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ABSTRACT This paper builds on recent developments in Bayesian network (BN) structure learning under
the controversial assumption that the input variables are dependent. This assumption can be viewed as a
learning constraint geared towards cases where the input variables are known or assumed to be dependent.
It addresses the problem of learning multiple disjoint subgraphs that do not enable full propagation of
evidence. This problem is highly prevalent in cases where the sample size of the input data is lowwith respect
to the dimensionality of the model, which is often the case when working with real data. The paper presents
a novel hybrid structure learning algorithm, called SaiyanH, that addresses this issue. The results show that
this constraint helps the algorithm to estimate the number of true edges with higher accuracy compared to
the state-of-the-art. Out of the 13 algorithms investigated, the results rank SaiyanH 4th in reconstructing the
true DAG, with accuracy scores lower by 8.1% (F1), 10.2% (BSF), and 19.5% (SHD) compared to the top
ranked algorithm, and higher by 75.5% (F1), 118% (BSF), and 4.3% (SHD) compared to the bottom ranked
algorithm.Overall, the results suggest that the proposed algorithm discovers satisfactorily accurate connected
DAGs in cases where other algorithms produce multiple disjoint subgraphs that often underfit the true graph.

INDEX TERMS Causal discovery, conditional independence, directed acyclic graphs, probabilistic graphical
models, structure learning.

I. INTRODUCTION
A Bayesian Network (BN) is a type of a probabilistic graph-
ical model introduced by Pearl [1], [2]. If we assume that
the arcs between nodes represent causation, then the BN is
viewed as a Causal Bayesian Network (CBN). However, if we
assume that the edges between nodes represent some depen-
dency that is not necessarily causal, then such a BN is viewed
as a dependence graph. A CBN can only be represented by a
unique Directed Acyclic Graph (DAG), whereas a BN that
is not viewed as a causal model can be also be represented
by a Completed Partial Directed Acyclic Graph (CPDAG).
A CPDAG incorporates both directed and undirected edges
and represents a set of Markov equivalent DAGs that entail
the same independence relations over the observed variables.

BNs have emerged as one of the most successful
approaches for reasoning under uncertainty. This is partly
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because they enable decision makers to reason with trans-
parent causal assumptions that offer solutions that go beyond
prediction. For example, a CBN enables decision makers to
reason about intervention and counterfactuals. On this basis,
the focus of this paper is on the reconstruction of the true
causal DAG, as opposed to the reconstruction of a graph that
forms part of the equivalence class of the true DAG (i.e.,
a CPDAG).

Constructing a BN involves determining the graphical
structure of the network and parameterising its conditional
distributions. The problem of structure learning is consid-
erably more challenging than that of parameter learning.
This is because searching for the true graph represents a
NP-Hard problem where some instances are much harder
than others [3]. Structure learning algorithms generally fall
under two learning classes. Firstly, the score-based meth-
ods represent a traditional machine learning approach where
graphs are explored and scored in terms of how well the
fitting distributions agree with the empirical distributions.
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The graph that maximises the scoring function is returned
as the preferred graph. On the other hand, constraint-based
learning is based on a series of conditional independence tests
that determine the removal and the orientation of some edges.
Hybrid algorithms are often viewed as a third learning class
that adopts features from both score-based and constraint-
based learning.

The automated construction of causal structures has the
potential to offer significant benefits to every research field
concerned with causal inference and actions for interven-
tion. However, automated causal discovery is hindered by
difficulties that have significantly limited its impact. These
difficulties go beyond the problem of NP-hardness that is
generally addressed by pruning the search space of possible
graphs and effectively minimising the loss in accuracy and
maximising the gain in speed.

Importantly, there are conflicting claims in the litera-
ture about what can be recovered from observational data.
Some argue for a causal graph and others for a dependence
graph [4]–[8]. The underlying assumption of the learned
graph influences the evaluation process that determines the
effectiveness of these algorithms. While cross-validation
serves as an excellent evaluator for a predictivemodel in other
machine learning fields, it underdetermines the accuracy of
causal inference. As a result, there is no consensus on an
evaluation approach that best determines the effectiveness of
a BN structure learning algorithm. Each publicationmakes an
empirical or a theoretical case for the algorithm presented in
that publication [9]. Likewise, each structure learning algo-
rithm is based on a set of assumptions, such as complete data
and causal sufficiency, and tends to be evaluated with syn-
thetic data that conforms to those assumptions, however unre-
alistic these assumptions may be in the real world [10]. As a
result, it is widely accepted that synthetic performance, that
is based on simulated data, overestimates real performance.
Because these issues remain largely unresolved, they invite
different forms of domain knowledge to be incorporated into
the structure learning process [11]–[15]. The learning con-
straint for full propagation of evidence, incorporated into the
algorithm proposed in this paper, can be viewed as a new
knowledge-based constraint.

