minimum lossnew
end procedure

C. APPROXIMATION ERROR ANALYSIS OF CAxCNN
When a binary number P is represented using CAxt repre-
sentation, an error is introduced due to the reduced num-
ber of non-zeros. The maximum error shall occur when the
maximum number of non-zeros is packed towards the most
significant bits. Since two consecutive digits cannot be non-
zero, the maximum error that can occur in representing an
N bit binary number using φx non-zero canonic sign digits is
given below in equation 2.

ECAxt ≤



2−n
d
N+1
2 e−φx−1∑
i=0

22i+1 if N is odd

2−n
d
N+1
2 e−φx−1∑
i=0

22i if N is even

(2)

Here n is the number of fractional bits of the binary number
P. This error bound applies to all the CSD approximations
since CAxt incurs the maximum accuracy loss.

D. CAxCNN METHODOLOGY
Our CAxCNN methodology is illustrated in Fig.3 and
described below. Libraries such as TensorFlow and Caffe are
employed to train the CNN and learn the filter weights. These
filter weights are typically learned as 32-bit floating-point
numbers [17]. The ranges of these values are then analyzed
(using tools such as MATLAB Fixed-Point Tool) to deduce
themaximum number of integer bits (m) required to represent
them.The decision to select the number of fractional bits
(n) directly affects the precision of the network. Typically,
the total bit-width (m+n) is capped to 32 or 16 bits, and
then the fixed-point simulations are carried out (in tools
such as MATLAB) to evaluate the drop in the accuracy
of the network. This step can be followed by systematic
bit-width reduction techniques, such as Ristretto [17], [22].
The Ristretto tool performs automatic network quantization
by evaluating different bit-widths for number representation
to find the right balance between compression rate and net-
work accuracy. These steps (highlighted in red color in Fig.3)
require fine-tuning/re-training of the learned weights. Once a
viable fixed-point representation meeting the desired accu-
racy level has been found, the quantized filter weights are

FIGURE 3. CAxCNN Methodology (highlighted in blue) for CSD based
approximation of CNNs.

passed on to the CAxCNNmethodology. Note that CAxCNN
methodology (highlighted in blue) can be applied to both
normal and reduced bit-width weights and is thus a comple-
mentary strategy. However, it is suggested to be employed
after some automatic bit width reduction technique [17], [22].
First, CAx approximations are applied to the filter weights
for various values of φx . Thus, for each φx , we get a par-
ticular configuration of weights. Classification accuracy is
then computed for each configuration. The configurations
that provide accuracy values that are equal to or better than
the minimum acceptable quality level (controlled via quality
control knob) are all eligible for hardware implementation.
The approximated weights result in a significant reduction
in the computational overhead due to reduced logic area
and latency. Thus the CAx approximations provide a realiz-
able quality control knob to gracefully trade-off quality vs.
area/latency benefits.

This methodology is particularly suitable for recently pro-
posed CNN accelerators exploiting batch processing [31] and
dynamic hardware reconfiguration [32]. Batch processing
involves processing the whole batch of input activations for
a particular layer of CNN. Since memory bandwidth and
storage requirement of the filter weights is averaged over the
entire batch, the storage overhead associated with the ternary
representation of the weights, as discussed in Section II.A
is lowered. When combined with dynamic hardware recon-
figuration, our CAxt approximate representation can be fur-
ther exploited to design quality-scalable accelerators. This
is because filter weights of varying accuracy levels can be
formed by discarding the non-zeros digits beyond the φx most
significant non-zeros. Accordingly, the related computational
logic can be either power/clock gated for the case of ASICs or
removed for the case of FPGAs. This is unlike schemes that
require a different encoding for each approximate representa-
tion [26] or the ones that perform retraining for each accuracy
level [17].

III. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we provide the results of our evaluation of
the proposed CAx approximation schemes and CAxCNN
methodology for four CNNs: A LeNet architecture (trained
on MNIST dataset for handwritten number classification),
a CIFAR10 network (trained on CIFAR-10 dataset for image
classification) and, an AlexNet [3] and a VGG-16 [33]

VOLUME 8, 2020 127017

M. Riaz et al.: CAxCNN: Towards the Use of CSD Based Approximation for Hardware-Friendly Convolutional Neural Networks

TABLE 1. Absolute Mean Error, Max Error and Error Upper Bound for CAx
based approximations for various values of φx .

TABLE 2. Time required for computing CAx Approximations.

network (trained on ImageNet dataset for image classifica-
tion). To demonstrate that CAx provides effective represen-
tation for CNN’s filter weights, we compared the accuracy
achieved to that of Gysel et al. who reported the accuracy of
their quantized LeNet and CIFAR in [17] and for AlexNet
in [22]. It is pertinent to note here that this comparison is pro-
vided for illustrating the robustness of CSD based approxima-
tion. In reality, our technique is complementary in a way that
it is applied together with the quantizaiton schemes. Thus,
towards the end, we also provide the results of CAxCNN in
a complementary setup where the proposed CAx approxima-
tions are being applied to a VGG-16 network quantized using
state-of-art dynamic fixed-point quantization [22].

A. EVALUATING THE CAx APPROXIMATIONS
We apply the proposed CAxt , CAxm , and CAxe approxima-
tions to the filter weights of LeNet for various values of
φx . We report the maximum and mean of the absolute error
introduced to the trained filter representation in Table 1. For
these results a LeNet implementation with Q4.4 representa-
tion for filter weights was used. It can be observed that CAxm
provides the same error performance as that of CAxe . CAxt
approximation is providing slightly elevated levels of error;
however, the numerical results are still within the theoretical
error bound provided by equation 2.

For a large CNN, approximations can take a consider-
able time to be computed as the number of filters is large.
In order to assess the computational overhead of the proposed
CAx approximation schemes, we report the average time to
approximate a LeNet filter weight in Table 2. The scripts
were run on a Core i5 machine with 16 GB RAM, using
MATLAB. CAxm and CAxe require 25x and 83x more time
as compared with CAxt for the respective approximation to
be computed. CAxm can thus be conveniently applied instead
of the time-consuming CAxe since both introduce the same
level of errors.

CAx representation allows the use of multipliers with low
computational overhead (as illustrated in Section II.B) at the
cost of approximation. To evaluate this benefit, we compared
the synthesis results of an accurate 8-bit Booth multiplier to
that of a corresponding multiplier design considering φx =
3, 2 and 1, respectively. Table 3 reports the number of BELs,
LUTs, and the corresponding latency. The designs were syn-
thesized on a Xilinx Virtex-5 XC5VLX20T FPGA using
Xilinx ISE 14.7 IDE. It can be observed that CAx provides
45%, 77%, and 97% area benefits in terms of BEL usage, and
17%, 29% and, 55% improvement in latency for φx = 3, 2
and 1 respectively. This improvement is primarily due to
the reduced number of shifters and adders required for CSD
based binary arithmetic. Table 3 also reports the error intro-
duced due to the approximate representation of the multiplier.
For this, we performed exhaustive simulations over all the
possible input combinations of an 8-bit multiplier and ana-
lyzed the Mean Absolute Error (MAE), the Worst Case Error
(WCE), and the Mean Absolute Percentage Error (MAPE)
incurred. It can be observed that even with φx = 2, the MAE
value is 499, with a MAPE of only 2.95%. Since CAx is
an approximate representation, to further assess the area
and latency benefit per unit accuracy-drop, we compared
our performance to that of three state-of-art approximate
multipliers [34]–[36]. Open-source implementations of these
multipliers were utilized for reproducible results. Since these
multipliers provide multiple configurations, we selected a
variant from each of these that either provided a comparable
value of latency or error. For DRUM [34], a configuration of
DRUM (8,4) was utilized. For [35], the Mult8× 8Cc imple-
mentation was used that consists of a combination of 4 × 2
and 4 × 4 approximate multipliers along with approximate
addition. For [36] the online implementation of logMultK_w
with w= 5 was utilized. In Table 3, the Blue, Green, and Red
colors highlight the best, 2nd best and 3rd best value within
each column, respectively (excluding Booth-8 multiplier).
It can be observed that while DRUM [34] provides a latency
that is comparable with φx = 3, the error incurred is much
higher. Similarly, φx = 2 representation results in amultiplier
design that has lower latency and error (MAE, MAPE) as
compared to Mult8 × 8Cc [35] and logMultK_w [36]. The
area requirement of the multipliers that are designed for the
proposed CAx representation is also lower as compared to
the approximate multipliers being evaluated. We, however,
emphasize here thatCAx is a representation scheme and hence
does not directly compete with the existing approximate mul-
tipliers. The design of approximate multipliers may also be
tailored for CAx representation to take benefit of the reduced
number of partial products that are inherently provided by the
canonic representation.

