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ABSTRACT Tracking control has been an important research topic in robotics. It is critical to design
controllers that make robotic systems with smooth velocity commands. In addition, the robustness of the
robotic system in the presence of system and measurement noises is an important consideration as well. This
paper presents a novel tracking control strategy that integrates a biologically inspired backstepping controller
and a torque controller with unscented Kalman filter (UKF) and Kalman filter (KF). The bioinspired
backstepping controller and torque controller are capable of avoiding and reducing the velocity jumps
and overshoots that occur in conventional backstepping control and provide smooth velocity commands.
The integration of KF and UKF enables the proposed control strategy capable of providing accurate state
estimates. The stability and convergence of tracking errors are guaranteed by Lyapunov stability analysis. The
novelty of the proposed bioinspired tracking control strategy is to take the system and measurement noises
and robot dynamic constraints into the consideration. The results show that the proposed control strategy
provides accurate state estimates and avoids large velocity jumps and overshoot that occurs in conventional
backstepping control. This tracking control strategy is suitable for autonomous mobile robots under hard
conditions with system and measurement noises.

INDEX TERMS Trajectory tracking, bioinspired neural dynamics, backstepping control, torque control,
unscented Kalman filter.

I. INTRODUCTION
Real-time tracking control has always been an essential
research area in robotics [1], [2]. It is important to have the
robotic system reach a certain speed that drives the robot to
track its desired trajectory. In addition, accurately tracking the
desired trajectory is an important task in real-life applications
as well. The unmanned robotic systems usually operate in
complex environments where the disturbances, especially the
system and measurement noises, can affect the accuracy of
the tracking. Therefore, it is necessary tomake the robot accu-
rately track its desired trajectory and robust to these noises.
In addition, the tracking control method should be practically
applicable for a mobile robot and easy to implement. The
accuracy of control still remains a big challenge and many
people are still doing research on it [3]–[5].
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There have been many studies for tracking control of
robots, and the research can be mainly divided into four
different categories: 1) linearization [6]–[8]; 2) sliding mode
[9]–[11]; 3) backstepping [12]–[16]; 4) neural networks and
fuzzy systems [17]–[19]. All these methods have their pros
and cons. The linearization method often uses state feedback
linearization through a decoupling matrix, and this method
requires small initial tracking error and suffers from large
velocity changes in initial stages. The sliding mode control
can deal with large initial tracking error, however, this con-
trol strategy usually suffers from a known chattering issue.
The backstepping tracking method is the most commonly
used method for tracking control. It deals with large initial
tracking error, and the structure of this control method is rel-
atively simple. The Lyapunov stability theory proves its sta-
bility. However, this approach generates velocity commands
with large initial velocity jumps when tracking error occurs,
which makes this approach not practical. The neural network
approach is an efficient way to deal with large velocity jump,
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however, this method requires online learning that is com-
putationally complex, thus, this method is rather expensive to
implement. The fuzzy rule method can also deal with velocity
jumps, however, this rule-based approach is difficult to set
up the rules, which are often based on general knowledge
from human experience. Out of all these tracking control
strategies, Yang et al. [14] proposed a novel backstepping
controller that is inspired by a biological neural system. This
method resolved velocity jumps in conventional backstepping
control, and this biologically inspired backstepping control
method is relatively simple to implement.

The KF is a well-known filter that provides optimal state
estimates for linear systems under Gaussian noise. This filter
has been widely used inmany applications that include trajec-
tory tracking [20]–[22]. Because the KF was designed for a
linear system, multiple variations of KF have been developed
to resolve the state estimation for nonlinear systems such as
extended Kalman filter (EKF) [23] and UKF [24]. The UKF
uses an unscented transform that is similar to a determin-
istic sampling technique. Unlike the commonly used EKF,
the UKF does not require to linearize the system for this filter
to operate.

The autonomous mobile robots usually operate under com-
plex environment, which requires smooth velocity transitions
for the robots. The complexity of the environment and noises
may have huge impacts on the accuracy of the tracking
for mobile robots. Therefore, this paper directly aims to
tackle the problems that large velocity changes occurs in
conventional backstepping control and robustness for accu-
racy trajectory tracking in noisy environment. The overall
design should allow an autonomous mobile robot to operate
smoothly with accurate state estimates in complex environ-
ments.