The rest of the paper is structured as follows:
Section 2 describes the algorithm, Section 3 describes and
discusses the evaluation process, Section 4 presents and
discusses the results, and Section 5 provides the concluding
remarks along with possible directions for future research.

II. THE ALGORITHM
The algorithm addresses the problem of learning multiple
disjoint subgraphs that do not enable full propagation of
evidence. This is achieved by performing structure learning
under the assumption that the input variables are dependent.

The learning process of the algorithm consists of three
phases. The first phase starts by producing an initial best
guess undirected graph that is entirely based on pairwise
associational scores. Constraint-based learning is then used

in conjunction with other rules to orientate edges in phase 2.
The third and final phase involves score-based learning that
modifies the graph produced at phase 2 towards the path that
maximises a scoring function. The subsections that follow
describe these three phases in turn, as well as the computa-
tional complexity of the algorithm.

A. PHASE 1: ASSOCIATIONAL LEARNING
The first phase is based on two novel approaches inherited
from an early experimental version of this algorithm [16].
They involve a) the associational score Mean/Max/MeanMax
Marginal Discrepancy (MMD), and b) an undirected graph
called the Extended Maximum Spanning Graph (EMSG).
The output of phase 1 is the EMSG and serves as the starting
graph of phase 2.

The MMD score represents the discrepancy in marginal
probabilities between prior and posterior distributions. Con-
trary to other traditional measures such as mutual informa-
tion (MI), the MMD score offers linear examination of the
marginal and conditional independencies.1 The MMD score
ranges from 0 to 1, where a higher score indicates a stronger
dependency. For edge A↔B, the score MMD (A↔ B) is the
average of scores MMDMN (A↔ B) and MMDMX (A↔ B),
where MN and MX are mean and max marginal discrepan-
cies. Specifically,

MMD (A↔ B) =
∑
↔

∑
m

MMDm (A↔ B)w

where↔ represents the iterations over← and→, m repre-
sents the iterations overMN andMX , andw is the normalising
constant 0.25 for the scores accumulated over the following
four iterations:

MMDMN (A→ B)

=

 sA∑
j

[( sB∑
i

∣∣P (Bi)− P (Bi|Aj)∣∣)/sB

]/SA

MMDMN (A← B)

=

 sB∑
i

 sA∑
j

∣∣P (Aj)− P (Aj|Bi)∣∣
/SA

/sB

MMDMX (A→ B)

=

 sA∑
j

max
i

∣∣P (Bi)− P (Bi|Aj)∣∣
/SA

MMDMX (A← B)

=

( sB∑
i

max
j

∣∣P (Aj)− P (Aj|Bi)∣∣)/sB

for each state j in A and state i in B, and over the SA states in
A and SB states in B.
The EMSG is determined by the MMD scores and can

be viewed as an extended version of the maximum spanning

1This does not imply that the MMD score is superior to the MI score or
other non-linear associational measures.
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tree [17]. This is because EMSG preserves multiple connect-
ing paths from one node to another, unlike the maximum
spanning tree which preserves the single and most likely
connecting path between nodes. The motivation here is for
the initial graph to be denser compared to the corresponding
maximum spanning tree.

Starting from a complete graph, the EMSG is produced by
removing edges between two nodes A and B if and only if A
and B share neighbour C where

MMD (A↔ C) > MMD (A↔ B) < MMD (B↔ C)

The order in which the edges are assessed for removal is from
lowest to highest MMD score. Figure 1 presents the EMSG
produced for the classic Asia BN, alongwith theMMD scores
assigned to each of the edges. In this example, the EMSG
matches the skeleton of the true Asia graph.

FIGURE 1. The EMSG based on the Asia BN example, with the MMD
scores produced at the end of phase 1.

B. PHASE 2: CONSTRAINT-BASED LEARNING
In the second phase, SaiyanH performs conditional inde-
pendence tests across all pairs of nodes conditional on the
remaining nodes in sets of triples, and classifies each triple
into either conditional dependence, independence or insignif-
icance. Assuming independence tests between A and B con-
ditional on C , the following rules apply for classification:
1) Conditional dependence: if MMD (A↔ B) |C is both

greater than 0.05 and 50% higher than MMD (A↔ B) .
2) Conditional independence: if MMD (A↔ B) |C

is both lower than 0.05 and 50% lower than
MMD (A↔ B) .