B. EVALUATING CAxCNN METHODOLOGY
We applied the CAxCNN methodology to LeNet and
CIFAR10. The classification accuracy (%age) for various
accuracy modes is provided in Table 4 for all the three CAx
approximations. It can be observed that the classification

127018 VOLUME 8, 2020

M. Riaz et al.: CAxCNN: Towards the Use of CSD Based Approximation for Hardware-Friendly Convolutional Neural Networks

TABLE 3. Comparison of synthesis results and error evaluation for 8× 8
multiplication. The table provides results for an accurate 8× 8 Booth
multiplier and compares against the multiplier required for various values
of φx considering CAx approximations. The table also provides the
synthesis and error results for a few state-of-the-art approximate
multipliers. The Blue, Green, and Red colors highlight the best, 2nd best
and 3rd best value within each column, respectively (excluding
Booth-8 multiplier). φx = 2 representation results in a multiplier design
that provides the best area, latency, and MAE values.

TABLE 4. Classification Accuracy (%age) of LeNet and CIFAR10 for
various φx .

TABLE 5. Classification Accuracy (%age) for CAxCNN based CNNs.

accuracy of LeNet is marginally affected by the approxima-
tions. Even for CIFAR10, which is a more extensive network,
all the three CAx approximation schemes provide graceful
degradation of accuracy as we move from φ = 3 to 1.
CAx approximations can thus be utilized as an efficient

quality control knob for quality scalable design as CAxCNN
avoids further retraining/fine-tuning. The methodology can,
therefore, be used to design run-time accuracy-configurable
hardware accelerators by gating the logic that relates to the
truncated CSD bit. The associated routing and control over-
heads have to be, however, evaluated in detail.

We also compared the classification accuracy of LeNet,
CIFAR10, and AlexNet quantized using the Dynamic
Fixed-Point scheme of Ristretto [22] and those approxi-
mated using CAxt based CAxCNN. The results are reported
in Table 5. Accuracy values for 8 bit fixed-point implemen-
tations are also provided. It can be observed that for all the
three CNNs, we are achieving accuracy values that are on
par with the state-of-the-art. Furthermore, there is again a

TABLE 6. Classification Accuracy (%age) for CAxCNN applied on
VGG-16 [33] with quantized coefficients generated by Ristretto [22] tool
using Dynamic Fixed-Point quantization scheme.

graceful degradation in quality, as wemove from φx = 3 to 1,
even for the relatively deeper AlexNet. The drop in Top-1
accuracy is just 0.03% and 0.51% for φx = 3 and 2,
respectively, for AlexNet. The motivation for this comparison
was to demonstrate that a small number of non-zeros in CSD
can represent CNNs with reasonable accuracy.