Many existing tracking methods assume the robot posture
and velocity are known through real-timemulti-sensor fusion,
more specifically, the location and velocity of the robot are
known through multiple sensor measurements, which are
assumed to be completely accurate. In addition, the experi-
ments are usually conducted in a laboratory environment, and
does not consider the robot smooth speed transition. There-
fore, the proposed control strategy focuses on resolving the
noises that exist in real world situations for amobile robot and
providing smooth velocity transition. This paper developed
a novel tracking control method that can generate smooth
velocity commands and provide accurate state estimates by
integrating the biologically inspired backstepping control and
the torque control with KF and UKF. The main advantages of
the proposed novel controller are summarized as follows:

1) In order to improve the accuracy of the trajectory
tracking, the overall design considered both kinematics and
dynamics of the mobile robot by integrating the biologically
inspired backstepping controller with a torque controller for
a mobile robot to further improve the tracking accuracy.

2) To further improve the accuracy of the trajectory track-
ing for real-life applications, the system and measurement
noises are both taken into the consideration and therefore,

the UKF and KF are respectively implemented to the kine-
matics and dynamic model of the mobile robot to provide
accurate state estimates.

3) The overall novel tracking control provided a prac-
tical control strategy for a mobile robot operating under
hard conditions. The proposed tracking control is capable of
eliminating velocity jump issues and reducing the velocity
overshoot issues in conventional backstepping control by the
implementation of a bioinspired model. In addition, accu-
rate state estimates are provided by the implementation of
KF and UKF.

This paper is organized as follows, Section II provides the
background of the different methods to be used in this paper.
Then, Section III proposed the bioinspired backstepping and
torque control with KF and UKF for the mobile robot. The
simulation results are shown in Section IV with multiple
comparisons to illustrate the improvement of the proposed
control strategy. Finally, Section V provides the conclusion
for the paper.

II. BACKGROUND
In this section, a dynamic and kinematic model of a non-
holonomic robot are firstly presented. Then the KF and UKF
algorithms and their applications to the mobile robot are
introduced as well.

A. KINEMATICS AND DYNAMICS MODEL
OF MOBILE ROBOT
Figure 1 demonstrates the model of a nonholonomic mobile
robot in a 2D Cartesian workspace. The localization of the
mobile robot is defined in the inertial frame as X ,O,Y
whereas the body-fixed frame is D,C,L, where D and L
are the driving and lateral direction of the mobile robot,
respectively, and C is the center point of the mobile robot.
The posture of the nonholonomic robot in the inertial frame
can be described as Pc = [xc, yc, θc], where xc and yc denotes
the spacial position at point C of mobile robot and θc is the
orientation angle with respect to point C . The mobile robot
is subjected to a nonholonomic kinematic constraint which is

FIGURE 1. Model of a nonholonomic mobile robot.
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given as

ẏc cos θc − ẋc sin θc = 0 (1)

This nonholonomic constraint makes the robot move normal
to the driving wheels. From the perspective of kinematic
control, without considering the slipping condition themobile
robot has 2 degrees of freedom (DOF). The relationship
between the velocity of the mobile robot in the inertial frame,
Ṗc = [ẋc, ẏc, θ̇c], and velocity of themobile robot in the body-
fixed frame is obtained through a Jacobian matrix as

Ṗc =

 ẋcẏc
θ̇c

 =
 cos θc 0
sin θc 0
0 1

[ υc
ωc

]
(2)

where υc and ωc represent the linear and angular velocity
of the mobile robot in the body-fixed frame, respectively.
The equation of motion for the nonholonomic mobile robot
without considering the effect of gravity can be described as
follows

M̄ (Pc)V̇ + F̄(Pc,Ṗc)V+τ̄d= B̄τc (3)

where M̄ (Pc) is the positive definite matrix for inertia, and
F̄(Pc,Ṗ) is the centripetal and Coriolis matrix, τ̄d is the
disturbances, and V = [υc, ωc]T

