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ABSTRACT Virtual Reality (VR) research has been widely applied in many fields. VR promises to
deliver the experience that is beyond the user’s imagination. One of the advantages of VR is the feeling
it gives of being there. VR can provide experiences impossible in the real world, such as flying, diving
in deep water, exploring outer space, or living with dinosaurs. Despite the improvements in the software
and hardware, the problem of motion sickness remains. We implement a deep learning model to train and
predict motion sickness. A questionnaire is a well-knownmethod to measure motion sickness. The weakness
of the questionnaire is the measurement carried out after the user experiences motion sickness symptoms.
By using the deep learning and EEG, the system will learn and classify motion sickness. The system learns
the user’s EEG pattern when they begin to feel the sickness symptoms. The system will be trained using
deep learning to identify the sickness patterns in the future. By the EEG patterns, the system can predict
the sickness symptoms before it occurs. Our model outperforms traditional models in loss values, accuracy,
and F-measure metrics in Roller Coaster. With other datasets, our model also performs well. Our model
can achieve 82.83% accuracy from the dataset. We also found that the time steps to predict motion sickness
during 5 minute periods is a suitable configuration.

INDEX TERMS Brainwaves EEG, cybersickness, deep learning, motion dizziness detection.

I. INTRODUCTION
Research of Virtual Reality (VR) has been widely applied in
many fields. VR is a computer-based environment in which
the user can feel their relationship with the environment
resembles a real-world experience [1]. Research in VR has
been defined as I3: Immersion, 17 Interaction and Imagi-
nation. VR promises to deliver experiences beyond human
imagination. One of the advantages of using VR is that it cre-
ates a feeling of being there. VR tools can generate realistic
images, sounds, videos, and other sensory input which repli-
cates the real environment in a digital environment. VR offers
the user experiences impossible in real world, such as flying,
diving in deep water, exploring outer space, or living with
dinosaurs. Beginning in the 1980s, the process of digitally
simulating a users’ sensory environment gained the term
‘‘Virtual Reality’ [2]. A popular application for VR envi-
ronments is gaming. Early attempts to implement VR in
game environments occurred in the 1990s. Sega VR and
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Nintendo’s Virtual Boy are examples of early attempts to
mass market VR headsets. They were failures. The limita-
tions of graphics and imprecise controls contributed to an
underwhelming experience. Nintendo’s headset lasted only a
year, while Sega’s headset never reached the market. In 2010,
VR make a convincing comeback with many big companies,
including Oculus Rift, HTC Vive, Sony Playstation VR, and
Samsung Gear VR. Although VR has morphed from its
original concept, the promise of simulating the real world
remains the greatest challenge to scientists and artists [3].
Many improvements have been proposed to enhance the
capabilities of VR headsets. Despite the many improvements
in the software and hardware, one problem which has not
gone away is motion sickness [4].

Motion sickness in VR systems, according to [5], can occur
after playing the game for only 17 minutes. A minimum
of 59% of participants reported feeling the motion sickness
in [5]. Enabling VR to reach its potential, will largely depend
on our ability to solve the substantial and enduring problem of
motion sickness, which can lead to nausea, dizziness, disori-
entation, fatigue, and instability. The major cause of motion
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sickness is undesirable outcomes of hardware and software
insufficiency, including low resolution and refresh rates of
the image, non-ergonomic interactions, and inappropriate
navigation modes [6]–[8]. A common tool for measuring
motion sickness in VR is the Simulator Sickness Question-
naire (SSQ). Motion sickness is generally detected after the
symptoms appear. This means that the sickness has occurred
and the user already feels uncomfortable from its effects.

The development of the electroencephalogram (EEG)
enables measurement of many effects of VR. An EEG can
be used to measure the cognitive learning which takes place
in the VR world. Using an EEG, the system can actively
measure the cognitive state of the user, unlike the Brain Com-
puter Interface (BCI) which is commonly used to measure the
cognitive state [9]. Use of an EEG with VR enables study
of language processing in a naturalistic environment [10].
The learning process occurs by providing words that are
appropriate and inappropriate based on the visual context.
This will create a situation in which the auditory information
is mismatched with what the user sees. In field of emotion
detection, an EEG may be used to evaluate the regulation
strategies during VR exposure [11]. EEG signals captured
from individuals navigating in a virtual environment designed
to induce a negative mood will be compared between three
experimental groups that receive different instructions about
which emotional regulation strategies to apply.

