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ABSTRACT Cyber physical systems consist of heterogeneous elements with multiple dynamic features.
Consequently, multiple objectives in the optimality of the overall system may be relevant at various times or
during certain context conditions. Low cost, efficient implementations of such multi-objective optimization
procedures are necessary when dealing with complex systems with interactions. This work proposes a
sequential implementation of a multi-objective optimization procedure suitable for industrial settings and
cyber physical systems with strong interaction dynamics. The methodology is used in the context of
an Extended Prediction self-adaptive Control (EPSAC) strategy with prioritized objectives. The analysis
indicates that the proposed algorithm is significantly lighter in terms of computational time. The combination
with an input-output formulation for predictive control makes these algorithms suitable for implementation
with standardized process control units. Three simulation examples from different application fields indicate
the relevance and feasibility of the proposed algorithm.

INDEX TERMS Priority objectives, multi-objective optimization, model predictive control, steam power
plant, unmanned aerial vehicle, drug regulatory network, interaction, safety.

I. INTRODUCTION
From recent reports on cyber-physical systems (CPS) such
as [1], it follows that CPS have heterogeneous systems with
heterogeneous signal types of interaction among them. Given
their large scale and heterogeneity, the economic, perfor-
mance, safety and other objectives are relevant at different
levels of operation and are active at different time scales
throughout the CPS operation. A common feature is that
decoupling control is replaced by distributed control, as the
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interactions increase their relevance within the CPS perfor-
mance. For instance, to develop a high-performance com-
pensatory control system for vehicle power train, accurate
estimations of the unmeasurable hybrid states, including dis-
crete backlash nonlinearity and continuous half-shaft torque,
are of great importance [2]. In addition, the safe operation of
the electric vehicle is related with the braking system. Hence,
an accurate estimation of brake pressure is very importance
for the design and control of automotive CPS. In [3] a
novel probabilistic estimation methods of brake pressure
based on multilayer artificial neural networks (ANNs) with
Levenberg-Marquardt backpropagation (LMBP) training
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algorithm is developed. This method shows a superiority in
estimation accuracy of the brake pressure, with respect to
other learning-based methods.

On the other hand, driving behaviors are closely related to
fuel efficiency. The difference in fuel consumption between
normal and aggressive driving is estimated to be as high
as 40% [4], [5]. As for challenges and opportunities, a key
driver is the necessity of a multidisciplinary and an interdis-
ciplinary approach to resolve such complex CPS. As given
in [1], two of the most important CPS are biomedical and
healthcare systems and the next-generation of air transporta-
tion systems, both exemplified in this work. For all CPS,
the following requirements prevail: i) large scale real time
optimization algorithms; ii) multiple objective optimization;
iii) automationwith degradationmodes (de-tuning); iv) safety
and monitoring methods; v) distributed decision making; vi)
data fusion from various sub-systems.

According to the latest reviews of industrially relevant
control strategies, it follows that the most used in practice
is Proportional-Integral-Derivative (PID) control followed by
Model-based Predictive Control (MPC) [6]–[8]. Although
easy to implement and accounting for 90% of the regulatory
loops in any process, PID control has a serious drawback: it
does not optimize the control action for apriori given con-
straints [9]. By contrast, MPC uses a cost function optimiza-
tionwhich takes into account constraints while calculating the
best input to the process given current conditions/operating
point and future predicted process dynamics [10]–[14]. For
accurate prediction and improved loop performance, MPC
requires the availability of a good process model [15], [16].
Often, such a model is limited to a range of operating condi-
tions, i.e. is a linear approximation of a nonlinear dynamic
function. Additionally, the presence of interactions among
various sub-systems of the global process need to be incorpo-
rated into the MPC formulation for satisfying the global per-
formance specifications. In the context of complex CPS with
interactions, fully multivariable MPC control is no longer
feasible due to large scale and high complexity, while decen-
tralized PID control leads to poor performance and possibly
unstable situations [17]. From [1] it followed as natural solu-
tion was to use the potential of distributed MPC architectures
as well suited alternatives for control of CPS [18]–[20]. Still,
these formulations are far from being user-friendly as opera-
tor guide in an industrial setting, with non-control expert sup-
port. The support for plant operator in terms of tuning MPC
algorithms has been available throughout decades from both
academia and industry pioneers [15], [21]–[24], and recently
successfully revisited on a manifold of simulated and exper-
imental plants [25]. Complex industrial processes consist of
interactions at various levels and coming from manifold sub-
systems. Each sub-system plays its own role within a global
convergence of the CPS to the desired product specifications.
These specifications are dominated by the requirement for
safety operation (which includes stability), within limit inter-
vals for the manipulated variables and controlled outputs of
the involved processes. When multi-objective optimization is

required, there exist a manifold of academic solutions with
stability guaranteed [26]–[29]. Some of them have also been
applied to specific industrial settings, although their number
remains limited [30]–[33]. Industry has already proposed and
implemented process control unit tools for multi-objective
optimization with priority constraint for model predictive
control [31], [34].