M̄ =
[
m 0
0 I

]
F̄ =

[
0 0
0 0

]
B̄ =

1
r

[
1 1
l l

]
τc =

[
τR
τL

]
(4)

where m is the mass of the mobile robot, I is the inertia
of the mobile robot, and τR and τL are the right and left
wheel torque inputs that are generated from the DC motors,
respectively. Parameter r is the radius of the driving wheels
and l is the azimuth length from pointC to the driving wheels.
By considering τ̄d as external disturbance, the simplified
dynamics of the mobile robot is expressed as

V̇ = M̄−1B̄ · τc (5)

B. ERROR DYNAMICS
The desired posture of the mobile robot, Pd (t) =

[xd (t), yd (t), θd (t)]T, is obtained through its reference path
from the inertial frame. Defining the tracking error of
the mobile robot in the body-fixed frame as eP(t) =
[eD(t), eL(t), eθ (t)]T, where eD, eL , and eθ are the tracking
errors in the driving direction, lateral direction, and orien-
tation, respectively. The tracking errors of the mobile robot
from the inertial frame to the body-fixed is calculated through
a transformation matrix Te by

eP =

 eDeL
eθ

 =
 cos θc sin θc 0
− sin θc cos θc 0

0 0 1

 exey
eθ

 (6)

where ex = xd−xc, ey = yd−yc, and eθ = θd−θc denote the
tracking error in X , Y , and orientation θ in the inertia frame,
respectively.

The error dynamics can be derived from (6) by taking its
time derivative as ėDėL

ėθ

 =
ωceL − υc + υd cos eθ−ωceD + υd sin eθ

ωd − ωc

 (7)

where υd and ωd represent the linear and angular velocity of
the mobile robot, respectively. Given the desired posture Pd ,
of the mobile robot, υd and ωd are calculated by

υd =

√
xd 2 + yd 2 (8)

ωd =
ÿd ẋd − ẍd ẏd
ẋ2d + ẏ

2
d

(9)

C. KF AND UKF ALGORITHMS
Given a linear system with noises as

xk+1 = Axk + Buk + αk (10)

zk+1 = Hxk+1 + βk+1 (11)

where A is the system matrix and B is the input matrix, uk is
the input, andH is the measurement matrix. Both system and
measurement noises are treated as Gaussian, where P(αk ) ∼
N (0,Qk ), and P(βk ) ∼ N (0,Rk ). Both noises are determined
by the actual experiments and have effects on the actual state
value xk and its measurement value zk . Then, the processes of
the KF can be defined in the following five procedures as

x̂k+1|k = Ax̂k|k + Buk (12)

Pk+1|k = APk|kAT + Qk (13)

where x̂k+1|k and x̂k|k are the priori and posterior state esti-
mates, respectively, and Pk+1|k is the corresponding state
error matrix, which is the covariance of the process noise,
Qk is the system noise covariance. Following the predicting
stage from (12) and (13), the updating stage is defined as

Kk+1 = Pk+1|kHT [HPk+1|kHT
+ Rk+1]−1 (14)

x̂k+1|k+1 = x̂k+1|k + Kk+1[zk+1 − Hx̂k+1|k ] (15)

Pk+1|k+1 = [I − Kk+1H ]Pk+1|k (16)

where Kalman gain Kk+1 is used in minimizing the trace of
the posteriori state error covariance matrix, x̂k+1|k+1 is the
updated state estimate, Pk+1|k+1 is the posteriori state error
covariance, and Rk is the measurement noise covariance.
In real world applications, there is no perfect linear system

and therefore a variation of KF, which is called UKF, has
been developed to deal with nonlinear systems. The general
form of a nonlinear system and its measurement model can
be defined as

xk+1 = f (xk , uk )+ δk (17)

zk+1 = h(xk+1)+ γk+1 (18)

where f (xk , uk ) is the nonlinear process of the system and h
is the measurement model of the system, δk and γk are the
Gaussian process and measurement noises, respectively. The
first process of the UKF is to generate 2n+1 sampling points,
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which are called sigma points, and n is the dimension of the
state variable xk . The state estimate of the mobile robot is
then generated by these sigma points through weighting and
multiple nonlinear functions. The initial sigma point, x0,k|k
and its weight,W0, are calculated by

x0,k|k = x̂k|k (19)

