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ABSTRACT Complex weather conditions, especially turbulent-windshear conditions, have severe effects on
the landing safety of an aircraft. Based on a distributed human-machine-environment real-time simulation
system, virtual landing simulations in turbulent-windshear conditions were carried out using the Monte
Carlo method. By analyzing the simulation results, it was determined that the flight parameters that
significantly affect the landing safety of an aircraft are the sideslip angle β, descent height 1H , and angle
of attack α. Based on multivariate copula theory, the statistical characteristics of the extreme values of the
flight parameters were analyzed, the unknown parameters in the distribution models were identified, and
the goodness of fit was tested. The risk of landing in turbulent-windshear conditions was quantitatively
evaluated. By applying the quantitative risk evaluation method proposed in this study, the risk topology
of flight manipulation for landing in turbulent-windshear conditions was constructed using the pitch angle
variation1θ , yaw angle variation1ψ , and flight distance L. The risk topology can not only greatly improve
the situational awareness of the pilot but also provide comprehensive and intuitive guidance for removing
aircraft from the impacts of wind-shear.

INDEX TERMS Complex system simulation,Monte Carlomethod, turbulent-windshear, multivariate copula
theory, manipulation risk topology.

I. INTRODUCTION
The takeoff and landing time of an aircraft only account for
5% of the overall flight time, but 48% of the flight accidents
occur during this period. The lack of situational awareness
and flight manipulation errors caused by turbulent-windshear
conditions account for 66% of the accidents [1]. When
an aircraft encounters turbulent-windshear during a landing
approach, the sharply changing wind vector will induce a
sharp change in the lift. Consequently, the aircraft attitude and
flight trajectory will deviate from the predetermined state,
which will directly endanger the flight safety. In 2009, FedEx
Flight 80 crashed due to turbulent-windshear when landing at
Narita International Airport, Japan [2]. In 2012, Bhoja Air
Flight BH023 took off at the Karachi Jinnah International
Airport and suffered from windshear. Unfortunately, because
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the flight crew failed to recover from the stall, the aircraft
crashed [2].

Civil aircraft not only must ensure flight safety but also
must maximize the economic benefits. Hence, the optimiza-
tion of flight control strategies across a wide array of complex
flight conditions has been a popular research objective for
many years. Automatic landing systems were developed to
achieve robust accurate tracking in the presence of windshear,
using the stable inversion control method [3]. An optimal
feedback control strategy based on the viability theory for
improving the aircraft control capabilities during cruise phase
in wind shear conditions [4]. The disturbance attenuation
control of an aircraft flying through windshear was achieved
via linear parameter varying (LPV) model and a control
method [5].

All the flight control strategies described above are effec-
tive in the presence of windshear with middle/low intensity,
but may fail in the presence of wind shear with high intensity.
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The failure of control strategies under complex flight con-
ditions means that the aircraft cannot recovery from a dan-
gerous attitude which can result in a flight accident. Hence,
it was asserted that once windshear is encountered, to keep
the aircraft attitude stable, the best choice of the crew is
to escape quickly [6]. Determining how to improve situa-
tional awareness and reduce flight manipulation errors in
complex flight conditions is a key issue. The flight-safety
space proposed previously greatly enhanced the pilot’s ability
to avoid placing the aircraft in a dangerous flight situation [7].
This study focused on the risk topology construction method
of flight manipulation in turbulent-windshear conditions to
provide intuitive and predictive information to the crew.

The rest of this paper is organized as follows. Section II
introduces multivariate copula theory and the process
of virtual flight simulation that based on Monte Carlo
method. Section III presents operation model and environ-
ment model in detail. The turbulent-windshear model is
optimized by combining n ring-vortex models and Dry-
den model. Section IV shows the analysis of simulation
results obtained from the virtual landing simulation under
turbulent-windshear conditions, it was determined that the
flight parameters that significantly affect the landing safety of
an aircraft are the sideslip angle β, descent height 1H , and
angle of attack α. Section V presents risk evaluation model
based on multivariate copula theory. The distributions of the
one-dimensional extreme values of the flight parameters were
fitted first, and goodness-of-fit tests (Kolmogorov-Smirnov
(K-S) test, Anderson-Darling test, and chi-squared (χ2) test)
were used to test the data distributions, and it was con-
firmed that the generalized extreme value (GEV) distribu-
tion model could describe the one-dimensional distributions
more effectively. The three-dimensional copula function C
that describes the correlations between the three-dimensional
parameters, was confirmed by using goodness-of-fit tests
(Akaike Information Criteria (AIC), Bayesian Information
Criteria (BIC), χ2 test, and K-S test). To improve the flex-
ibility and accuracy, three-dimensional copula models that
achieved high goodness-of-fit values, were used to com-
pose the risk-weighted model, and the risk of landing in
turbulent-windshear conditions was quantitatively evaluated.
Section VI shows the risk topology of flight manipulation
for landing in turbulent-windshear conditions, which is con-
structed using the pitch angle variation 1θ , yaw angle varia-
tion1ψ , and flight distance L. The risk-evolutionmechanism
of flightmanipulation for landing in turbulent-windshear con-
ditions was analyzed in detail. Section VII draws important
conclusions.