These thresholds represent the hyperparameter defaults
adopted by other algorithms that employ similar processes
to investigate independence. Specifically, the dependency
threshold of 0.05 corresponds to the cut-off threshold of
the unoptimised parameter α used in other constraint-based
algorithms to determine dependency [18], [19]. The thresh-
old of 50% represents an additional new rule that leads

to more conservative classifications of conditional indepen-
dence. This rule produces a higher number of conditional
independence tests classified as ‘conditional insignificance’
and produces fewer, although more certain, conditional
dependence and independence classifications of triples. The
unoptimised rate of 50% represents a hypermarameter default
that is analogous to the default threshold of 0.5 in RFCI-BSC
used to determine whether the constraints are dependent [20],
and to the default threshold of 0.5 in CCHM used to analyse
causal effects [21]. The classifications from constraint-based
learning partly determine the orientation of the edges in
EMSG during phase 2, and also to prune the search space
of graphs explored in phase 3 (refer to subsection II.C).
The order in which the edges in EMSG are assessed for

orientation is determined by node ordering, where nodes are
ordered by the total MMD score they share with their neigh-
bours. For example, the starting node in the EMSG graph of
Fig 1 would be the node ‘either’ because it shares a total score
of 1.235 with its neighbouring nodes, and which is the highest
total score over all the nodes in the network. Once a node is
selected, the edges of that node are evaluated in the order they
appear in the data. If an orientation leads to a cyclic graph,
the orientation of that edge is immediately reversed under the
assumption that preceding orientations override proceeding
results.
The orientation of the edges in EMSG is based on a set of

criteria. The conditional independence classifications serve
as the first criterion. Specifically, if the conditional depen-
dence and independence classifications support an orienta-
tion, then the edge under assessment is orientated. Otherwise,
the edge under assessment remains undirected and the algo-
rithm proceeds to the next edge. Edges that remain undirected
are re-assessed, in the same order, with the second criterion
which is the BIC score (refer to subsection II.C). Because the
BIC score is score-equivalent, there is no formal guarantee
that all edgeswill be recovered by this second criterion. Edges
that continue to be undirected are then re-assessedwith a third
criterion, the do-calculus [22], which is used to maximise the
number of nodes influenced by intervention. For example,
in assessing the undirected edge A − B, if do(a) given A →
B influences a higher number of nodes (i.e., children and
descendants) than do(b) givenA← B, then the algorithmwill
orientate the edge A − B as A → B. If some edges continue
to remain undirected at the end of this process, the undirected
edges are re-assessed with the second and third criteria.

C. PHASE 3: SCORE-BASED LEARNING
The output of phase 2 serves as the starting graph for score-
based learning in phase 3. SaiyanH uses the BIC to score the
DAGs being explored, which is a model selection function
that balances model fitting with model dimensionality given
the data. Formally, for graph G and data D

BIC = LL (G|D)−
(
log2N
2

)
p
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where LL is the log-likelihood, N is the sample size of D,
and p is the number of free parameters (also known as inde-
pendent parameters) in G. Specifically, the number of free
parameters p, which is as a measure of model dimensionality,
is:

p =
|V |∑
i

(ri − 1)

|πvi
|∏

j

qj

where V is a set of the variables vi in graph G, |V | is the size
of set V , ri is the number of states of vi, πvi is the parent set
of vi, |πvi | is the size of set πvi , and qj is the number of states
of vj in parent set πvi .
The search starts with Hill-Climbing (HC) that explores

neighbouring graphs G′ in which an edge is reversed,
removed, or added.WheneverG′ has BIC greater thanG,G is
replaced with G′. This process continues until no neighbour
G′ increases the BIC score. When HC completes search,
attempts are made to escape possible local maxima using
Tabu search. This is achieved by examining if a neighbour
G′ that minimally decreases BIC has a neighbour G

′′

that
improves the BIC score of G, in which case G is replaced
with G

′′

and Tabu search restarts at the new G. When all G
′′

for a particular G′ are explored without further improvement
in the BIC score of G, the search proceeds to the next best G′

that minimally decreases BIC. Tabu search completes when
all G′ are explored, or when the number of escape attempts
G′ reaches |V | (|V | − 1).

The search space of possible graphs is restricted to graphs
that are acyclic and to graphs that do not consist of multiple
disjoint subgraphs. Moreover, as briefly discussed in subsec-
tion II.B, the search space of arc additions is pruned by means
of marginal and conditional independence. Specifically, arcs
with MMD < 0.05 and arcs that violate any conditional
independence classification, as defined in subsection II.B,
are pruned and hence not explored. Algorithm 1 presents the
pseudocode of SaiyanH.