W0 =
λ

n+ λ
(20)

where λ is a design value that controls the spread of sigma
points and it is usually set significantly less than 1. Then
the second to (n+ 1)-th point are defined as

Xi,k|k = x̂k|k + (
√
(n+ λ)Pk|k )i (21)

Wi =
1

[2(n+ λ)]
(22)

where Xi,k|k and Wi are the corresponding sigma point and
weight for i-th sigma point. The final n sigma points are
defined as

Xi+n,k|k = x̂k|k − (
√
(n+ λ)Pk|k )i (23)

Wi+n =
1

[2(n+ λ)]
(24)

From (19) to (24), the predicted state estimate, x̂i,k+1|k is
calculated by

X̂i,k+1|k = f (X̂i,k|k , uk ) (25)

x̂i,k+1|k =
2n∑
i=0

WiX̂i,k+1|k (26)

and predicted state error covariance Pk+1|k is obtained
through

Pk+1|k =
2n∑
i=0

Wi(X̂i,k+1|k − x̂k+1|k )(X̂i,k+1|k−x̂k+1|k )T + Qk

(27)

All the generated samples are then used to obtain the
predicted measurement by nonlinear measurement model,
the predicted measurement is defined as

Ẑi,k+1|k = h(X̂i,k+1, uk ) (28)

ẑk+1|k =
2n∑
i=0

WiẐi,k+1|k (29)

where Ẑi,k+1|k is the i-th measurement and ẑk+1|k is the
predicted measurement. Then, these two variables are used
to calculate the measurement covariance Pzz,k+1|k and cross-
covariance Pxz,k+1|k , which are defined as

Pzz,k+1|k =
2n∑
i=0

Wi(Ẑi,k+1|k − ẑk+1|k )(Ẑi,k+1|k

−ẑk+1|k )
T
+ Rk (30)

Pxz,k+1|k =
2n∑
i=0

Wi(X̂i,k+1|k − x̂k+1|k )(Ẑi,k+1|k−ẑk+1|k )
T

(31)

Finally, the Kalman gain, state estimate, and state error
covariance are respectively obtained through

Kk+1 = Pxz,k+1|kP
−1
zz,k+1|k (32)

x̂k+1|k+1 = x̂k+1|k + Kk+1(zk+1 − ẑk+1|k ) (33)

Pk+1|k+1 = Pk+1|k − Kk+1Pzz,k+1|kKT
k+1 (34)

The UKF provides accurate state estimates for the nonlinear
system with noises. Although there are many other nonlinear
filters such as EKF, the reason why this paper chooses to
implement the UKF is that this method does not require
linearization compared to EKF.

D. THE KF AND UKF MODEL FOR THE MOBILE ROBOT
Based on (3)-(5), knowing the time step 1t , using Euler
approximation, the KF state model for the dynamics of the
mobile robot is defined as

V̂−k+1 =
[
υ̂−c,k+1
ω̂−c,k+1

]
=

[
υ̂c,k
ω̂c,k

]
+ M̄−1B̄τc,k ·1t + αk (35)

where υ̂c,k and ω̂c,k are respectively the estimated linear and
angular velocity at time k , υ̂−c,k+1 and ω̂

−

c,k+1 are respectively
the priori estimates of the linear and angular velocity at
time k + 1, αk is the system noise for the mobile robot.
The measurement for the dynamics of the mobile robot is
calculated by

Ṽk+1 = H (V̂−k+1, βk+1) = H
[
υ̂−c,k+1
ω̂−c,k+1

]
+ βk+1 (36)

where Ṽk+1 andβk+1 are themeasured velocity vector and the
measurement noise at time k+1, respectively. The system and
measurement noises are presented in the mobile robot due to
the sophisticated design of the mobile robot.
As for the UKF, the state and measurement model for the

kinematics of the mobile robot is treated as

P̂−c,k+1 =

 x̂
−

c,k+1
ŷ−c,k+1
θ̂−c,k+1

=
 x̂c,k + cos θ̂c,k υ̂c,k1t
ŷc,k + sin θ̂c,k υ̂c,k1t
θ̂c,k + ω̂c,k1t

+ δk (37)