EEG in deep learning has been applied in many fields.
Deep learning enables practical machine learning and exten-
sion of the overall field of Artificial Intelligence (AI).Making
use of EEG data, researchers have proposed methodologies
for machine learning and AI research field application. EEG
data use and deep learning have been proposed for fields
such as classification [12]–[14], clustering [15], recommen-
dation systems [16], [17], health and medication [18], and
education [19].

Deep learning is well known for its capability to exploit
deep, complex data with multivariate structure. Used in many
fields, it is usually applied via neural networks across a wide
range of fields. Deep learning works by learning higher-order
interactions among features using a cascade of many layers.
The core of the deep learning is fast, powerful computers and
sufficient data to actually train a large neural network. The
difference between deep learning and other learning models
is that deep learning performance increases as the amount
of data increases, whereas other learning models eventually
reach a performance plateau. The capabilities of deep learn-
ing systems are continuing to evolve. Fields such as speech
and image recognition are developing rapidly. More powerful
deep learning systems are under development to assist in VR.
In VR, deep learning has been implemented for hand and eye
movement tracking and recognition processes.

In this paper, we propose an alternative method for detect-
ing motion sickness in VR headset users that uses an EEG
instead of a questionnaire. The main contributions of this
paper are: (1)We propose a novel and robust method to detect
motion sickness in aVR environment via brainwaves using an

EEG and deep learning; (2) we explore user feedback when
the user experiences motion sickness from a VR system.
We explore how to match the EEGwave with the user’s phys-
iology markers; and (3) we predict motion sickness before it
occurs based on the user’s EEG data.

The remainder of this paper is organized as follows.
Section 2 describes previous work on brainwaves, deep learn-
ing, and motion sickness detection. Section 3 describes our
proposed methodology. Section 4 presents the dataset and the
training environment of the system. Section 5 provides the
training and testing results of the system. Section 6 offers
the conclusions of this paper.

II. LITERATURE REVIEW
A. BRAINWAVES EEG
EEG is emitted from the human brain in the form of a
spectrum of frequencies. Each individual emits brainwaves at
different frequencies, resulting in different EEG recordings.
EEG is very dependent on the activity being carried out.
Brainwaves are described as a common fundamental wave in
the form of frequency band divisions, and different types of
brainwaves reflect the brain’s mental state [20]. Brainwaves
are classified into five types of waves [21], [22]: Alpha (α),
Beta (β), Theta (θ), Delta (δ), and Gamma (γ ). Figure 1
shows the frequency range of these brainwaves.

Based on the frequency range, brainwaves are classified
into five categories: (1) Delta activity (δ wave) with a fre-
quency below 3 Hz and an amplitude of about 20-200µV.
Delta waves usually occur when sleeping or under deep anes-
thesia or hypoxia, or with brain lesions in patients. (2) Theta
activity (θ wave): Between 4 Hz and 7 Hz. In general,
it presents a smaller amplitude. Theta waves primarily occur
in the top and temporal lobes of children. When adults are
under emotional pressure, a small number of Theta waves
will appear. However, there is no regular type, and they may
occur in a sleepy or highly relaxed state. Analysis of Theta
waves is important because many brain diseases are indicated
by this wave. (3) Alpha activity (α wave) has a frequency
of 8-13 Hz and an amplitude of 20-200µV. In most people,
the Alpha wave is generated in a sober, quiet, and relaxed
state. To improve Alpha wave activities, people need to close
their eyes and feel relaxed. (4) Beta activity (β wave) has a
frequency of 13 Hz or more, but is rarely higher than 30 Hz.
Studies have shown that Beta waves are influenced by tactile,
auditory, and emotional stimuli and can be controlled by self-
effort. (5) Gamma activity (γ wave) has a frequency between
31 and 50 Hz. In recent years, researchers have found that
this wave is related to the user’s attention, awareness, hap-
piness, and reduced stress. Meditation has a connection with
human cognition and perceptual activity related to gamma
waves [24].