D. COMPUTATIONAL COMPLEXITY
The complexity of local learning and constraint-based learn-
ing is generally determined by the number of local and
conditional associational tests executed by an algorithm [4].
Given a variable set V , the complexity of local learning OL
in phase 1 of SaiyanH is:

OL =
(
|V | (|V | − 1)

2

)
whereas the complexity of constraint-based learning OC dur-
ing phase 2 is [16]:

OC =
(
|V | (|V | − 1) (|V | − 2)

2

)
On the other hand, the score-based learning (i.e., phase 3) is
based on Tabu search which is a metaheuristic. In BN struc-
ture learning, a metaheuristic such as Tabu search depends
on the number of local maxima that surround the initial best

Algorithm 1 SaiyanH Pseudocode
Input: dataset D, a fully connected graph G, score function BIC (G,D)
Output: graph G
// Phase 1

1: for each pair of variables vi, vj ∈ D do
2: add vi ↔ vj with score MMD

(
vi ↔ vj

)
to listM in

ascending order
3: end for
4: for each vi ↔ vj ∈ M do
5: ifMMD (vi ↔ vk )i > MMD

(
vi ↔ vj

)
i < MMD(

vj ↔ vk
)
i then

6: remove edge vi ↔ vj in G
7: end if
8: end for
// Phase 2

9: for each pair of variables vi, vj conditional on vk ∈ D do
10: if 0.05 < MMD

(
vi ↔ vj|vk

)
> MMD

(
vi ↔ vj

)
× 1.5

then
11: add vi ↔ vj with score MMD

(
vi ↔ vj|vk

)
to list CD

12: else if 0.05 > MMD
(
vi ↔ vj|vk

)
< MMD

(
vi ↔ vj

)
× 0.5

then
13: add vi ↔ vj with score MMD

(
vi ↔ vj|vk

)
to list CI

14: end if
15: end for
16: for each edge vi ↔ vj ∈ G do (in ascending order MMD)
17: if CD and CI support an orientation for edge vi ↔ vj in

G then
18: orientate edge vi ↔ vj (reverse edge if acyclicity

is violated)
19: if orientation of edge vi ↔ vj violates acyclicity in G then
20: reverse the orientation of edge vi ↔ vj
21: end if
22: end if
23: end for
24: while an undirected edge vi ↔ vj ∈ G do
25: for each undirected edge vi ↔ vj ∈ G do (in

ascending order MMD)
26: if an orientation of edge vi ↔ vj maximises

BIC (G,D) then
27: orientate edge vi ↔ vj (reverse edge if acyclicity

is violated)
28: end if
29: end for
30: for each undirected edge vi ↔ vj ∈ G do (in ascending

order MMD)
31: if an orientation of edge vi ↔ vj maximises

do(vi ↔ vj,G) then
32: orientate edge vi ↔ vj (reverse edge if

acyclicity is violated)
33: end if
34: end for
35: end while
// Phase 3

36: while Hill-Climbing finds BIC
(
G′,D

)
> BIC (G,D) and

marginal and conditional independencies are not
violated and
G′ is a valid DAG do

37: G = G′

38: end while
39: while Tabu finds BIC

(
G
′′

,D
)
> BIC (G,D) and

marginal and conditional independencies are not
violated and

single-depth Tabu escapes e have not been explored and
e < |V | (|V | − 1) do

40: G = G′′

41: end while

124848 VOLUME 8, 2020



A. C. Constantinou: Learning Bayesian Networks That Enable Full Propagation of Evidence

guess graph (e.g., the output of phase 2), and these can vary
greatly given the data. As a result, the theoretical complexity
of metaheuristics cannot be expressed accurately with tradi-
tional complexity notions.

According to the timing results shown later in Table 4,
score-based learning has complexity OS which can be lower
or higher than OL and OC depending on the sample size of
the input data. Empirical results show thatOL < ∼ OS > OC
when the sample size of the input data is low relative to the
range of sample sizes considered in this paper,OL < ∼ OS <
OC when the sample size is moderate, andOL > ∼ OS < OC
when the sample size is high.

III. EVALUATION
A. SCORING METRICS
The evaluation of BN structure learning algorithms is gener-
ally based on metrics that assess the relevance of the learned
graph with respect to the ground truth graph. Less often,
the evaluation may be based on measures which determine
how well the learned distributions fit the data. However,
fitting scores are generally score-equivalent and produce the
same score for Markov equivalent DAGs. Because the scope
of this paper focuses on the reconstruction of the true DAG,
the scoring criteria considered are fully orientated towards
graphical DAG discovery.

Three different scoring metrics are considered that make
varied use of the confusion matrix parameters to assess the
accuracy of the learned graph. The differences between these
three metrics can often highlight advantages and disadvan-
tages of an algorithm that would otherwise remain unknown.
Since no metric is perfect, using multiple metrics provides a
fairer comparison between algorithms. The three metrics use
varying combinations of the following parameters [23]:
• True Positives (TP): The number of edges discovered in
the learned graph that exist in the true graph,

• True Negatives (TN): The number of direct independen-
cies discovered in the learned graph that exist in the true
graph,

• False Positives (FP): The number of edges discovered in
the learned graph that do not exist in the true graph,

• False Negatives (FN): The number of direct independen-
cies discovered in the learned graph that do not exist in
the true graph.