This work contributes to communities of flight manip-
ulation envelope and risk-evolution mechanism analysis in
the following aspects: 1) a turbulent-windshear model was
developed by combining n ring-vortex models and Dryden
model, which can simulate a real windshear environment and
satisfy risk evaluation requirements. 2) a risk-weightedmodel
was proposed to improve the efficiency of risk evaluation
and reduce the number of virtual flight simulation times.

3) a risk topology construction method of flight manipula-
tion was proposed in this study combines complex system
simulations with quantitative risk assessment from a global
perspective. 4) the risk-evolution mechanism was analyzed
in detail, which provides some insights into the performance
of aircraft in turbulent-windshear conditions.

Compared with flow field information of turbulent-
windshear conditions, the information provided by the risk
topology is more valuable. Because it allows the pilot to
determine the manipulation strategies in turbulent-windshear
conditions. The results of this work suggest that the risk topol-
ogy construction method of flight manipulation can serve as
an effective auxiliary means for the pilot to keep an aircraft
in the safety zone under turbulent-windshear conditions.

II. COMPUTATIONAL THEORY AND METHOD
A. MULTIVARIATE COPULA THEORY
It is supposed that a sequence of random variables {Xn} is
independent, its distribution function is F(x), and its max-
imum array Mn = max {X1, · · · ,Xn}. A sequence exists
{an > 0} , {bn} such that

P
(
Mn − bn

an
≤ x

)
d
→F∗(x), (1)

where F∗(x) is an extreme distribution function,
d
→ rep-

resents weak convergence, bn is the positional parameter,
−∞ < bn < +∞, and an indicates the dispersion degree
of the data, an > 0.
The distributions of the sample extreme parameters are

independent of the distribution of the sample data, which is an
important feature of extreme value theory. Hence, quantita-
tive assessment of the flight risk can be achieved by extracting
the extreme values of the flight parameters and determining
the distribution functions of the extreme parameters. How-
ever, for flight safety assessment in turbulent-windshear con-
ditions, risk occurrence is affected by many factors, which
means that the risk event functionF (x1, · · · , xn) is composed
of n variables. Based on Sklar’s theorem, the risk event func-
tion F (x1, · · · , xn) is separated into two parts:

(1) n edge distribution functions F1 (x1) , · · · ,Fn (xn),
which describe the distribution characteristics of n extreme
parameter variables;

(2) the multivariate copula function C (·), which describes
the correlation between n extreme parameter variables.

F (x1, · · · , xn) = C (F1 (x1) , · · · ,Fn (xn)) , (2)

where ∀x ∈ R̃n, R̃ ∪ {±∞}.
Letting ui = Fi (xi), ui ∈ [0, 1], i = 1, · · · , n an

N-dimensional copula function can be described as follows:

C (u1, · · · , un) = P (U1 ≤ u1, · · · ,Un ≤ un)

= F
(
F−11 (u1) , · · · ,F−1n (un)

)
, (3)
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FIGURE 1. Distributed pilot-machine-environment real-time simulation system based on
the HLA standard.

The N-dimensional probability density function is as
follows:

f (x1, · · · , xn) =
∂Cn (u1, · · · , un)
∂u1 · · · ∂un

n∏
i=1

fi (xi) . (4)

where fi (xi) is the probability density function of the edge
distribution function Fi (·).

B. MONTE CARLO METHOD
Using multivariate copula theory to estimate the flight risk,
a large amount of flight data obtained in turbulent-windshear
conditions is required. However, real flight data obtained
in turbulent-windshear conditions is too rare to be adequate
for quantitative risk assessment model construction. More-
over, the flight tests in turbulent-windshear conditions are
harsh, and the flight risk is great. Hence, a distributed pilot-
machine-environment real-time simulation system is con-
structed in this study, which is based on the High Level
Architecture (HLA) standard [8], as shown in Figure 1. The
system has the advantages of a shorter time delay and better
scalability. It can provide data for the quantitative assessment
of flight risk as well as a system support for flight training in
the case of turbulent-windshear.

Based on Monte Carlo method, environmental parame-
ters and operation characteristic parameters were sampled,
as shown in Table 1, and they were input to the dis-
tributed pilot-machine-environment real-time simulation sys-
tem. n virtual flight simulations were carried out. The process
of virtual flight simulation is illustrated in Figure 2. A large
amount of flight parameter data that can reflect the dynamic
response characteristics of the pilot-machine-environment

TABLE 1. Sampled parameter variables.

complex system under turbulent-windshear conditions was
obtained.

The process of virtual flight simulation based on theMonte
Carlo method was as follows:

Step 1: Initialize. Set flight altitude, airspeed, glide
angle, and virtual flight simulation times n;
Step 2: Sample. Sample environmental model parame-
ters and operation model characteristic parameters;
Step 3: Simulate. Perform the ith iterative flight simula-
tion;
Step 4: Data processing. Extract flight parameter
extrema. Record and store the flight parameters in the ith
iterative simulation. Then, extract the flight parameter
extrema and store them in a database;
Step 5: Set i = i+ 1. Return to Step 2 and continue the
simulation until i > n.