C. CAxCNN APPROXIMATION WITH RISTRETTO
QUANTIZATION
CAxCNN is a complementary technique and can be
applied together with state-of-the-art quantization schemes.
To demonstrate this, we apply CAxCNN on the filter weights
of the VGG-16 network that has already quantized using the
dynamic fixed-point quantization scheme of Ristretto [22].
Table-6 reports the classification accuracy for various values
of φx . It can be observed that there is a graceful degradation
in the accuracy as we move from φx = 3 to 1. Specifically,
the drop in top-1 accuracy is 5.63.% for a CAx configuration
with φx = 2, which provided 77% area benefit as per
Table-3. Thus, CAxCNN provides efficient representation to
enable the design of accelerators with lower computational
complexity.

IV. CONCLUSION AND FUTURE WORK
ACAxCNNmethodology, based upon an approximated CSD
representation for the filter weights of CNNs was proposed.
This methodology aids in the development of hardware
accelerators for CNNs with low computational overhead.
CAxCNN provides approximation schemes with various
approximation levels, and their associated error bound.
Evaluations on LeNet, CIFAR, AlexNet, and VGG-16
demonstrate that CAx based approximations provide low
computational overheadwith acceptable quality. Themethod-
ology can be employed to design quality-scalable accelerators
by exploiting batch processing and dynamic reconfiguration
with CAxt approximation.

REFERENCES
[1] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard,

W. E. Hubbard, and L. D. Jackel, ‘‘Handwritten digit recognition with a
back-propagation network,’’ in Proc. Adv. Neural Inf. Process. Syst., 1990,
pp. 396–404.

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

VOLUME 8, 2020 127019

M. Riaz et al.: CAxCNN: Towards the Use of CSD Based Approximation for Hardware-Friendly Convolutional Neural Networks

[4] L. Zhou, Z. Wang, Y. Luo, and Z. Xiong, ‘‘Separability and compactness
network for image recognition and superresolution,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 30, no. 11, pp. 3275–3286, Nov. 2019.

[5] K. Jiang, Z. Wang, P. Yi, G. Wang, T. Lu, and J. Jiang, ‘‘Edge-enhanced
GAN for remote sensing image superresolution,’’ IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 8, pp. 5799–5812, Aug. 2019.

[6] Z. Wang, P. Yi, K. Jiang, J. Jiang, Z. Han, T. Lu, and J. Ma, ‘‘Multi-
memory convolutional neural network for video super-resolution,’’ IEEE
Trans. Image Process., vol. 28, no. 5, pp. 2530–2544, May 2019.

[7] P. Yi, Z. Wang, K. Jiang, Z. Shao, and J. Ma, ‘‘Multi-temporal ultra dense
memory network for video super-resolution,’’ IEEE Trans. Circuits Syst.
Video Technol., Jul. 1, 2020, doi: 10.1109/TCSVT.2019.2925844.

[8] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Müller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba, ‘‘End to end learning for self-driving cars,’’ 2016,
arXiv:1604.07316. [Online]. Available: http://arxiv.org/abs/1604.07316

[9] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, ‘‘Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,’’ IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[10] NVIDIA DGX-1 Artificial Intelligence System. Accessed: Sep. 16, 2017.
[Online]. Available: http://images.nvidia.com/content/technologies/deep-
learning/pdf/Datashe%et-DGX1.pdf

[11] S. Wu, D. Hu, S. Ibrahim, H. Jin, J. Xiao, F. Chen, and H. Liu,
‘‘When FPGA-accelerator meets stream data processing in the edge,’’ in
Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2019,
pp. 1818–1829.

[12] S. Du, T. Huang, J. Hou, S. Song, and Y. Song, ‘‘FPGA based acceleration
of game theory algorithm in edge computing for autonomous driving,’’
J. Syst. Archit., vol. 93, pp. 33–39, Feb. 2019.

[13] C. Lammie, A. Olsen, T. Carrick, and M. R. Azghadi, ‘‘Low-power and
high-speed deep FPGA inference engines for weed classification at the
edge,’’ IEEE Access, vol. 7, pp. 51171–51184, 2019.

[14] X. Xu, Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu, and Y. Shi, ‘‘Scaling
for edge inference of deep neural networks,’’Nature Electron., vol. 1, no. 4,
p. 216, 2018.