Moreover, edges in the learned graph that fail to produce
the correct orientation, including undirected and bi-directed
edges produced by some of the other algorithms, receive 50%
reward relative to the reward allocated to the edge with the
correct orientation.

The first metric, the F1 score, is based on both the Recall
(Re) and Precision (Pr) which are the two standard metrics
used in this research field. Specifically,

Pr =
TP

TP+ FP
Re =

TP
TP+ FN

The Re and Pr scores can, however, be misleading when
reported independently. The F1 score, on the other hand,

offers the harmonic mean between the two:

F1 = 2
Pr .Re
Pr + Re

where F1 ranges from 0 to 1 and a higher score indicates a
more accurate graph.

The second metric, called the Structural Hamming Dis-
tance (SHD) [24], is another well-established metric in this
field of research and represents the number of steps required
to transform the learned graph into the ground truth graph.
Specifically,

SHD = FP+ FN

where a score of 0 indicates a perfect match between the
learned graph and the true graph.

The third metric, called the Balanced Scoring Function
(BSF), is a recent metric [23] that considers all the four
confusion matrix parameters and returns a fully balanced
score. The score ranges from -1 to 1, where -1 corresponds
to the worst possible graph, 1 to the graph that matches the
true graph, and 0 to an empty or a fully connected baseline
graph. Specifically,

BSF =
(
TP
a +

TN
i −

FP
i −

FN
a

)/
2

where a is the number of edges and i is the number of direct
independences in the true graph:

i =
|V | (|V | −1)

2
− a

where |V | is the size of the variable set V .
There are some important differences between these three

metrics. Specifically, the SHD represents the classic accu-
racy of correct classifications amongst all classifications. For
example, given a ground truth graph with 1% edges and 99%
direct independencies, the SHD would judge an empty graph
as being 99% accurate in relation to the true graph. The
F1 score relaxes this imbalance since it conveys the balance
between Pr and Re, whereas the BSF score would consider
the empty graph as being 50% accurate (i.e., a score of 0) on
the basis that all direct independencies have been discovered,
but none of the direct dependencies (i.e., edges) have been
discovered.

B. CASE STUDIES
SaiyanH is not intended for problems that include thousands
of variables, such as those in bioinformatics. As a result,
the evaluation is restricted to case studies that include up to
hundreds of variables.

Six real-world BNs are used to generate synthetic data.
Three of them represent traditional and widely used case
studies, whereas the other three come from recent real-world
BN applications. The case studies represent a mixture of
simple and complex models. Specifically,
1. Asia: A small network designed for patient diagno-

sis [25]. It consists of eight nodes, eight arcs, 18 free
parameters, and has a maximum in-degree of two.
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2. Alarm: A medium network designed for an alarm mes-
sage monitoring system [26]. It consists of 37 nodes,
46 arcs, 509 free parameters and has a maximum
in-degree of four.

3. Pathfinder: A very large network designed for deci-
sion support in surgical pathology [27]. It consists
of 109 nodes, 195 arcs, 71890 free parameters, and has
a maximum in-degree of five.

4. Sports: A small real-world BN that combines a rating
system with various team performance statistics to pre-
dict match scores in football [28]. It consists of nine
nodes, 15 arcs, 1049 free parameters, and has a maxi-
mum in-degree of two.

5. ForMed: A large real-world BN designed for risk man-
agement of violent reoffending in mentally ill prison-
ers [29]. It consists of 88 nodes, 138 arcs, 912 free
parameters, and has a maximum in-degree of six.

6. Property: A medium real-world BN designed for the
assessment of investment decisions in the UK property
market 30]. It consists of 27 nodes, 31 arcs, 3056 free
parameters, and has a maximum in-degree of three.

C. STRUCTURE LEARNING ALGORITHMS CONSIDERED
The learning performance of SaiyanH is assessed with ref-
erence to another 12 algorithms that have been applied to
the same data. The algorithms selected represent state-of-the-
art or well-established implementations that have also been
tested in a larger relevant study [10]. Specifically,

1. PC-Stable: themodern stable version of themost popular
constraint-based algorithm called PC that resolves the
issue on the order dependency of the variables in the
data [31], [32].

2. FCI: which is PC extended to account the possibility of
latent variables in the data [33].

3. FGES: an efficient version of the popular score-based
GES algorithm that was developed by Meek [34] and
further improved by Chickering [35].