III. SIMULATION MODEL
A. OPERATION MODEL
Based on the study of pilot operation behaviors [9], the fol-
lowing operation model YP (s) is proposed:

YP (s) = YA (s) • YN (s) , (5)
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FIGURE 2. Process of virtual flight simulation based on Monte Carlo method.

where YA (s) is an adaptive transfer function of the operation
model, which is mainly composed of the operation behavior
parameters τ, kp,T1,T2, and reflects the pilot’s use of the
stick to control the motion attitude of the aircraft. It can be
expressed as follows:

YA (s) =
kpe−τ s (T1s+ 1)

T2s+ 1
, (6)

where τ is the operation delay time, τ ⊂ [0.06, 0.3]; kp is the
static gain, kp ≥ 1; T1 is the pre-operation parameter, T1 ⊂
(0, 1]; and T2 is the system time-delay parameter, T2 ⊂ (0, 1].
YN (s) is the pilot’s neuromuscular system function, which

is expressed as follows:

YN (s) =
(TN s+ 1) ω2

n

(0.1s+ 1)2
(
s2 + 2ξnωns+ ω2

n
) , (7)

where TN is the neuromuscular system time-delay parameter,
ωn = 16.5rad/s is the undamped natural frequency, and
ξn = 0.12 is relative damping coefficient.

TABLE 2. Sampling results of operation characteristic parameters.

In an actual project, there are differences between the
operations of different pilots. The differences are simu-
lated by randomly sampling the operation characteristic
parameters τ, kp,T1,T2,TN . It is assumed that the opera-
tion characteristic parameters τ, kp,T1,T2,TN follow trun-
cated normal distributions. The sampling results are shown
in Table 2.

Substituting the sampling results into Eq.(5), the operation
model can be expressed as follows:

Yp (s) =
2.256e−0.172s (0.226s+ 1)

0.236s+ 1

•

[
(0.13s+1)× 16.52

(0.1s+1)2
(
s2 +0.24× 16.5s+16.52

)] . (8)

When inputting the step signal, the simulation results were
basically consistent with the actual operations of pilots, which
is shown in Figure 3.

FIGURE 3. Simulation result when inputting the step signal.

B. TURBULENT-WINDSHEAR MODEL
There is a growing amount of literature on methods for
modeling windshear and their application to flight simula-
tions. The Joint Airport Weather Studies (JAWS) Project
proposed the JAWS model based on data sets that were
measured by Doppler radar [10]. A ring-vortex model based
on hydrodynamics was developed for real-time flight simu-
lations of takeoffs and landings [11]. Furthermore, the wind-
shear model employed in previous studies [12]–[14] relied
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TABLE 3. Multi-vortex composite model characteristic parameters.

FIGURE 4. Ring-vortex model.

on the Soesman model to study the optimization of wind-
shear recovery trajectory. The performances of candidate
windshear detection devices were investigated using the
Bowles-Oseguera model to simulate wind shear condi-
tions [15]. All the models described above have the same
problem: the simulated flow field is axisymmetric. However,
the flow field, which is affected by turbulence, the wake,
and ground obstacles, is non-axisymmetric in real windshear
conditions. Hence, the turbulent-windshear model was built
based on ring-vortex and Dryden models [16], which could
reflect the non-axisymmetric characteristics of the flow field.

ut =


λ ·

(
xN − xp
r2N

)
∂ψt

∂z

∣∣∣∣
N

0 < λ < 1(
x − xp
r2

)
∂ψt

∂z
λ > 1

vt =


λ ·

(
yN − yp
r2N

)
∂ψt

∂z

∣∣∣∣
N

0 < λ < 1(
y− yp
r2

)
∂ψt

∂z
λ > 1

wt =


λ ·

(
−

1
rN

)
∂ψt

∂r

∣∣∣∣
N

0 < λ < 1(
−
1
r

)
∂ψt

∂r
λ > 1,

(9)

where ψt = ψt (r, z, 0) is the expression of a vortex circula-
tion line equation [17], r is the distance between the reference
mass (x, y, z) and the ring-vortex axis, the minimum distance
is r1, the maximum distance is r2, and λ = r1

/
rN is the

proportionality coefficient.
The simulation precision for the windshear filed was

improved by additional optimization. The expression of the
turbulent-windshear model is as follows:

W =

Wx
Wy
Wz

 =
Wxw
Wyw
Wzw

+
Wxt
Wyt
Wzt

 (10)

where
[
Wxw Wyw Wzw

]T is a function of the velocity field
formed by Dryden model, and

[
Wxt Wyt Wzt

]T is a function
of the velocity field formed by n vortex-rings.[

Wxw Wyw Wzw
]T can be easily obtained using commer-

cial software (MATLAB).
[
Wxt Wyt Wzt

]T can be calculated
as follows:Wxt
Wyt
Wzt

 = L(φw1 , θ
w
1 , ψ

w
1 )

 u1t
v1t
w1
t

+ · · ·
+L(φwn , θ

w
n , ψ

w
n )

 unt
vnt
wnt

 . (11)

where [φw, θw, ψw] is the angle between the central axis of
the ring-vortex and the ground. The transformation matrix
L(φw, θw, ψw) can be expressed as follows:

L(φw, θw, ψw) =

 1 0 0
0 cosφw sinφw

0 − sinφw cosφw


·

 cos θw 0 − sin θw

0 1 0
sin θw 0 cos θw


·

 cosψw sinψw 0
− sinψw cosψw 0

0 0 1

 . (12)

As this study focused on the risk topology construction
method of flight manipulation, some turbulent-windshear
model parameters were varied, and their variation had sig-
nificant effects on the flight.