B. MOTION SICKNESS DETECTION
Motion sickness is any sickness produced by motion.
In VR, motion sickness is produced by visual motion,
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FIGURE 1. The waveform of the Brainwaves EEG [23].

vehicle motion, and other motions. Such motion sickness is
termed Cyber-Sickness (CS) [25]. CS is a constellation of
symptoms of discomfort and malaise produced by VR expo-
sure [26]. Much research has explored CS [4], [27], [28].
CS is typically categorized as visually induced motion sick-
ness, a distinct sickness produced by observation of visual
motion. The symptoms of CS are similar to seasickness or
vehicle sickness. While many VR’s user experience CS in
using the headset, some users appear to be unaffected by CS
symptoms. The causal factors of the symptoms have been dis-
cussed in many kinds of research. These include such factors
as mismatches between observed and expected sensory sig-
nals [28], self-motion [29], visual display characteristics [30],
and the gameplay experience [31], [32].

CS recently can be measured by objective and subjective
measurements. Objective measures are obtained by analysis
of physiological markers. For example, increasing gastric
activity, respiration rate [33], [34], heart rate [35], and skin
conductance at the forehead [36], [37]. All methods reported
can provide a robust measurement. Some researchers have
proposed behavioral measurements for CS, including early
termination [38] and task competence [35], [39]. Another way

to measure CS is to use a subjective measurement. Question-
naires are often used to detect CS in VR [40]–[44]. In ques-
tionnaires, CS is commonly measured by eyestrain, dizzi-
ness, and headache. A 4-point scale is used, with 1 = none,
2= slight, 3=moderate, and 4= severe. CS is thenmeasured
by summing up the total sickness score as well as scores for
each sub-scale of oculomotor discomfort, disorientation, and
nausea.

The challenge of cybersickness detection is how to deter-
mine when the user feels symptoms. Previous works have
a similarity in detecting cybersickness after the user feels
the symptoms. This is due to a detection tool using a ques-
tionnaire. The questionnaire was filled out after the user felt
symptoms of sickness, or the user did not feel it at all. This
study aims to solve this challenge. Using EEG and deep
learning, the system learns the series of patterns when the user
starts to feel the sickness symptoms.

Table 1 shows the differences with the previous
research. The commonly used detection method of cyber-
sickness is by using observation, while the common use
of the measurement method of cybersickness is by using a
questionnaire. In [34], the author using VR termination to
measure the cybersickness. The users will use VR headset
until they willingly to stop it by themselves. All the previous
research only can predict the cybersickness after the user feels
the symptoms, whether they fill the questionnaire or do the
VR termination. The difference from the limitation of the
previous research, we proposed EEG patterns detection using
deep learning LSTM classification model to predict the time
before the user starts to feels the symptoms of cybersickness.

TABLE 1. The differences with the previous research.

III. PROPOSED METHODOLOGY
In this section, we describe our proposed methodology to
detect motion sickness in a VR environment. The VR head-
set we use is the HTC Vive. Figure 3 shows the system
architecture. The system consists of three main steps. First
is EEG data collection, second is EEG data analysis and
classification, and the final step is using the deep learning
model to predict the motion sickness. EEG data is recorded
using a NeuroskyMindwaveMobile. This headset uses single
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FIGURE 2. Sampling the raw data signal of one user.

electrodes, which are put in the Fp1 (left and frontal lobe) of
the human forehead. According to [45], [46], the frontal lobe
of the brain is in charge of motor control (dizziness, vertigo,
and fatigue), cognitive (Concentration, problem-solving, and
planning), and speech. We recorded for around ten minutes
until the user notified us that they have motion sickness. The
VR environment we used is a roller coaster simulation, which
feels like riding a roller coaster.

A sample of the raw data signal from a user is shown in
Figure 2. We applied the 512Hz digital sampling at one sec-
ond intervals to filter the analog data to form a potential elec-
trical signal. Analog data can be changed into a digital format
using the Fast Fourier Transform (FFT) [47]. A Fourier series
decomposes a periodic signal x(t) regarding an infinite sum
of sin and cosines [48]. The formula is shown by equation (1).

x(t) =
a0
2
+

∞∑
k=1

(ancos(ωkt)+ bnsin(ωkt)) (1)

where x(t) is the produced raw data signal. x(t) can be
integrated on an interval [0,T ]. The signal is periodic with
a period of T where t is a time variable. ω is an angular
frequency and a0, an, and bn are Fourier coefficients. The
parameters we use to calculate the Fourier transform are
inspired by [48] and are shown in equation (2).

x(t) =
k=∞∑
k=−∞

cn.ejωkt (2)

where the coefficient cn is obtained from equation (3):

cn =
1
T

∫ T

0
x(t)e−jωktdt (3)

The generalization of the Fourier series can be used for infi-
nite domains in the form of a Continuous Fourier Transform
(CFT). This function is used to transform the signal between
the time and frequency domain. The CFT function is shown
by equation (4).