4. GFCI: a hybrid learning algorithm that represents the
combination of the FCI and FGES algorithms [36].

5. RFCI-BSC: a hybrid version of the constraint-based
RFCI that improves accuracy via model averaging [20].
This is a non-deterministic algorithm that produces a
slightly different result each time it is executed. The
results of RFCI-BSC presented in this paper represent
the average score across 10 executions, for each experi-
ment.

6. Inter-IAMB: an improved version of IAMB that
avoids false positives in the Markov Blanket detection
phase [18].

7. MMHC: perhaps the most popular hybrid learning algo-
rithm [24]. It combines the constraint-basedMMPCwith
hill-climbing search.

8. GS: a constraint-based algorithm that recovers the
Markov blanket of each node based on pairwise inde-
pendence tests [37].

9. HC: a score-based hill-climbing search algorithm that
tends to terminate in a local maximum [38].

10. TABU: a score-based algorithm that extends HC with
Tabu search. While TABU also tends to terminate in
local maxima, it often improves over the local maxima
of HC [38].

11. H2PC: a hybrid learning algorithm that combines
the constraint-based HPC and score-based HC algo-
rithms [19].

12. ILP: an integer linear programming score-based
approach that returns the graph that maximises the global
score of a scoring function, for a given maximum in-
degree [39].

The R package r-causal v1.1.1 which makes use of the
TETRAD freeware implementation [40] was used to test
algorithms 1 to 5. The bnlearn R statistical package version
4.5 [41] was used to test algorithms 6 to 11. Lastly, ILP was
tested using theGOBNILP software [42]. All algorithms have
been used with their hyperparameter defaults as implemented
in each software. A six-hour runtime limit is applied to all
algorithms in all experiments.

IV. RESULTS AND DISCUSSION
A. ACCURACY OF THE LEARNED GRAPHS
Fig 2 presents the accuracy scores of SaiyanH with reference
to the scores produced by the other 12 algorithms. Each of
the 18 graphs corresponds to a case study and a scoring
metric (i.e., six case studies over three scoring metrics). The
y-axis of each graph represents the metric score, whereas the
x-axis represents the fives sample sizes of the input data. Note
that, in contrast to F1 and BSF scores, a lower SHD score
represents a better performance. Cases in which an algorithm
failed to produce a result within the six-hour runtime limit are
illustrated with incomplete lines in each graph.

The results suggest that all algorithms tend to improve
learning accuracy with sample size and this observation is
consistent across all case studies. For example, it is usually
the case that the best performance is found with either 100k
or 1000k samples. However, the case studies differ in com-
plexity which means that the same sample size can be large
for simple networks and small for complex networks. For
example, the sample size of 10k is large for Asia which is the
simplest case study with just 18 free parameters, and small
for Pathfinder which is the most complex case study with
71890 free parameters. This explains why the performance on
Asia maximises once the sample size of the input data reaches
10k observations whereas accuracy continues to improve
with the sample size in the case of Pathfinder. Moreover,
all algorithms show considerably worse performance on the
Pathfinder case study compared to all the other case studies.

In contrast, some of the scoring metrics provide conflicting
conclusions about the relative accuracy between algorithms.
For example, the SHD metric occasionally ranks SaiyanH
well below average when the sample size of the input data
is lowest, and these results contradict the F1 and BSF metrics
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FIGURE 2. Performance of SaiyanH given F1 (harmonic mean of Recall and Precision), SHD, and BSF scores, over six case studies, five sample sizes
(0.1k to 1000k samples) per case study, and with reference to the performance of the other 12 algorithms.
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which rank SaiyanH well above average for the same exper-
iments. The contradiction between these metrics extends to
many other algorithms. This phenomenon arises because the
SHD metric represents classification accuracy which tends
to be biased in favour of graphs which incorporate a limited
number of edges [10], [23].

TABLE 1. The average rank achieved by each of the algorithms over all
case studies and across all sample sizes of the input data.

Table 1 summarises the performance of the algorithms over
each case study and across all metrics. Consistent with the
above discussion, the results show that SaiyanH performed
very good in terms of F1 and BSF scores, and below average
in terms of SHD score. Overall, SaiyanH ranked 4th and out-
performed algorithms such as FGES, MMHC and PC-Stable
which tend to be used for benchmarking new algorithms in
this field of research. Interestingly, the performance of the
top three algorithms is fully driven by score-based learning.

B. ANALYSIS OF THE EDGES AND INDEPENDENT
SUBGRAPHS
Table 2 presents the number of independent subgraphs gener-
ated by each of the algorithms for each case study and sample
size. As intended, SaiyanH generates a single connectedDAG
in all the experiments. On the other hand, the other algorithms
routinely generate multiple subgraphs despite all the input
variables being dependent in all case studies. This observation
extends to very simple networks. For example, while the Asia
network consists of just 18 free parameters, none of the other
algorithms managed to produce a connected graph when the
sample size was lowest, and only five of the other algorithms
returned a connected graph when the sample size was highest.