[15] S. Behroozi, J. Li, J. Melchert, and Y. Kim, ‘‘SAADI: A scalable accuracy
approximate divider for dynamic energy-quality scaling,’’ in Proc. 24th
Asia South Pacific Design Autom. Conf., Jan. 2019, pp. 481–486.

[16] D. Wu, T. Chen, C. Chen, O. Ahia, J. S. Miguel, M. Lipasti, and Y. Kim,
‘‘SECO: A scalable accuracy approximate exponential function via cross-
layer optimization,’’ in Proc. IEEE/ACM Int. Symp. Low Power Electron.
Design (ISLPED), Jul. 2019, pp. 1–6.

[17] P. Gysel, M. Motamedi, and S. Ghiasi, ‘‘Hardware-oriented approximation
of convolutional neural networks,’’ 2016, arXiv:1604.03168. [Online].
Available: https://arxiv.org/abs/1604.03168

[18] J. Fadavi-Ardekani, ‘‘M* N booth encoded multiplier generator using
optimized Wallace trees,’’ IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 1, no. 2, pp. 120–125, Jun. 1993.

[19] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[20] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[21] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, ‘‘Deep
learning with limited numerical precision,’’ in Proc. 32nd Int. Conf. Mach.
Learn. (ICML), 2015, pp. 1737–1746.

[22] P. Gysel, J. Pimentel, M. Motamedi, and S. Ghiasi, ‘‘Ristretto: A frame-
work for empirical study of resource-efficient inference in convolutional
neural networks,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11,
pp. 5784–5789, Nov. 2018.

[23] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, ‘‘Bina-
rized neural networks: Training deep neural networks with weights and
activations constrained to +1 or -1,’’ 2016, arXiv:1602.02830. [Online].
Available: http://arxiv.org/abs/1602.02830

[24] M. Kim and P. Smaragdis, ‘‘Bitwise neural networks,’’ 2016,
arXiv:1601.06071. [Online]. Available: http://arxiv.org/abs/1601.06071

[25] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, ‘‘XNOR-Net:
Imagenet classification using binary convolutional neural networks,’’ in
Proc. Eur. Conf. Comput. Vis., Springer, 2016, pp. 525–542.

[26] H.-P. Trinh, M. Duranton, and M. Paindavoine, ‘‘Efficient data encoding
for convolutional neural network application,’’ ACM Trans. Archit. Code
Optim. (TACO), vol. 11, no. 4, p. 49, 2015.

[27] M. Shafique, R. Hafiz, M. U. Javed, S. Abbas, L. Sekanina, Z. Vasicek,
and V. Mrazek, ‘‘Adaptive and energy-efficient architectures for machine
learning: Challenges, opportunities, and research roadmap,’’ in Proc. IEEE
Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2017, pp. 627–632.

[28] M. Alioto, V. De, and A. Marongiu, ‘‘Energy-quality scalable integrated
circuits and systems: Continuing energy scaling in the twilight of Moore’s
law,’’ IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 8, no. 4, pp. 653–678,
Dec. 2018.

[29] Caxcnn Library. Accessed: Jul. 8, 2020. [Online]. Available: http://vispro.
itu.edu.pk/open-source-lib/

[30] G. A. Ruiz and M. Granda, ‘‘Efficient canonic signed digit recoding,’’
Microelectron. J., vol. 42, no. 9, pp. 1090–1097, Sep. 2011.

[31] Y. Shen, M. Ferdman, and P. Milder, ‘‘Escher: A CNN accelerator with
flexible buffering to minimize off-chip transfer,’’ in Proc. IEEE 25th Annu.
Int. Symp. Field-Program. Custom Comput. Mach. (FCCM), Apr. 2017,
pp. 93–100.

[32] M. Putic, A. Buyuktosunoglu, S. Venkataramani, P. Bose, S. Eldridge,
and M. Stan, ‘‘DyHard-DNN: Even more DNN acceleration with dynamic
hardware reconfiguration,’’ inProc. 55th ACM/ESDA/IEEEDesign Autom.
Conf. (DAC), Jun. 2018, pp. 1–6.