F(ξ ) =
∫
∞

−∞

x(t)e2π jξdt (4)

The transformation of the signals between the time and fre-
quency domains is handled by the inverse function of the
CFT. Equation (5) shows the inverse CFT function.

x(t) =
∫
∞

−∞

x(t)e2π jξdξ (5)

When the signal is periodically in T , then the CFT can be
represented exactly by Discrete Fourier Transform (DFT).
The frequency ξ is equal with ω

2π cycles per second or Hertz
(Hz, KHz, MHz, GHz, etc.), instead of ω in radians per
second. The function of the Fourier Transform is to trans-
form the sequence of N complex numbers from the time
domain (x0, x1, x2, . . . , xN−1) into an N − periodic sequence
X0,X1,X2, . . . ,XN−1 (the list of the coefficients of a finite
combination of complex sinusoids, ordered by their fre-
quencies). The DFT function is shown in equation (6).
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FIGURE 3. The system architecture.

Figure 4 shows the PSD results for the user. We developed
the system to record the results based on the voltage and
frequency spectrum. The generated waves are shown in the

using line chart. The bar-chart is the PSD sampling showing
the user’s raw wave that has been processed. The system also
records attention and meditation that is shown by the line
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FIGURE 4. EEG, attention, and meditation recording interface via PSD methods.

chart on the right-side.

Xk =
N−1∑
n=0

xne−
j2πkn
N (6)

A random signal usually has finite average power and is
characterized by an average spectral density as shown in
equation (7).

PSDf (w) = lim
T→∞

|FXT (ω)
2
|

2T
(7)

|FXT | is the FFT function for the signal output from the user,
and T is the total time of the input signal. W is a set of
brainwave bands: Alpha, Beta, Theta, Delta, and Gamma.
Power Spectral Density (PSD) is derived from the Fourier
transform where the power present in the signal is a function
of frequency, per unit frequency. The signal is distributedwith
the frequency. ω represents angular frequency.

In the deep learning model’s training model phase,
the dataset consists of a set of users, U = {u1, u2, . . . , ui}
and a set of brainwaves, Bw = {bw1, bw2, . . . , bwj} where
i is the number of users and j is the number of brainwaves.
The condition for each brainwave or product bwj with user ui
is expressed by Condition C = [U ,Bw]i×j. The matrix C
denotes the condition of user ui with brainwaves or prod-
uct buj where i is an index of the user, and j is an index of
brainwaves. The elements of C are a binary to represent the
condition of the user. Zero represents normal condition and
1 represents motion sickness condition.

In this paper, we represent the condition value by
using a binary value as the output in the system model.
This research proposes an alternative approach to calcu-
late user motion sickness using brainwaves. For each band
of brainwaves, we obtain a set of targets T , where T =
{t1, 1, t1, 2, . . . , t(j, i)}, tj,i represents brainwaves bwj which
is obtained from user ui. Table 2 indicates the relation-
ship between users and brainwaves for the condition target
(Motion Sickness or Normal Condition), and Table 3
indicates the relationship between brainwaves and users for
measurements.

TABLE 2. Users - Brainwaves relationship for motion sickness.

TABLE 3. Users - Brainwaves relationship for measurements.

The CS point is calculated by summing the user’s
alpha wave plus theta wave and dividing by their beta
wave. From equation (8), each user has a CS point value.
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TABLE 4. Description of the CS point of the output layer.

Combined with deep learning, this value is classified into
sickness levels (Table 4). Table 4 uses the SSQ sickness
range from [49], [50]. Reference [49] collected 47 symp-
tom items used in VR research. They added an item for
vision discomfort to increase the number of items related to
vision quality and decided to remove the item ‘‘discomfort
from eyes’’ because they felt that it was ambiguous. This
left 23 symptom items: 12 non-ocular and 11 ocular. They
created a seven-option response scale (scored 0-6) with four
descriptive labels (‘‘none’’ (0), ‘‘slight’’ (1, 2),‘‘moderate’’
(3, 4), and ‘‘severe’’ (5, 6). Based on [49], we classified the
sickness levels as shown in Table 4.
The sickness index for each user affects the sickness

level during the calculation. The Attention and Meditation
(Att and Med) are obtained from Neurosky’s algorithm and
are used to detect the attention and meditation state of the
user. Att indicates the intensity of a user’s level of mental
‘‘focus’’ or ‘‘attention’’. Med indicates the level of a user’s
mental ‘‘calmness’’ or ‘‘relaxation’’ [23]. If the Att value is
greater than or equal to theMed value, then the sickness index
value will be added to the value of CSp. However, if the Med
value exceeds the Att value, then the sickness index value will
subtract the value of CSp.