P̃c,k+1 = h(P̂−c,k+1, γk+1) = h

 x̂
−

c,k+1
ŷ−c,k+1
θ̂−c,k+1

+ γk+1 (38)

where x̂c,k , ŷc,k , and θ̂c,k are the estimates of the robot
positions at time k , x̂−c,k+1, ŷ

−

c,k+1, and θ̂
−

c,k+1 are the priori
estimates of the robot position at time k + 1. The process
noise is added by using dead reckoning the location P−c,k+1.
In addition, the kinematic model has measurement noises
γk . The UKF is used to provide accurate state estimates.
The UKF uses the unscented transform technique, there are
7 sigma points being generated since states xc, yc, and θc
are being considered in the kinematic model of the mobile
robot. In addition, the system and measurement noises are
both considered as zero mean Gaussian noises.
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FIGURE 2. The block diagram of the proposed tracking control with KF and UKF.

III. DESIGN OF CONTROLLERS
This section designs a kinematic controller and a dynamic
controller that integrate with KF and UKF. The proposed
enhanced controller not only solves the speed jump issue
that occurs in the conventional backstepping control but also
provides accurate state estimates overall. The total design
of this novel tracking controller is presented in Figure 2.
The entire system has two closed-loops, which contain bioin-
spired control and torque control. The feedbacks for torque
control and bioinspired backstepping control are respectively
propagated through KF and UKF to generate accurate state
estimates for the better performance of the control strategy in
order for a mobile robot operating in hard conditions.

A. BIOINSPIRED BACKSTEPPING CONTROLLER
The conventional backstepping tracking control law for a
nonholonomic mobile robot is provided as [25]

υr = C1eD + υd cos eθ (39)

ωr = ωd + C2υdeL + C3υd sin eθ (40)

where C1, C2, and C3 are the designed parameters, υr and
ωr are respectively the reference linear and angular velocity
command that generated from the controller. This control law
has a speed jump issue. Therefore, Yang et al. [14] proposed
a bioinspired backstepping control that used the dynamics of
voltage across the membrane, which is called the shunting
model. This model is written as

Cm
dVm
dt
= −(Ep+ Vm)gp + (ENa − Vm)gNa − (Ek + Vm)gK

(41)

where Cm is the membrane capacitance, Parameter Ep, ENa,
and Ek are the Nernst potentials for the passive leak, sodium
ions, and potassium ions in the membrane, respectively.
Parameter gp, gNa, and gK denote the conductance of the
passive channel, sodium, and potassium, respectively. This
model is the foundation of the shunting model, which leads
to many variations and applications.

By settingCm = 1 and substituting xi = Ep+Vm, A1 = gp,
B1 = ENa + Ep, D1 = Ek − Ep, Si+ = gNa, and Si− = gK
into (41), the shunting model can be rewritten as

dxi
dt
= −A1xi + (B1 − xi)Si+ − (D1 + xi)Si− (42)

where xi is the neural activity of the i-th neuron. Parame-
ters A1, B1, and D1 are nonnegative constants that represent
passive decay rate and the upper and lower bounds of the
neural activity, respectively. Variable Si+ and Si− denote the
excitatory and inhibitory inputs to the neuron. This model
was first used in real-time path planning for robots by Yang
and Meng [26]. The conventional backstepping control has
speed jump and overshoot issues, some recent research used
backstepping technique with the combination of slidingmode
control, however, the overshoot and jump issue can still be
observed [27]–[29], and the speed jump issue has not been
practically solved. The proposed tracking control strategy is
able to eliminate the velocity jump and overshoot that occur
in conventional backstepping control and provide smooth
velocity commands.