[33] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online]. Avail-
able: http://arxiv.org/abs/1409.1556

[34] S. Hashemi, R. I. Bahar, and S. Reda, ‘‘DRUM: A dynamic range unbiased
multiplier for approximate applications,’’ in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), Nov. 2015, pp. 418–425.

[35] S. Ullah, S. Rehman, B. S. Prabakaran, F. Kriebel, M. A. Hanif,
M. Shafique, and A. Kumar, ‘‘Area-optimized low-latency approxi-
mate multipliers for FPGA-based hardware accelerators,’’ in Proc. 55th
ACM/ESDA/IEEE Design Autom. Conf. (DAC), Jun. 2018, pp. 1–6.

[36] M. S. Kim, A. A. D. Barrio, L. T. Oliveira, R. Hermida, and
N. Bagherzadeh, ‘‘Efficient Mitchell’s approximate log multipliers for
convolutional neural networks,’’ IEEE Trans. Comput., vol. 68, no. 5,
pp. 660–675, May 2019.

MOHSIN RIAZ received the B.S. degree in elec-
trical engineering from the University of Engi-
neering and Technology (UET), Lahore, Pakistan,
in 2009, and the M.S. degree from the Lahore
University of Management and Sciences (LUMS),
in 2014. He has worked as a Research
Associate with the Vision Processing Labora-
tory (Vispro), Information Technology Univer-
sity (ITU), Pakistan, in 2018. His research interests
include hardware optimization for deep learning
architectures and digital system design.

REHAN HAFIZ received the Ph.D. degree in EE
from the University of Manchester, U.K., in 2008.
He has served as an Assistant Professor with
the School of Electrical Engineering and Com-
puter Science, National University of Sciences and
Technology, from 2008 to 2015. He is currently a
Professor with the Computer Engineering Depart-
ment, Information Technology University (ITU),
Lahore. He founded and directed the Vision Image
and Signal Processing (VISpro) Laboratory that

focuses on vision system design, development of power efficient archi-
tectures, design of approximate computing-based hardware accelerators,
FPGA-based designs, multi-projector and immersive display technologies,
and applied image and video processing. He holds several patents in USA,
South Korean, and Pakistan patent office. He has published several articles
related to custom processor design, application specific processor designing,
video stabilization, multi-projector rendering, and approximate computing.

127020 VOLUME 8, 2020

http://dx.doi.org/10.1109/TCSVT.2019.2925844

M. Riaz et al.: CAxCNN: Towards the Use of CSD Based Approximation for Hardware-Friendly Convolutional Neural Networks

SALMAN ABDUL KHALIQ received the B.S.
degree in electrical engineering from the Pakistan
Institute of Engineering and Applied Sciences
(PIEAS), Islamabad, in 2014, and the M.S. degree
in electrical engineering from Information Tech-
nology University (ITU), Lahore, in 2019. He was
aGraduate ResearchAssistant with theVision Pro-
cessing Laboratory. His research interests include
hardware optimization for deep learning architec-
tures and digital system design.

MUHAMMAD FAISAL received the B.S. degree
in computer science from COMSATS University,
Pakistan, in 2016, and the M.S. degree from Infor-
mation Technology University (ITU), Pakistan,
in 2018. He is currently working as a Research
Associate with the Vision Processing (VisPro)
Laboratory. Prior to joining VisPro, he has worked
as a Graduate Research Assistant with the Intelli-
gent Machines Laboratory. His research interests
include computer vision and deep learning.

HAFIZ TALHA IQBAL received the B.S. degree
in electrical engineering from the National Univer-
sity of Sciences and Technology (NUST) Islam-
abad, in 2017. He is currently pursuing the M.S.
degree in electrical engineering with Information
Technology University (ITU), Lahore. He was
a Research Assistant with LUMS and a Gradu-
ate Fellow with the VISpro Laboratory, ITU. His
research interests include approximate computing,
wearable devices, and digital system design.