CSp =

∑
α +

∑
θ∑

β
(8)

The system generates brainwave vectors for all user brain-
wave targets which are represented as Ve = [Ve(u, bw)]k,l ,
where k is the dimension of vector and l is the total number
of user measurement targets u for brainwave bw. Matrix Ve
is the vector representing the brainwave targets of user uj
to brainwave bui. We use the vectors as the input for our
deep learning model. Figure 5 shows the preview of the input
vector Ve.

Figure 6 shows the deep learning system architecture for
detectingmotion sickness from users’ brainwaves. Themodel
consists of 7 hidden layers with the first three hidden layers
consisting of 32 nodes, the second two hidden layers consist-
ing of 16 nodes, and the third two hidden layers consisting
of 8 nodes. The input nodes are the brainwave frequency
values of the alpha, beta, delta, theta and gamma frequencies.
The output layer consists of 1 node only, which classifies
whether the output belongs to a sick or normal state. The
equation for the LSTM with a forget gate is shown by
equation (9).

ft = σg(Wf xt + Uf ht−1 + bf )

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

ct = σg(Wcxt + Ucht−1 + bc)

ct = ft · ct−1 + it · ct
ht = ot · σh(ct ) (9)

where c represents memory cell, i represent the input gate, o
represent the output gate, and f represent the forget gate of
the memory cell ct . c represents the candidates value of the
cell state, and h represent the hidden layer output.
Long Short Term Memory (LSTM) is an effective deep

learning algorithm used to predict a Time Series. A common
LSTM model is composed of a cell, an input gate, an output
gate, and a forget gate. LSTM performs well in time series
data prediction because of its capability to ‘‘remember’’ while
‘‘forgetting’’ unimportant information. LSTM is designed to
avoid the long-term dependency problem. All LSTM models
take the form of a chain of repeating modules of a neural
network. In this paper, the input LSTM layer is the feature
vector Ve for each user. In the LSTM input nodes are rep-
resented by xt , meaning that the system simply inputs all
Ve values into xt . The next step in the LSTM is to decide
what information is will be discarded from the cell state.

FIGURE 5. The preview of input vector Ve.
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FIGURE 6. Deep learning architecture using LSTM and fully connected layer.

The decision is made by the forget gate layer ft using a
sigmoid function σg. The function looks at ht−1 and xt , and
outputs a number between 0 and 1 for each number in the cell
state ct−1. Output 1 represents retaining the information, and
0 represents discarding it.

The next step is to decide what information the system
going to store in the cell state. The process also uses a
sigmoid function σg which determines what value the system
will update. Next, a candidate value ct is created from the
input layer and the candidates then added to the state. In this
paper, the system wants to remember the waves of the new
subject to the cell state, to replace the previous one, which
the model forgets. After that, the system updates the ct value
by multiplying the forget gate layer ft by ct−1 and adding the
new candidates value ct to it.
In the final step, the system must decide what the output is.

The output is based on the system cell state with a filtered
version. The output consists of two parts, the first is to applied
the sigmoid function σg to decide what parts of the cell state
the system will output. The second part puts the cell state
into the tanh function σh and multiplies it by the output of the
sigmoid function, so that the system only outputs the parts the
user needs.

Table 5 shows the hyper-parameter setting, a summary
of the deep learning model, and the dropout configura-
tion. The model consists of 1 input layer, 1 LSTM layer,
7 hidden layers, and 1 output layer. The input layer consists
of 10 nodes, and the type is dense, with a ReLU activation
function. The LSTM layer consists of 32 nodes. The system
uses the time-steps LSTM model. We applied 3 time-step
configurations using 60, 300, and 600. In the full connected
layer, the system consists of 7 hidden layers. The nodes of
the hidden layers consist of 32, 32, 16, 16, 16, 8, and 8 nodes,
respectively. The type is dense, with a RELU activation func-
tion. The output layer consists of 1 node with a sigmoid
activation function. The system applies the l1 and l2 regu-
larization functions, and the RMSProp optimizer function.