In this paper we investigate the feasibility of a mini-
mal model information multivariable process included in a
multi-objective optimization scheme with prioritized objec-
tives for the Extended Self-Adaptive Prediction Control
(EPSAC). The originality of the proposed methodology is the
low-computational cost implementation; i.e. the sequential
priority evaluation in the algorithm and resuming the opti-
mization at each sampling time with a single priority active at
each time. The priority evaluation is based on past monitoring
information available at each sampling time of loop execu-
tion. In the traditional MPC, the influence from constraints
will always be considered to obtain the optimal inputs for the
system. For example, the quadratic programming (QP) can
be applied, which considers the constraints in each sampling
time. However, there is not always setpoint changes or large
scale of disturbances during the operation of the system, and
most of time the system operates at a stable operating point
with small scale of disturbances. During this kind of period,
the only thing to be considered is energy, in which the control
effort will always keep the same as the last sampling time.
Hence, no optimization process exists, and there is a huge
reduction in computing time. Our method keeps a minimal
mathematical complexity as to allow ease of implementa-
tion in real-time process operation units like CPS, which
are an integration of interconnections between cybernetic
and physical subsystems through interfaces between soft-
ware components and interaction of hardware components
connected by wired or wireless communications [35], [36].
The specific input-output formulation of the model based
predictive control used in this study allows to directly plug
into the process variables. The physical processes studied
here are three multivariable systems with significantly differ-
ent dynamics, of which two are derived from listed relevant
CPS applications [37]. A comparison between the fully opti-
mized process performance and computational time is given
against the proposed multi-objective prioritized optimization
algorithm.

The paper is organized as follows. The proposed method-
ology is summarized in the next section, followed by a simu-
lation analysis on three representative CPS (sub-)processes
in section III. A discussion is given in the final section to
pinpoint the main conclusions of this work.

II. PROPOSED METHODOLOGY
A. BASIC MPC INPUT-OUTPUT DATA FORMULATION
Among the many formulations of MPC methodologies, there
is the EPSAC algorithm, developed in late 70s as operator
guide [21], and initially conceived as an algorithm requiring
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minimal computational effort, given the available computa-
tional power at that time [38]. Hence, it has been successfully
applied in industry, as summarized in [39]. Hitherto, it was
applied in a manifold of technical and non-technical areas,
while being recently introduced in the pharmaceutical indus-
try [40]. Stability and feasibility of this algorithm have been
given in [41], [42] and robustness has been discussed in [43].

As most of the data available in industry has the form of
input-output data, the MPC formulation investigated in this
paper will consider to use such raw data [9]. This allows
significant reduction in implementation complexity, since
industrial instrumentation can handle such data format in
standard setup conditions [44], [45]. The prediction model
usually is an approximation as first-order plus dead time by
the operator, or the result of a small amplitude sinusoidal
test to obtain the frequency response slope in a given band-
width of the process [9], [46]. Since the system is composed
of multiple input and multiple output variables, these are
apriori selected by the user according to their relevance in
the physical production process. The models developed are a
set of input-output functions characterizing the main process
dynamics and the internal interactions in a minimal number
of parameters. Measurable or predictable disturbances can be
also incorporated using such input-output models [47], [48].
Next to model development, an uncertainty index can be
defined to indicate how much trust the controller can have in
the predicted future dynamics of the plant. This is then used
in the real-time multi-objective optimization cost function
(e.g. energy based, performance based, time-based, or com-
binations thereof) taking into account constraints and tuned
for robustness as a function of this uncertainty degree [25].
Realignment procedures to fed back the true measured output
of the process as opposed to only using the predicted output,
allow for model adaptation during operation. This can be
achieved using recursive identification algorithms, or corre-
lation models on how the process dynamics change during
variations in operating conditions.

The basic equation of EPSAC for a single-input single-
output process is given by:

y(t) = x(t)+ n(t) (1)

where t is the discrete-time index (will be omitted in the
remainder of the paper for simplicity of notation) and the
output of the process x(t) is predicted based on the past model
output and past process inputs:

x(t) = f [x(t − 1), x(t − 2), . . . , u(t − 1), u(t − 2), . . .] (2)

and a term n(t) containing disturbances, noise andmodel mis-
match. Notice that these functions depend on past inputs and
past model outputs andmay have any structure: linear, nonlin-
ear, neural networks, etc. There exists also the variant where
the past measured outputs of the process are used instead of
past model outputs, and this is known as the realigned process
model scheme; for details see [39].