MOHSEN ALI received the Ph.D. degree in the
area of computer vision from the CISE, University
of Florida. He is currently an Assistant Profes-
sor with Information Technology University (ITU)
and the Co-Founder of the Intelligent Machines
Laboratory. IML has been established with the
objective to allow researchers and engineers work-
ing in machine learning, computer vision, and
robotics to work together and solve real-world
problems. His current research interests include

theoretical and practical problems entailing computer vision and machine
learning; and apply them in the field of video and image analysis, remote
sensing, and affective computing. His group works extensively in deep
learning both extending theoretical foundations and applying them to create
practical solutions. He is also a Fulbright Scholar, an alumnus of PUCIT and
LUMS. His research articles have been published in top ranking venues of
computer vision research.

MUHAMMAD SHAFIQUE (Senior Member,
IEEE) received the Ph.D. degree in computer
science from the Karlsruhe Institute of Technol-
ogy (KIT), Germany, in January 2011. He was
with Streaming Networks Pvt., Ltd., where he
was involved in research and development of
video coding systems for several years. He has
been a Full Professor of Computer Architec-
ture and Robust Energy-Efficient Technologies
(CARE-Tech.) with the Institute of Computer

Engineering, TUWien, Austria, since November 2016. His research interests
include computer architecture, power-/energy-efficient systems, robust com-
puting, hardware security, brain-inspired computing trends like neuromor-
phic and approximate computing, embedded artificial intelligence, hardware
and system-level design for machine learning, emerging technologies and
nanosystems, FPGAs, MPSoCs, and embedded systems. His research has a
special focus on cross-layer modeling, design, and optimization of comput-
ing and memory systems, as well as their deployment in use cases from the
Internet of Things (IoT), cyber-physical systems (CPS), and ICT for devel-
opment (ICT4D) domains. He holds one U.S. patent and has (co)authored six
books, more than ten book chapters, and over 200 papers in premier journals
and conferences. He is a Senior Member of the IEEE Signal Processing
Society (SPS) and a member of the ACM, SIGARCH, SIGDA, SIGBED,
and HIPEAC. He has given several Keynote, Invited Talks, and Tutorials.
He has served on the TPC of numerous prestigious IEEE/ACM conferences.
He has received the 2015 ACM/SIGDA Outstanding New Faculty Award,
six gold medals in his educational career, and several best paper awards and
nominations at prestigious conferences like CODES+ISSS, DATE, DAC,
and ICCAD, the Best Master Thesis Award, the DAC’14 Designer Track
Best Poster Award, the IEEETransactions on Computers Feature Paper of the
Month Awards, and the Best Lecturer Award. He has also organized many
special sessions at premier venues and served as the Guest Editor for the
IEEE Design and Test Magazine and the IEEE TRANSACTIONS ON SUSTAINABLE

COMPUTING.

VOLUME 8, 2020 127021

	INTRODUCTION AND RELATED WORK
	STATE OF THE ART AND THEIR LIMITATIONS
	NOVEL CONTRIBUTIONS

	PROPOSED CAxCNN APPROXIMATION METHODOLOGY
	CSD REPRESENTATION FOR FILTER WEIGHTS
	APPROXIMATE CANONIC SIGN DIGIT REPRESENTATION
	APPROXIMATION ERROR ANALYSIS OF CAxCNN
	CAxCNN METHODOLOGY

	EXPERIMENTAL RESULTS AND DISCUSSION
	EVALUATING THE CAx APPROXIMATIONS
	EVALUATING CAxCNN METHODOLOGY
	CAxCNN APPROXIMATION WITH RISTRETTO QUANTIZATION

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	MOHSIN RIAZ
	REHAN HAFIZ
	SALMAN ABDUL KHALIQ
	MUHAMMAD FAISAL
	HAFIZ TALHA IQBAL
	MOHSEN ALI
	MUHAMMAD SHAFIQUE