TABLE 5. The configuration of the deep learning model.

IV. DATASET AND TRAINING ENVIRONMENT
In this section, we will describe our data collection and the
training environment of our system. The system uses the
brainwaves dataset, which is collected from our experiment
lab. The dataset consists of 130 individuals who have used
VR. The brainwaves, delta, theta, low alpha, high alpha, low
beta, high beta, low gamma, and high gamma, are collected
during the experiments. The target labels are motion sickness
and normal state value. Table 6 shows a preview of the users’
brainwaves attributes collected by the system. In the dataset,
the users are young people ranging from 6 to 23 years old,
65 males and 65 females. The duration of the brainwaves
recorded is 10 minutes, with 1 minute used for calibration.
The calibration process ensures the signal from the EEG
device is recorded clearly in the database. The process simply
permits the user to adapt to the use of the EEG device. We let
the user use the device for 1 minute and record only the signal
quality. The system records the signal quality and calculates
the rate at which the EEG device returns a bad signal. The
Neurosky EEG Device has a methodology to detect good
and bad signals automatically. If the loss is more than 20%
the system will signal that the user must re-calibrate the
device. Thus, the total time the user spends in the VR world
is 11 minutes. The VR world for the experiments includes
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TABLE 6. Number of participants, mean age, and standard deviation in experiments.

FIGURE 7. Preview of the VR environment sampling: (a) roller
coaster VR; (b) space simulator; (c) Boat.

a roller coaster, a space simulator, and a boating experience
on the ocean. Figure 7 shows the sampling preview for each
VR environment.

In this paper, the dataset will be divided into 70% for
training the model, and 30% for testing. Validation data will
be generated using 30% of the training data. We generate val-
idation data in order to avoid training an over-fitting model.
Ten minutes of the brainwaves will be recorded every second.
We recorded 130 multiples of 600s of EEG data. Our dataset
consists of a total of 78,000 records of brainwave signals, with
8 attributes for each instance. The sickness detection system
contains 3 attributes and 2 attribute labels, motion sickness
and normal state. The dataset also consists of 1 attribute
of signal quality to check whether the instances which are
recorded are good. The features from the dataset used in the
deep learning model are EEG waves, including low alpha,
high alpha, low beta, high beta, theta, delta, low gamma, and
high gamma waves (8 nodes), sickness detection including
attention (1 node), meditation (1 node), and CSp (1 node).
The 10 nodes form the input layer of the LSTM layer Xt =
{x0, x1, . . . , x10}.
The experiments are conducted in a laboratory where in

which users using VR headset device and Neurosky partici-
pants used VR headset devices and a Neurosky brainwaves
headset. Figure 8 gives an illustrates the overview of the
experiments we conduct and an example of an user was under-
going the described experiment using the VR headset and
EEG tracking device. The training environment is run in core
I7 CPU, with a GTX1080Ti NVidia Graphical Processing
Unit (GPU), and the 32GB of RAM Memory is used.

V. EXPERIMENTS AND RESULTS
The system uses a grid search to tune the hyper-parameter.
The system deep learning model’s hyper-parameter config-
uration is as follows. The number of hidden layers is 7,

FIGURE 8. The experimental setup: (a) The main interface; (b) The user
experiment.

with the number of nodes set to 32, 32, 32, 16, 16, 8, and
8 respectively. The activation function for each hidden layer is
ReLU, the batch size is 100, epochs are 125, and the dropout
rate is 0.5.We also implement l1 and l2 regularization, and the
RMSProp optimizer. We use 3 combinations of time steps in
the LSTM: 1, 5, and 10 minutes, to predict Motion Sickness.

The setting value of hyperparameters uses a grid search
with different dimensions, learning rates, and activation func-
tion. We run the first ten iterations to get a preview of the best
configuration. The accuracy and kappa metrics are used to
measure the proposed hyper-parameter setting. We find that
using layer c(32,32,16,16,16,8,8) with 5 learning rate returns
the best accuracy value 0.339; using layer c(32,32,16,16,8,8)
with learning rate 10 returns the second-best accuracy value
with 0.334; and using layer c(32,32,16,16,8) with 5 learning
rate returns the third-best accuracy value 0.326. From accu-
racy, the system chooses the settings accordingly.

A. RESULTS
Figure 9 shows the training phase loss from the system. It is
clear that our model does not face over-fitting problems. The
loss value is higher than the validation loss value, indicating
that our model can predict the generalization of the problem
well.