Moreover, the number of independent subgraphs produced
by some of the other algorithms increases substantially
with the complexity of the true graph. The most extreme
example involves the GS algorithm when applied to the
Pathfinder case, where it produced 100 subgraphs for the
lowest sample size and 68 subgraphs for the highest sample
size. Remarkably, and further to what has been discussed in
subsection IV.A, the outcome of 100 subgraphs was ranked

TABLE 2. The number of independent subgraphs generated by each
algorithm for each case study and sample size. n/a indicates that the
algorithm did not complete learning within the six-hour limit.
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FIGURE 3. The number of learned edges with respect to the number of true edges. The results are presented for each algorithm and over all five sample
sizes per case study, where 1 is the discrepancy between the learned and the true edges. Failed attempts by the algorithms to produce a graph are
excluded. Intervals 1 based on less than five experiments indicate the number of actual experiments above the interval.

TABLE 2. (Continued.) The number of independent subgraphs generated
by each algorithm for each case study and sample size. n/a indicates that
the algorithm did not complete learning within the six-hour limit.

highly by the SHDmetric. In contrast, the F1 and BSFmetrics
ranked this outcome lowest.

While most of the other algorithms generate several sub-
graphs in most of the experiments, TABU and HC did well
since in many cases they had correctly identified that the
input variables are dependent. This also partly explains why
the TABU and HC algorithms outperformed all the other
algorithms as shown in Table 1, and this is an interesting
outcome considering that most of the other score-based and
hybrid learning algorithms (including SaiyanH) already use
some form ofHC search to explore the search space of graphs.

Fig 3 analyses the number of edges produced by each of the
algorithms and their relationship with the number of edges
in the true graphs. Each graph in Fig 3 corresponds to a
case study. Each case study and algorithm associate with a
range 1, where 1 is the difference between the number of
edges learned and the number of edges in the true graph.
The interval 1 represents the minimum and the maximum
discrepancy across all the five experiments in each case study
(i.e., over all the five sample sizes). Note that failed attempts
by an algorithm to produce a graph are excluded. When
this happens, the number of actual experiments on which
the interval is based is superimposed above the interval. For
example, in the Asia case study, the RFCI-BSC algorithm
failed to produce a result in two out of the five experiments
and thus, its interval 1 indicates that it was based on just
three experiments. It is important to mention that the failed
attempts of an algorithm to produce a graph always occur
for the highest sample sizes. As a result, when an interval
1 is based on less than five experiments, its corresponding
average tends to underestimate the number of learned edges
since higher sample size tends to produce more edges.

The edge analysis in Fig 3 provides insights into potential
underfitting and overfitting issues. In fact, the results suggest
that most algorithms do underfit the true graphs, at least in
terms of the number of edges produced. These results are con-
sistent with the number of independent subgraphs depicted
in Table 2. While the risk of underfitting increases with fewer
samples in the input data, the results suggest that underfitting
persists across all sample sizes tested. For example, while the
Asia network consists of just 18 free parameters, most of the
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algorithms reveal an underfitting trend across all sample sizes
tested. Likewise, underfitting appears to increase in severity
with the complexity of the network. For example, the Inter-
IAMB and GS algorithms discovered a maximum (at 1000k
samples) of 42 and 34 edges respectively, out of the 195 true
edges in the Pathfinder case study. Conversely, no algorithm
overfitted the true graphs. One algorithm that did show some
tendency towards overfitting, however, is ILP. This happened
on theAlarm and ForMed case studies. However, ILP did very
well in minimising the discrepancy 1 across all the six case
studies.

Starting from the case studywith the least number of edges,
the algorithms that performed best in terms of minimising
discrepancy 1, as well as the interval 1 across the different
sample sizes in each case study, are:

1. Asia: the ILP and SaiyanH algorithms (with TABU and
HC closely behind) with a discrepancy |1| of up to 1 and
a range1 of 1 for both algorithms (from 1 to 0 and from
0 to -1 respectively).

2. Sports: the SaiyanH algorithm with a discrepancy |1| of
up to 7 and a range 1 of 7.

3. Property: the SaiyanH algorithm with a discrepancy |1|
of up to 1, and a range 1 of 1.

4. Alarm: the SaiyanH algorithm (with TABU and HC
closely behind) with a discrepancy |1| of up to 10, and
a range 1 of 20.

5. ForMed: the TABU (with HC closely behind) with a
discrepancy |1| of up to 40 and a range 1 of 72.

6. Pathfinder: ILP with a discrepancy |1| of up to 3 and
a range 1 of 3. However, note that ILP’s result in
Pathfinder is based on just two experiments.