It is assumed that the multi-vortex composite model char-
acteristic parameters as shown in Table 3, vortex intensity 0,
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FIGURE 5. Streamline diagram of turbulent-windshear.

FIGURE 6. Wind speed vector W diagram of turbulent-windshear.

vortex-axis angle [φw, θw, ψw], vortex-ring radius R, and
vortex-core radius rN follow truncated normal distributions
within well-defined intervals.

In the simulation process, the characteristic parameters of
the multi-vortex composite model were randomly sampled
to construct the turbulent-windshear field. Its streamline dia-
gram is shown in Figure 5, and the wind speed vector W is
shown in Figure 6.

Considering the coupling effect of the turbulent-windshear
condition, the turbulent-windshear model constructed in this
paper can simulate a real windshear environment well and
satisfy risk evaluation requirements.

IV. RISK PARAMETERS AND BOUNDARY ANALYSIS
Following Step 1 for the process of virtual flight simulation
described above, the initial simulation states were estab-
lished. The initial main parameters of the aircraft are shown
in Table 4.

TABLE 4. Initial main parameters of the aircraft.

Figure 7 shows the flight parameters of the 200th sim-
ulation iteration. The airspeed V and altitude H showed
slight decreases. This was because the headwind affected the
aircraft initially and resulted in an increase in the aircraft
lift. Hence, the engine thrust decreased to allow the flight
trajectory to remain on the predetermined glide trajectory.
Then, the sideslip angle β of the aircraft influenced by the
lateral airflow began to increase. A moment later, the aircraft
entered the downdraft, and the angle of attack α of the aircraft
decreased. Therefore, the aircraft lift decreased sharply, and
the aircraft began to lose altitude simultaneously. Due to the
drastic changes of the aircraft attitude, the thrust along the
x-axis component decreased sharply. The flight speed was
further reduced. As the throttle increased and aircraft attitude
was adjusted, the airspeed V of the aircraft increased quickly.
Furthermore, it is shown in Figure 7(c) that the sideslip angle
β exhibited a small increase. This was because the lateral
airflow affected the aircraft.

According to the above analysis, the slideslip angle β,
angle of attack α, and altitude were more susceptible to
turbulent-windshear than the other flight parameters. Hence,
the slideslip angle β, angle of attack α, and descent height
(within 20 s)1H were selected as risk factors. The extracted
extreme parameters of the 200th simulation are shown
in Table 5.

The formula to determine whether the flight risk is defined
as follows:

Pr = 1 if


βmax > βc (W ,Ma)
1Hmax > 1Hc (b, φ, θ, 20)
αmax > αc

(
δf ,Ma

)
.

(13)
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FIGURE 7. Flight parameters of the 200th iterative simulation.

TABLE 5. Extracted extreme flight parameters of the 200th simulation.

where βc (W ,Ma) is the critical sideslip angle, which is
related to the Mach number and runway width, αc

(
δf ,Ma

)
is the critical angle of attack, which is related to the Mach
number and flap deflection δf , 1Hc (b, φ, θ,1t) is the criti-
cal descent height (within 20 s), which is related to the wing
length b, roll angle φ, and pitch angle θ .

V. BUILD RISK EVALUATION MODEL BASED ON
MULTIVARIATE COPULA THEORY
Three hundred virtual landing simulations were performed
under turbulent-windshear conditions based on the dis-
tributed pilot-machine-environment real-time simulation sys-
tem. The extreme parameters [βmax,Hmax, αmax] extracted
from the three hundred virtual landing simulations were used
as the evaluation data, which are shown in Figure 8. The dis-
tributions of the extreme parameters significantly exhibited
heavy-tailed characteristics, which is common in high-risk
events with low frequencies (e.g., earthquakes, tsunamis,
financial risks, and flight accidents [19]–[22]). Multivariate
copula theory can be used to study such events effectively,

as it can model the heavy-tailed characteristics of extreme
parameter distributions precisely [23]–[29].