Figure 9(a) shows the training loss for LSTM with
60s time steps. The loss value converge after 30 iterations;
the Mean Square Error (MSE) loss of the model can achieve
0.088. We can also find that the validation loss is below
the loss value’s line. When the validation loss is lower than
the loss value, the model fits not only for the training data.
Figure 9(b) shows the training loss for the LSTM with 300s
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FIGURE 9. Deep learning training loss: (a) Loss for 1 minute predictor,
(b) Loss for 5 minutes predictor, (c) Loss for 10 minutes predictor.

time steps. The loss value converges after 40 iterations and the
minimum MSE loss the model is achieved at 0.095. The loss
value line will likely fall below the validation loss value line
after 60 iterations, indicating that the training should stop at
this iteration to prevent the model from over-fitting the data.
Figure 9(c) shows the training loss for LSTM with 600s time
steps. The loss value converges after 30 iterations, and will
likely fall below the validation loss value after 40 iterations.
Themodel can achieve theminimumMSE loss value at 0.101.

We compare the different time steps, as shown in Table 7.
The best time step accuracy occurs with the 60s time steps,
followed by the 300s time steps, and the 600s time steps.
This means that predicting the next 60s will likely give better
results than a longer time prediction. Table 7 confirms this.
It is true that the shortest time prediction will give the best
results, but the action to mitigate the problem also very short.
For example, as we know that in the next 60s the user is pre-
dicted to experience motion sickness, and perhaps is already
feeling symptoms. The feedback is already too late for the
user to mitigate or avoid the symptoms. Even if the user
reduces or stops using the VR, they likely will still feel a little
bit of headache, nausea, and discomfort. The best notification
feedback for themotion sickness is 5minutes before it occurs.
When the user terminates VR 5 minutes before the predictor
notification, they are less likely to feel the symptoms yet can
enjoy VR longer than with the 10 minutes notification.

TABLE 7. Comparison of results between time steps in dataset.

Figure 10 shows the predicted sickness state from the
dataset. The predictor is divided into 1, 5, and 10 minutes.
In the beginning, the green line is above the red line. This
implies that the condition of normal state is higher than sick-
ness state. Figure 10(a) shows the 1 minute predictor in every
10 minutes. We find that the red line rises above the green

FIGURE 10. Deep learning training sickness predictor: (a.) Sickness
prediction for 1 minute predictor, (b.) Sickness prediction for 5 minutes
predictor, (c.) Sickness prediction for 10 minutes predictor.

line after an individual uses the VR system for 40 minutes.
This means our model predicts the onset of motion sickness
symptoms. Figure 10(b) shows the 5 minutes predictor at
10 minute intervals. We find that the red line rises above
the green line after 37 minutes, 3 minutes earlier than with
the 1 minute predictor. Figure 10(c) shows the 10 minutes
predictor at 10 minute intervals. We find that the red line rises
above the green line after 35minutes of usingVR. The system
predicts sickness earlier with longer time steps.

Table 8 shows the confusion matrix of the testing data.
The system aims to predict the EEG pattern and decides
whether the user has motion sickness. The testing data con-
sists of 30,000 records of EEG patterns. The system predicts
correctly normal conditions with 15,256 patterns and sick-
ness conditions with 6,816 patterns. A false positive is an
error that occurs when a system falsely concludes an effect
exists, or when the system predicts incorrectly of a real class.
Based on the confusion matrix, the system falsely predicts
the real class with 3,088 patterns. For the research, it is
impossible to know 100% certainty the true state of the world.
Our system has around a 14% false-positive rate. According
to [51], the false positive rate is ideally lower than 10%. If the
false-positive rate value is lower than 15%, the user responses
are categorized by suspicious, but not invalid. This is the
limitation of our current research, as the false positive rate
may come from an inconsistency respondent’s report.

TABLE 8. The confusion matrix for testing data.

B. COMPARISON WITH BASELINE METHODS
We also compare the results among with those of state-of-
the-art methods. The model will be evaluated with the fol-
lowing baselines.
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TABLE 9. Comparison of results for different algorithms (test phase).

• Support vector machine: we use the libsvm, which clas-
sifies data based on a linear kernel. Since the training
process permits sparse data, the training dataset com-
prises non-zero values. The parameter setting of the
training kernel is as follows. The batch size is 100,
cacheSize is 40, cost is 1, degree is 3, and the kernel
type is radial basis function.