With the implementation of the shunting model into con-
ventional backstepping control, the bioinspired backstepping
control laws are defined as

υr = υs + υd cos eθ (43)

ωr = ωd + C2υdeL + C3υd sin eθ (44)

where υs is from a neural dynamics equation with respect to
the error in the driving direction as

dυs
dt
= −A1υs + (B1 − υs)f (eD)− (D1 + υs)g(eD) (45)

where f (eD) = max{eD, 0} is the linear above threshold
function and g(eD) = max{−eD, 0} is a nonlinear function.
Parameter A1 is the passive decay rate, and B1 and D1 are
upper and lower bound of the velocity, respectively. The
Lyapunov candidate function and its time derivative for bioin-
spired backstepping control are proposed as

V1 =
1
2
eD2
+

1
2
eL2 +

1
C2

(1− cos eθ )+
1

2B1
υs

2 (46)

V̇1 = ėDeD + ėLeL +
1
C2
ėθ sin eθ +

1
B1
υ̇sυs (47)

B. TORQUE CONTROLLER
The actual velocity of the mobile robot is different from
the velocity command that is generated from the bioinspired
backstepping control due to the noises. The velocity tracking
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FIGURE 3. Velocities estimates for straight line tracking.

error eη is expressed as

eη =
[
eυ
eω

]
=

[
υr − υc
ωr − ωc

]
(48)

Then the torque tracking control law τc = [τL , τR]T is
proposed as

τL =
mr
2
(υ̇r + C4eυ)−

Ir
2c

(ω̇r + C5eω) (49)

τR =
mr
2
(υ̇r + C4eυ)+

Ir
2c

(ω̇r + C5eω) (50)

The Lyapunov candidate function and its time derivative for
the torque controller can be defined as

V2 = V1 +
1
2
eυ2 +

1
2
eω2 (51)

V̇2 = V̇1+ eυ ėυ + eωėω = V̇1 + eυ (υ̇r − υ̇c)+ eω(ω̇r− ω̇c)

(52)

C. STABILITY ANALYSIS
To prove the stability of the proposed control strategy,
the bioinspired backstepping controller and torque controller
are firstly proven to be asymptotically stable. The overall
stability is then proven as well. It is assumed that the posture
and velocity errors are bounded. First, based on (43)-(45) and
(47), V̇1 is rewritten as

V̇1 = −υseD −
C3

C2
υd sin2eθ +

1
B1

[−A1 − f (eD)

− g(eD)]υs2 +
1
B1

[B1f (eD)− D1g(eD)]υs (53)

Assuming B1 = D1, (53) is rewritten as

V̇1 = −
C3

C2
υd sin2eθ +

1
B1

[−A1 − f (eD)

− g(eD)]υs2 + [f (eD)− g(eD)− eD]υs (54)

Based on the definition of f (eD) and g(eD). If eD ≥ 0, f (eD) =
eD and g(eD) = 0, then

[f (eD)− g(eD)− eD]υs = eD − 0− eD = 0 (55)

FIGURE 4. Posture of mobile robot for straight line tracking.

FIGURE 5. RMSE for straight line tracking.

By applying the same concept from (55), if eD ≤ 0, g(eD) =
eD and f (eD) = 0, then

[f (eD)− g(eD)− eD]υs = 0− (−eD)− eD = 0 (56)

Therefore, (54) becomes

V̇1 = −
C3

C2
υd sin2eθ +

1
B1

[−A1 − f (eD)− g(eD)]υs2 (57)

TheC3 andC2, and υd are positive constants. g(eD) and f (eD)
are nonnegative, and A1 and B1 are nonnegative constants.
Therefore, V̇1 ≤ 0. If and only if eD = 0 and eθ = 0, then
V̇1 = 0, thus the torque controller is asymptotically stable.

To prove the stability of the torque controller, by applying
(5) into (52), the equation becomes

V̇2 = V̇1 + eυ (υ̇r −
1
mr
τL −

1
mr
τR)

+ eω(ω̇r +
l
Ir
τL −

l
Ir
τR) (58)
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FIGURE 6. Velocities estimates for circular line tracking.