Despite the characteristics of extreme parameter distribu-
tions are revealed thus far, because of unmodeled dynamics,
external disturbances, and inherent variability of a dynamic
process, the uncertainty of pilot-machine-environment real-
time simulation system represents a major threat to suc-
cessful risk evaluation. Several theoretical studies provide
some useful model estimation and optimization algorithms to
maximize estimation accuracy. Bayesian estimation method
has been developed and widely applied to nonlinear system
state estimation [30]. The dendritic neuron model with effec-
tive learning algorithms is developed for approximation, and
prediction [31], [32]. A Lyapunov-type theorem is developed
to study global well-posedness and asymptotic stability in
probability of nonlinear systems [33]. A new method which
combines the sparse signal representation technique and frac-
tional lower order statistics is proposed to improve the effec-
tiveness of direction of arrival estimation [34].

A. IDENTIFY DISTRIBUTION MODEL OF
ONE-DIMENSIONAL EXTREME PARAMETERS
1) ANALYSIS OF STATISTICAL CHARACTERISTICS FOR
ONE-DIMENSIONAL EXTREME PARAMETERS
The statistical characteristics of the extreme parameters
[βmax,Hmax, αmax] are shown in Table 6.
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FIGURE 8. Three hundred groups of extreme parameters obtained through the simulation.

TABLE 6. Statistical characteristics of the one-dimensional extreme
parameters.

For the extreme parameters [βmax,Hmax, αmax], the devi-
ations of the maximum and minimum values from the mean
value were asymmetric. Hence, kurtosis (k) and skewness (s)
coefficients of the extreme parameter samples were calcu-
lated to analyze the extreme parameter distribution features
using the following formulas:

k =
E(x − µ)4

σ 4 =

1
n

n∑
i=1

(xi − x̄)4(
1
n

n∑
i=1

(xi − x̄)2
)2 , (14)

TABLE 7. Kurtosis and skewness coefficients.

s =
E(x − µ)3

σ 3 =

1
n

n∑
i=1

(xi − x̄)3(√
1
n

n∑
i=1

(xi − x̄)2
)3 . (15)

The results are presented in Table 7. The kurtosis coeffi-
cients of the extreme parameters were all greater than three,
which suggested that the distributions of the extreme param-
eters possessed heavy-tailed characteristics. The skewness
coefficients of extreme parameters βmax, and 1Hmax were
greater than zero, which suggested that their heavy-tailed
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TABLE 8. Identification results of the unknown parameters.

characteristics were on the right sides of the distributions.
The skewness coefficients of the extreme parameter αmax
were less than zero, which suggested that its heavy-tailed
characteristic was on the left side of the distribution.

2) PARAMETER IDENTIFICATION OF DISTRIBUTION MODEL
FOR ONE-DIMENSIONAL EXTREME PARAMETERS
According to multivariate copula theory, because F1 (βmax),
F2 (1Hmax), and F3 (αmax) are all continuous distribution
functions, the three-dimensional copula function C in Eq.(3)
is unique. Thus, to build a three-dimensional function C of
the extreme parameters βmax, 1Hmax, and αmax, the generic
distribution model for one-dimensional extreme parameters
should be built first (shown in Eq.(1)). Six commonly used
distribution models for one-dimensional extreme parame-
ters are the generalized extreme value (GEV) distribution
model (Eq.(16)), normal distribution model (Eq.(17)), log-
normal distribution model (Eq.(18)), Weibull distribution
model (Eq.(19)), exponential distribution model (Eq.(20)),
and extreme value (EV) distribution model (Eq.(21)):

F (x;µ, σ, ξ)= exp

{
−

(
1+ξ ·

x−µ
σ

)−1/ξ}
, (16)

F (x;µ, σ)=
1

σ
√
2π

∫ x

−∞

exp
(
− (t−µ)2

/
2σ 2

)
dt, (17)

F(x;µ, σ )=
1

σ
√
2π

∫ x

0

e
−(ln(t)−µ)2

2σ2

t
dt, (18)

F (x;µ, σ)=
∫ x

0
σµ−σ tσ−1 exp

(
−
(
t
/
µ
)σ )dt, (19)

F (x;µ)= 1− exp
(
−x
/
µ
)
, (20)

F(x;µ, σ )=− exp
(
− exp

(
x − µ
σ

))
, (21)

where µ, σ , and ξ are all unknown parameters of the distri-
bution models.

3) IDENTIFY UNKNOWN PARAMETERS AND TEST
GOODNESS OF FIT
Based on the adaptive random particle optimization (ARPO)
algorithm, the unknown parameters of the distributionmodels
were all identified, as shown in Table 8. Figure 9 shows the

probability distribution histogram and cumulative probability
distribution curves of the extreme parameters βmax, 1Hmax,
and αmax. The results in Figure 9 suggest that the extreme
parameter distribution is broadly consistent with the GEV,
lognormal, and Weibull distribution models.

Figure 10 shows the quantile-quantile (QQ) plots of the
extreme parameters βmax, 1Hmax, and αmax. As shown
in Figure 10, the QQ plots of the GEV distribution model
were almost straight lines, indicating that the probabil-
ity distributions of the extreme parameters approximately
formed the GEV distribution model. As shown in Table 9,
the K-S test, A-D test, and χ2 test of the extreme parameters
also showed the same conclusion. The chi-squared value
of the GEV distribution model was smaller than those of
the other distributions, which indicated that the deviation
between the probability distribution of the extreme param-
eters and the GEV distribution model was a minimum. Fur-
thermore, the K-S and A-D values of the GEV distribution
model were smaller than those of the other distributions.
However, the P values of the GEV distribution model were
larger than those of the other distributions, which indicated
that the assumption that the probability distributions of the
extreme parameters approximately formedGEV distributions
passed the hypothesis test, at a far greater confidence level
than 95%. In conclusion, the GEV distribution model could
describe the extreme parameter distributions more effectively
than the other models.