Overall, the edge statistics are in agreement with the results
in Table 1, in that the top four algorithms are also the ones that
best approximate the number of true edges. The restriction
in SaiyanH to produce a connected DAG has helped the
algorithm to prevent underfitting the true graph, as well as
to perform best in terms of minimising discrepancy |1|.

C. TIME COMPLEXITY
The time complexity of SaiyanH is provided in Table 3. The
results show that its runtime increases rapidly with the num-
ber of nodes and the sample size of the input data. SaiyanH
failed to produce a graph within the six-hour time limit in two
out of the 30 experiments. This was also the case for many of
the other algorithms (refer to Fig 2). It is worth noting that the
Pathfinder case study (indicated with 109 nodes in Table 3)
includes a variable with 63 states, which is rather unusual for
discrete BNs and can influence time complexity in different
ways depending on the learning process of the algorithm.

Table 4 extends the information on time complexity by
presenting the proportion of time SaiyanH spent to complete
each of the three learning phases, for each case study and
sample size combination. This information is useful for two
reasons. Firstly, it highlights which parts of this new imple-
mentation may be inefficient. Secondly, it reveals how the

TABLE 3. Time complexity of SaiyanH based on a single-core (turbo
boost) speed of 4.7GHz.

TABLE 4. Time complexity of SaiyanH in terms of the percentage of time
spent to complete each of the three learning phases. Cases with runtime
up to 1sec are excluded. n/a indicates that the algorithm did not
complete learning within the six-hour limit.

relative proportion of runtime varies between the different
learning phases given the number of variables in conjunction
with the sample size of the input data.
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The results from the Pathfinder and ForMed case stud-
ies, which required the most runtime, suggest that the
constraint-based learning of phase 2 is responsible for 77%
to 94% of the total runtime. This outcome suggests that the
constraint-based phase in SaiyanH does not scale well with
the number of variables and the sample size of the input
data. One reason why constraint-based learning is ineffi-
cient in SaiyanH is because conditional independence tests
are performed over all possible triples, including testing for
both VA → VB|VC and VB → VA|VC as defined by the
MMD score. Therefore, the efficiency of SaiyanH could be
improved via pruning of conditional independence tests.

However, the effectiveness of this type of pruning is diffi-
cult to predict, both in terms of the impact on the accuracy of
the learned graph and possible gains in speed. This is because
the conditional independence classifications from phase 2
are also used to prune the search space of DAGs during
score-based learning in phase 3. For example, Table 4 shows
that when the sample size of the input data is low, which
naturally leads to less certain classifications of conditional
independence, constraint-based learning only accounts for up
to a third of the total runtime whereas score-based learning
becomes the most time-consuming phase of the algorithm.

V. CONCLUDING REMARKS AND FUTURE WORK
This paper described a novel hybrid BN structure learning
algorithm that relies on restrictions in the search space of
DAGs to produce a graph that enables full propagation of evi-
dence. The learning restriction is imposed under the contro-
versial assumption that the data variables are dependent. The
implementation of the algorithm [43] as well as the datasets
used in this study are available online at www.bayesys.com.

Clearly, this algorithm is unsuitable in problems where we
seek to discover whether the input variables are dependent.
However, it becomes useful in real-world problems where
decision makers desire a model that enables full propagation
of evidence. The empirical results show that almost all the
other algorithms would never connect all the variables of the
input data when the sample size of the data is low relative
the dimensionality of the model, despite these variables being
dependent in the true graph. This is a problem because real
data are often limited in terms of sample size and rich in terms
of the number of the variables (i.e., in dimensionality). There-
fore, the assumption that the input variables are dependent
can be viewed as a knowledge-based constraint that is useful
when working with real-world BN models.

Because SaiyanH is a novel implementation, it comes with
some limitations as well as with potential for improvement.
Firstly, its application is limited to discrete and complete
datasets.Moreover, while SaiyanH performed best in estimat-
ing the number of true edges, and well in terms of F1 and
BSF scores, it did not do so well in terms of SHD score and
particularlywhen the sample size of the input datawas lowest.
This observation suggests that, in the presence of limited
data, some of the forced edges generated to ensure the DAG

output is connected, are not correct at the same rate as those
generated unrestrictedly.

Lastly, the results presented in this paper are based on
unoptimised cut-off dependency thresholds adopted by other
constraint-based algorithms (refer to Section II.B). This
ensured that the comparison between algorithms is as fair
as possible, since all algorithms have been examined with
their hyperparameter defaults. However, because SaiyanH
is based on an unconventional dependency function, it may
benefit from cut-off thresholds that differ from those used as
hyperparameter defaults in other algorithms. In investigating
the value of constraint-based relative to its time complexity,
future work will also explore the impact of parameter optimi-
sation on conditional independence classifications.
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