FIGURE 7. Posture of mobile robot for circular line tracking.

by replacing τL and τR in (49) and (50) in (58), the V̇2 is
rewritten as

V̇2 = V̇1 − C4eυ2 − C5eω2 (59)

Since V̇1, −C4eυ2, and −C5eω2 are all less than or equal to
zero, the proposed torque controller reaches a stable condi-
tion. If and only if eD, eθ , and eη are zeros, then V̇2 = 0,
therefore, the torque control is asymptotically stable. For the
overall stability analysis, the Lyapunov candidate function of
the system can be defined as

V3 = V1 + V2 (60)

The time derivative of V3 is derived as

V̇3 = 2(−
C3

C2
υd sin2eθ +

1
B1

[−A1 − f (eD)

− g(eD)]υs)− C4eυ2 − C5eω2 (61)

If and only if the eP and eη are zeros, V̇3 = 0. Therefore, when
eθ = [−π, π], the control system is globally asymptotically
stable.

FIGURE 8. RMSE for circular line tracking.

IV. RESULTS
In this section, the proposed tracking control that integrated
with KF andUKF are used to track a straight line and a curved
line. The results show that the proposed control strategy with
KF andUKF track the desired trajectory with smooth velocity
command and the KF and UKF provide accurate state esti-
mates. The designed control value λ is set as e−3 as it is the
most suitable value for Gaussian [30]. The initial state error
covariance for dynamic model P(0|0) = 10Q, system noise
covarianceQ, and measurement noise covariance R for linear
and angular velocity are treated as Q = diag(e−5, e−6), and
R = diag(e−2, e−3). The process noise covariance of mobile
robot using dead reckoning is given as diag(e−5, e−5, e−6)
and measurement noise covariance for the posture of mobile
robot is diag(e−2, e−2, e−3). The measurement model H for
KF and h for UKF are treated as 2 × 2 and 3 × 3 identity
matrices, respectively [31], [32]. To validate the efficiency of
the KF and UKF in the proposed control strategy, the root
mean square error (RMSE) is used to calculate the error
between the actual mobile robot path and the path without
noises being present in the mobile robot. The mobile robot
parameters are set as m = 10, I = 0.1, l = 1, and r = 1. The
RMSE is calculated by

RMSE =

√√√√√ N∑
i=1

(
P− P̃

)2
N

(62)

where P is the mobile robot state without noise being pre-
sented and P̃ is the estimated state of the mobile robot, and N
is the total amount of samples that are collected.

To further evaluate the smoothness of the proposed track-
ing method, the linear and angular acceleration of the mobile
robot are calculated to show that the proposed tracking
method is capable of providing smooth velocity command for
a mobile robot.
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FIGURE 9. Robot posture, velocity, and peak velocity comparisons between conventional and bioinspired backstepping control: (a) Straight path
tracking performance; (b) Straight path tracking linear velocity estimates; (c) Peak linear velocity comparison for straight path tracking; (d) Circular
path tracking performance; (e) Circular path tracking linear velocity estimates; (f) Peak linear velocity comparison for circular path tracking.

A. TRACKING A STRAIGHT PATH
To show that the proposed control strategy is capable of
tracking the desired trajectory, the desired path is defined as
y = 4 and x = 0. In a 2D Cartesian workspace, the posture
of the initial position of the mobile robot is defined as (0, 3).
Therefore, the initial tracking error is (0, 1). The sampling
frequency is set to be 100Hz. The parameters for the bioin-
spired backstepping controller are chosen as C2 = 5 and
C3 = 2, A1 = 5, B1 = 3, and D1 = 3. The parameters for the
torque controller are set asC4 = 5 andC5 = 5. From Figure 3
and Figure 4, it is obvious that the tracking control with KF
and UKF provides more accurate state estimates compared to
the method without filters. Figure 5 provides a better view of
the results, which shows the proposed method provides more
accurate state estimates over any single implementation of the
filters. Without the implementation of the filters the average
tracking error reaches 1.8215m, which makes the measured
data unusable. In addition, the combination of bioinspired
controller and torque controller is able to reduce the tracking
error. The average tracking error without torque controller
being presented is 0.0438m, with the implementation of
torque controller, the average tracking error has been reduced
to 0.0275m.