The GEV distribution model exhibited maximum sta-
bility [29], which meant that the distribution form of the
normalized extreme parameters was consistent with the orig-
inal distribution. Hence, the probability distribution func-
tions F1 (βmax), F2 (1Hmax), and F3 (αmax) were as follows
(Eq.(22)–Eq.(24)), as shown at the bottom of the page 12.
where β̄max, 1H̄max, and ᾱmax are the normalized values of
the extreme parameters βmax,1Hmax, and αmax, respectively,
defined as follows:

β̄max =
βmax

βc (W ,Ma)

ᾱmax =
αmax

αc
(
δf ,Ma

)
1H̄max =

1Hmax(
450− 38 sinφ cos θ

/
2
) . (25)
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FIGURE 9. Plot of the probability density and cumulative probability.

Eq.(25) is inserted into Eq.(13) to create a formula to judge
the flight risk, as follows:

Pr = 1 if
(
β̄max > 1 or1H̄max > 1 or ᾱmax > 1

)
. (26)

B. IDENTIFY DISTRIBUTION MODEL OF
THREE-DIMENSIONAL EXTREME PARAMETERS
1) PARAMETER IDENTIFICATION OF DISTRIBUTION MODEL
FOR THREE-DIMENSIONAL EXTREME PARAMETERS
According to multivariate copula theory, the three-
dimensional copula function C in Eq.(3) was unique, which

describes the correlations between the three-dimensional
parameters. Thus, to build the three-dimensional function
C of the extreme parameters βmax, 1Hmax, and αmax, five
commonly used distributionmodels for the three-dimensional
extreme parameters were constructed: the Gumbel copula
model (Eq. (27)), as shown at the bottom of the page 12,
Frank copula model (Eq.(28)), as shown at the bottom of the
page 12, GS copula model (Eq.(29)), as shown at the bottom
of the page 12, Joe copula model (Eq.(30)), as shown at the
bottom of the page 12, and FAWP copula model (Eq.(31)), as
shown at the bottom of the page 12, where θi is an unknown
parameter of the copula model.
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FIGURE 10. QQ plots of extreme parameters.

TABLE 9. Goodness-of-fit test.

Next, the one-dimensional probability distribution func-
tions F1

(
β̄max

)
, F2 (ᾱmax), and F3

(
1H̄max

)
are introduced

to the five commonly used distribution models to build a
three-dimensional function C and describe the correlations
between the three-dimensional parameters.

2) IDENTIFY UNKNOWN PARAMETERS AND TEST
GOODNESS OF FIT
Based on the ARPO algorithm, the unknown parameters
of the distribution model were all identified, as shown
in Table 10. Figure 11 shows the probability density map

VOLUME 8, 2020 127811



G. Wang et al.: Risk Topology Construction Method of Flight Manipulation in Turbulent-Windshear Conditions

TABLE 10. Identification results of the unknown parameters.

of the three-dimensional copula function to illustrate the
density characteristics of the copulamodels clearly. As shown
in Figure 11, theGumbel copulamodel, GS copulamodel, Joe
copula model, and FAWP copula model possessed prominent
heavy-tailed characteristics that could better describe the cor-
relations between the three-dimensional extreme parameters.

Furthermore, based on the AIC, BIC, χ2 test, and K-S
test, the fitting results of the distribution were evaluated.
As shown in Table 11, the Gumbel copula model, Joe copula
model, and FAWP copula model had smaller AIC values, BIC
values, χ2 values, and K-S values than those of the other
models. Furthermore, the values of the Gumbel copulamodel,
Joe copula model, and FAWP copula model were all larger

FIGURE 11. Probability density plot of copula models.

than the significance level of 0.05, which indicated that these
three copulas passed the hypothesis test at the 95% confi-
dence level. Hence, the Gumbel copula model, Joe copula
model, and FAWP copula model are suitable models that
can accurately describe the correlations between the three-
dimensional parameters.