• Multi layer perceptron: We use the Weka library MLP,
a sigmoid function, a squared error function, and a mean
absolute error function for the evaluation of the classifi-
cation approaches. The parameter setting of the training
is as follows. The batch size is 100 and consists of one
hidden layer, the learning rate is 0.3, momentum is 0.2,
and training epochs is 500.

• Convolution neural network: We employ Weka
deeplearning4j and, use a deep neural network with
hyper-parameter settings as follows. The batch size is
100, the epochs is 100, the optimizer is Adam, the bias
updater is SGD, we implement l1 and l2 regularization,
and the hidden layers consist of 7 hidden layers, with
configuration nodes 32, 32, 16, 16, 16, 8, and 8.

Table 9 shows the comparison results between these algo-
rithms. We separate the results based on the experimental
data. First, we collect the brainwave data using VR. From the
table, we find that our model outperforms the other models.
We use RootMean Square Error (RMSE) loss, Mean Average
Error (MAE) loss, Accuracy, and F-measure as performance
metrics. For the VR Roller Coaster, our model obtains the
best RMSE loss at 0.3, followed by the Convolution Neural
Network (CNN) RMSE loss at 0.38, Multi Layer Perceptron
(MLP) RMSE (0.31), and the LibSVM RMSE (0.38). For
the MAE loss value, our model has the best loss value, 0.14,
followed by the CNN MAE at 0.14, the LibSVM loss value
at 0.15, and MLP at 0.18. We also examine other metrics.
In accuracy metrics, our model has the best accuracy value
with 82.83%, followed by CNN at 73.13%. MLP at 71.31%
and LibSVM at 62.58%. To accommodate the recall value,
we also compare the F-measure across these the algorithms.
Our model also has the best F-measure value, 0.87, followed
by CNN at 0.77, MLP model at 0.71, and LibSVM at 0.71.

In the brainwave VR in Space Simulator, our model has
the best RMSE loss at 0.26, followed by CNN at 0.29,MLP at
0.34, and LibSVMat 0.42. For theMAE loss value, ourmodel

again has the best loss value at 0.10, followed by CNN at
0.16, LibSVM at 0.17, and MLP at 0.23. In accuracy metrics,
our model has an accuracy of, 75.85%, followed by CNN at
65.87%, LibSVM at 65.63%, andMLP at 63.84%. To accom-
modate the recall value, we also compare the F-measure
across these the algorithms. CNN has the best value at 0.65.
Our proposed method is second at 0.63, followed by MLP at
0.59 and LibSVM at 0.53.

In the Boat VR, our model has the best RMSE loss at
0.34, followed by CNN at 0.35, MLP at 0.35 and LibSVM
at 0.44. LibSVM has the best MAE loss value at 0.19, while
our proposed method is second at 0.20, followed by CNN at
0.21, and MLP at 0.24. On the accuracy metric, LibSVM has
the best value at 60.02, followed by our proposed method at
59.23, CNN at 55.04, andMLP at 48.00. To accommodate the
recall value, LibSVM has the best f-score at 0.38, followed
by our proposed method at 0.37, MLP at 0.36, and CNN at
0.29. In this dataset, our proposed method does not obtain
the best values, but the differences are minor. It is also inter-
esting to dig deeper into whether this seasickness is related
to subjective feelings. Boating is a common experience and
users may be more likely accept this sensation more easily
than riding a roller coaster or moving in the space simulator,
which are less common experiences. The smaller RMSE
means the case has small variance in errors. The MAE is
steady and RMSE increases as the variance associated with
the frequency distribution of error magnitudes also increases.
Our model better at learning phase with small outliers where
the data more converge to the class.

VI. CONCLUSIONS
We propose a brainwave EEG for application to VR to predict
motion sickness using a deep learning training model. Our
experimental results show that our model outperforms all
traditional models in loss values, accuracy, and F-measure
metrics for the VR Roller Coaster. In other datasets, our
model also performs well compared to other methods. Our
model can achieve 82.83% accuracy from the dataset.We also
found that 5 minute time steps to predict the motion sickness
is the most useful configuration.

In the future, we will consider the subjective feeling of the
event environment. Our results show that the boating environ-
ment results in a lower accuracy than the roller coaster and
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space simulator. It will be interesting to explore more deeply
into whether simulations of the real world and commonly
experienced events are related to the experience of motion
sickness when using VR.
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