B. TRACKING A CIRCULAR PATH
A circular path is defined to show that the proposed tracking
strategy is capable of tracking a curved path. The initial
desired posture of the mobile robot is at (1, 2.5), whereas
the actual robot posture is at (0.8, 3.3). The parameters are
chosen as C2 = 5 and C3 = 2, A1 = 5, B1 = 3, and

D1 = 3 for the bioinspired backstepping controller. The
parameters for the torque controller are set as C4 = 5 and
C5 = 5. The sampling frequency is 100Hz. The results
in Figure 7 shows that the robot tracks the desired path
accurately. In addition, Figure 6 shows that the estimated
velocity is smoother with the application of the KF and UKF,
thus the results are more promising. In order to show that
the proposed controller performed better with the filter for a
circular path, the RMSE in Figure 8 addresses the efficiency
with each method, without the implementation of the filters,
the average position tracking error reaches 1.6368m. The
average position tracking error for bioinspired backstepping
and torque control is 0.0269m in comparison to 0.0545mwith
only bioinspired backstepping control being implemented.

C. TRACKING SMOOTHNESS
For a mobile robot operating under hard conditions,
the smoothness of the path and velocities are essential to
ensure the robots functionality. Therefore, the comparison
study between conventional backstepping and bioinspired
backstepping control with filters is performed. The param-
eters for the conventional backstepping control are set as
C1 = 5, C2 = 5, and C3 = 2, and the parameters for the
bioinspired backstepping control are set as C2 = 5, C3 = 2,
A1 = 5, B1 = 3, and D1 = 3.
As shown in Figure 9(a), the robot path to track a straight

line for the bioinspired tracking control is smoother than the
conventional backstepping control. In addition, Figure 9(b)
shows that the generated linear velocity for the bioinspired
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tracking method is smoother than the conventional backstep-
ping control tracking method as well. In addition, the peak
linear velocity of mobile robot that is required for the bioin-
spired tracking method is much lower than the conventional
backstepping control. The maximum linear acceleration
of the bioinspired backstepping has been greatly reduced,
the demanding acceleration at initial stage reaches 9.47m/s2

for conventional backstepping control, whereas bioinspired
backstepping control has 4.26m/s2 at its maximum. The
lower acceleration that is needed based on bioinspired back-
stepping control for mobile robot implies the demanding
torque from the motor is lower and therefore more practical
than conventional backstepping control.

Although Figure 9(d) shows that both tracking methods are
able to track a circular path, the conventional backstepping
control has speed overshoot issues, which can be observed
from Figure 9(e). The reason why this happens is caused by
the design of conventional backstepping control from (39),
the C1eD term shows that if there is an error occurring in the
driving direction, the speed jump cannot be avoided. There-
fore, the implementation of bioinspired model has overcome
this speed jump issue and made the proposed tracking control
even more practical for a mobile robot.

Figure 9(c) and 9(f) further demonstrates that if a larger
tracking error occurs, the conventional backstepping control
becomes impractical as the peak velocity reaches an uncon-
trollable value, especially for autonomous robots working
under hard conditions, yet the bioinspired backstepping con-
trol constrains the peak velocity and makes it remains in a
lower value.

V. CONCLUSION
In this paper, a novel tracking control of enhanced bioinspired
backstepping controller, which contains the bioinspired back-
stepping controller and the torque controller, has been pro-
posed. The proposed method is able to track the desired
trajectory more accurately by considering both kinematics
and dynamics of the mobile robot. Multiple studies in this
paper supports that the proposed control strategy is able to
provide the smooth velocity commands and reduce the effects
of the noises. In addition, the KF and UKF are respectively
integrated with the torque controller and bioinspired back-
stepping controller to provide better performance in state
estimates for real-world applications. Furthermore, the entire
closed-loop system is asymptotically stable and is guaranteed
by Lyapunov stability theory. Overall, this paper presented
a practical solution for a mobile robot tracking the desired
trajectory under hard conditions with the presence of the
system and measurement noises.
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