F1(β̄max;µ, σ, ξ ) = exp

{
−

(
1− 0.08931 ·

β̄max − 5.22480
2.32019

)1/0.08931}
, (22)

F2(1H̄max;µ, σ, ξ ) = exp

{
−

(
1+ 0.21725 ·

1H̄max − 38.60043
17.71067

)−1/0.21725}
, (23)

F3(ᾱmax;µ, σ, ξ ) = exp

{
−

(
1− 0.07743 ·

ᾱmax − 20.35252
8.95829

)1/0.07743
}
, (24)

C (u, v,w) = exp

(
−

{
(− lnw)θ2 +

[
(− ln u)θ1 + (− ln v)θ1

] θ2
θ1

} 1
θ2

)
, (27)

C (u, v,w) = −
1
θ2

ln

{
1−

(
1− e−θ2

)−1 (
1− e−θ2w

) (
1−

[
1−

(
1− e−θ1

)−1 (
1− e−θ1u

) (
1− e−θ1v

)] θ2θ1 )} , (28)

C (u, v,w) =

1+
( 1

w
− 1

)θ2
+

((
1
u
− 1

)θ1
+

(
1
v
− 1

)θ1) θ2
θ1


1
θ2


−1

, (29)

C (u, v,w) = 1−
{[
(1− u)θ1

(
1− (1− v)θ1

)
+ (1− v)θ1

] θ2
θ1
(
1− (1− w)θ2

)
+ (1− w)θ2

} 1
θ2
, (30)

C (u, v,w) = uvw exp

[(
θ1

ln u
+
θ2

ln v

)−1]
exp


 θ3

lnw
+

θ4

ln u+ ln v+
(
θ1
ln u +

θ2
ln v

)−1

−1 . (31)
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TABLE 11. Goodness-of-fit test.

C. RISK-WEIGHTED MODEL
Based on the equation to judge the flight risk (Eq.(26)) and
three-dimensional copula models, the results of the risk prob-
ability were obtained, as shown in Table 12.

TABLE 12. Risk probability.

FIGURE 12. Comparison of convergence between four models.

The difference in the risk probability value is not only
related to the three-dimensional copula model, but also to
virtual flight simulation times n, as shown in Figure 12.
With the number of virtual flight simulation times increasing,
the results of risk probability tend to be stable.

However, the computation ability of single computer is
limited. In order to improve the efficiency of risk evaluation
and reduce the number of virtual flight simulation times,
the risk-weighted model was proposed.

Pr = WGum · PGumr +WJoe · PJoer +WFAWP · PFAWPr . (32)

where, the weight parameters WGumbel, WJoe, and WFAWP in
the risk-weighted model were determined based on the P
values from goodness-of-fit test, which were calculated using
in Eq. (33).

Wi = Pi

/
3∑
i=1

Pi, (33)

Figure 12 shows that the risk-weighted model is easily
converged compared to other three copula models. and its
risk evaluation accuracy approached stable when n ≥ 300.
Hence, the comprehensive risk probability Pr was calculated
to be 0.00812342.

VI. RISK TOPOLOGY CONSTRUCTION OF FLIGHT
MANIPULATION
A single and independent risk quantification value has lit-
tle significance for risk management and control. Hence,
based on the virtual landing simulation in the distributed
human-machine-environment real-time simulation system,
the risk topology of flight manipulation for landing in
turbulent-windshear conditions was constructed using the
pitch angle variation 1θ , yaw angle variation 1ψ , and
flight distance L by applying the quantitative risk evaluation
method proposed in this study.

The process of the risk topology construction is illustrated
in Figure 13, and operates with four steps as follows:

FIGURE 13. Process of risk topology construction.

FIGURE 14. Three-dimensional risk topology of manipulation for landing
in turbulent-windshear conditions.

Step 1: Divide computational nodes. The number of
computational nodes in the risk topology was 40× 40×
60 = 96,000, with pitch angle variation 1θ ∈ [−15◦ :
1◦ : 25◦], yaw angle variation 1ψ ∈ [−20◦ : 1◦ :
20◦], and flight distance L ∈ [0 : 100 : 6000]. Each
computational node corresponds to a flight manipulation
situation.
Step 2: Parallel-computation. Each computational node
is independent of the others, and so it is feasible to use
the parallel-computation method to expedite the compu-
tational process. For each computational node, n = 300
virtual landing simulations were performed under
turbulent-windshear conditions based on the distributed
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FIGURE 15. Two-dimensional risk topology of manipulation for landing when 2000 m ≤ X ≤ 5500 m.
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pilot-machine-environment real-time simulation sys-
tem, and the extreme parameters [βmax,Hmax, αmax]
extracted from three hundred virtual landing simulations
were stored into database as the evaluation data.
Step 3: Risk evaluation. The comprehensive risk proba-
bility Pr for all the computational nodes can be obtained
based on multivariate copula theory accordingly.
Step 4: Construct the risk topology of flight manipu-
lation. The risk topology is a three-dimensional (3-D)
space formed by pitch angle variation 1θ , yaw angle
variation1ψ , and flight distance L vectors, and the 3-D
risk topology is dispersed bymany computational nodes.
Hence, the risk topology of flight manipulation was con-
structed in terms of the comprehensive risk probability
values for all the computational nodes.

The risk topology of flight manipulation for landing in
turbulent-windshear conditions was constructed, as shown in
Figure 14. The risk topology can not only greatly improve
the situational awareness of the pilot but also provide com-
prehensive and intuitive guidance to remove the aircraft from
the impact of wind-shear.

Figure 15 shows the two-dimensional risk topology of
flight manipulation for landing when 2000 m≤ X ≤ 5500 m.
The risk-evolution mechanism of flight manipulation risk for
landing in turbulent-windshear conditions is analyzed below.

Figure 15(a) shows the two-dimensional risk topology of
flight manipulationwhenX = 2000m. A negative pitch angle
variation could lead to an increase in the risk probability,
since the reduction of the effective angle of attack caused
the loss of lift, which also affected the risk factor 1H . Fur-
thermore, the yaw angle variation [−5◦, 5◦] means that the
aircraft would enter the influence area of vortex 1 or 2 after1t
seconds, and risk factors α and1H would be both impacted.
Hence, the aircraft must maintain a stable glide path in this
stage. The pilot can adjust the track angle to align the aircraft
with the runway and increase the pitch angle to decrease
descent rate.

Figure 15(b) shows two-dimensional risk topology of flight
manipulation when X = 2300m. Because02 > 01, the angle
of attack would be impacted by vortex 2 first. The lift would
decrease with the decrease in the angle of attack under its
downdraft airflow influence, which would cause the risk
factor 1H to exceed the upper limit. An aircraft with inertia
would enter the downwind area and the lift would further
decrease. Due to the delay of emergency engine operation,
the descent rate and angle of attack would both increase,
which could lead to flight performance degradation. If the
pilot failed to remove the aircraft from danger conditions,
the aircraft would crash directly. This analysis revealed the
significance of engine operation for removing the aircraft
from dangerous conditions. Hence, the pilot should not exces-
sively reduce the throttle to maintain a constant descent
rate during landing. Furthermore, the pilot must coordinate
the throttle and pitch angle based on experience and coor-
dinate the relationship between the glide path and descent
rate.

Figure 15(c) shows the two-dimensional risk topology of
flight manipulation when X = 2600 m. Compared with
Figure 15(b), the decrease in the right risk topology indicates
that the impact of vortex 2 was still present but gradually
weakened. The yaw angle variation [−10◦, 5◦] meant that
the aircraft entered the influence area of vortex 1 after 1t
seconds, and a positive pitch angle variation would cause the
angle of attack to exceed the stalling angle. The risk factors
α and 1H would be both impacted. It is noteworthy that
a long and narrow security manipulation topology existed
in the {(1ψ,1θ) |3◦ < 1ψ < 4◦, 8◦ < 1θ < 25◦ } range.
This shows that it is possible for the aircraft to pass through
the impact area of vortex 1 and vortex 2 and land securely.

Figure 15(e)-(g) shows that the impacts of vortex 1
and 2 gradually weakened, and the areas of risk topology
gradually decreased. At this stage, the aircraft had a secure
margin of flight manipulation. The pilot must pay more atten-
tion to the angle of attack and adjust the attitude of the aircraft
to maintain a stable glide path over time.

Figure 15(h)-(j) shows that the impacts of vortex 3 grad-
ually strengthened, and the areas of risk topology increased,
because the risk factor β was impacted by vortex 3. The risk
topology of flight manipulation indicated that the risk would
rise sharply if the aircraft landed at a large yaw angle. At this
stage, the pilot must pay more attention to the attitude of the
aircraft and determine whether to pull up and go around based
on their experience and capacity.

VII. CONCLUSION
By carrying out virtual landing simulations in the distributed
human–machine–environment real-time simulation system,
the risk topology of flight manipulation for landing in
turbulent-windshear conditions was constructed which was
composed of the pitch angle variation 1θ , yaw angle vari-
ation 1ψ , and flight distance L based on the risk quantita-
tive evaluation method proposed in this study. Furthermore,
the risk-evolution mechanism of flight manipulation was ana-
lyzed in detail. The analysis led to the following conclusions:

1. It is dangerous to land in turbulent-windshear conditions.
Multiple factors contributed to the risk. Hence, when the
pilot lacks experience and ability, it is suggested that the pro-
cess of landing in complex turbulent-windshear conditions be
stopped at once. Unless airflow is smooth, the aircraft cannot
land.

2. Flight manipulation in turbulent-windshear conditions is
subject to multiple restrictions that are complex and variable.
Due to the delayed effect of the stick and throttle, the air-
craft handle quality and the flight performance may suddenly
deteriorate. Hence, to ensure landing safety, it is necessary
for the pilot to adopt appropriate training and accumulate
manipulation experience.

3. The risk topology of flight manipulation is of great
significance for improving the situational awareness of the
pilot. The risk topology data under different conditions can
be stored in an airborne computer in the form of a database.
When the aircraft encounters different turbulent-windshear
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conditions, the risk topology of flight manipulation can be
quickly obtained by interpolation to provide the pilot with
instructions.

In this study, the risk topology of flight manipulation in
turbulent-windshear conditions was used as an example to
discuss a risk topology construction method of flight manip-
ulation. The accuracy of the risk topology is affected by
many factors, so this study focused on the construction of a
method to evaluate the risk and risk topology. The method
and conclusions proposed in this study have reference sig-
nificance and application value for landing safety assurance
under turbulent-windshear conditions.

In addition, the proposed method can be used to verify
the design of a flight control system and evaluate the flight
performance and safety margin when the aircraft encounters
various adverse conditions (such as complex environments
and single engine failure).
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