The term in n(t) denotes the disturbance and includes errors
effects, modelled by coloured noise:

n(t) =
C(q−1)
D(q−1)

e(t) (3)

with e(t) white noise signal and q−1 the shift operator. The
future response in linear MPC is the cumulative result of two
effects:

y(t + k|t) = ybase(t + k|t)+ yopt (t + k|t) (4)

where k is the sample index. The notation (t + k|t) denotes
here the future values, postulated at time t . The base response
ybase(t + k|t) can be calculated with the process and noise
model for a generic control scenario ubase. For linear systems,
the choice for these values is not important (superposition
principle applies); for nonlinear systems, their choice is rec-
ommended as being the last input value to the process u(t−1).
The second component, yopt , is the effect of optimizing the
future control actions δu(t|t), . . . , δu(t+Nu−1|t) defined as
δu(t+k|t) = u(t+k|t)−ubase(t+k|t), with u(t+k|t) the opti-
mal control input. The controller has Nc degrees of freedom,
defined by the control horizon. The postulated optimal output
can be calculated using the step response coefficients matrix
G as defined in [39]. For linear, unconstrained systems, this
matrix can be calculated only once from the process model
and kept constant. However, in presence of (varying) con-
straints, nonlinear dynamics or varying process parameters,
it is advisable to determine the content ofG at every sampling
time from the real process. The vector yopt has the following
matrix form:

yopt (t + N1|t)
yopt (t + N1 + 1|t)

. . .

. . .

yopt (t + N2|t)



=


hN1 hN1−1 . . . gN1−Nc+1
hN1+1 hN1 . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

hN2 hN2−1 . . . gN2−Nc+1




δu(t|t)
δu(t + 1|t)

. . .

. . .

δu(t + Nc − 1|t)


(5)

In this equation, yopt (t+k|t) denotes the part in the predicted
process output y(t + k|t) coming from optimizing control
action δu(t + k|t). The matrix relating these two variables
is the step response g and impulse response h coefficients,
hence the G-matrix.

The cumulative response (4) of optimal and base response
deliver the key equation for unconstrained EPSAC:

Y = Ȳ+G · U (6)

with Y = [y(t + N1|t) . . . y(t + N2|t)]T , U =

[δu(t|t), . . . , δu(t + Nc − 1|t)]T , Y = [ybase(t +
N1|t) . . . ybase(t + N2|t)]T and G · U calculated from (5);
notice that this equation, in the special case ofNc = 1 reduces
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FIGURE 1. Flowchart of the sequential prioritized optimization scheme.

to a scalar and it delivers the explicit solution of the first step
in the flowchart given in Fig. 1. In order to find the optimal
part δu, the following cost functions are applied according to
different working state:

If safety condition is not satisfied, the objective function
for EPSAC is defined as:

J =
N2∑

k=N1

[r(t + k|t)− y(t + k|t)]2 + λ
Nc−1∑
k=0

[δu(t + k|t)]2

Subject to : umin ≤ u(t) ≤ umax
− ymin + ε ≤ y(t) ≤ ymax − ε (7)

where, λ is the weighting factor, r is the reference to fol-
low, N1 and N2 are the minimum and maximum prediction
horizons. In this case, the future control actions u(t) can be
obtained by minimizing the cost function given in (7).

If safety condition is satisfied, but the tracking error is out
of tolerance intervals, the objective function for EPSAC is
defined as:

J =
N2∑

k=N1

[r(t + k|t)− y(t + k|t)]2 (8)

In this case no constraints are necessary. Therefore the opti-
mal δu can be obtained with matrix calculation.

U∗ = [GTG]−1GT[R− Y] (9)

where, U∗ is the optimal sequence of δu and
R = [r(t + N1|t) . . . r(t + N2|t)]T .

If safety and tracking error conditions are both satisfied,
the objective function for EPSAC is defined as:

J =
Nc−1∑
k=0

[δu(t + k|t)]2 (10)

In this case no constraints are necessary and δu only needs to
be kept as 0.

B. MULTI-OBJECTIVE OPTIMIZATION WITH PRIORITIES
At this point, everything is ready for the next step, i.e.
the prioritized multi-objective optimization (MO) algorithm
from Fig. 1. This is a simplified approach compared to those
proposed in literature [28], [29], [33], [49]–[51]. MO algo-
rithms with artificial intelligence data processing methods
such as in [52], [53] can deal with great amount of data.
By contrast, nonlinear functions can accommodate some of
the exotic dynamics reducing the size of the problem but
increasing numerical complexity in solving the MO prob-
lem [34]. Recent implementable solutions for existing infras-
tructure are possible in a portable environment [54].
Consider the MO flowchart depicted in Fig. 1. As with any

process, the safety constraint is set as a hard constraint, given
limit values intervals for all input-output variables it follows.

• check safety limit: is it fulfilled? when this condition
is not satisfied, a pre-set of (suboptimal) safety values
are given to the process operation units. This step is
implemented as proposed in [31]. Consequently, the
loop stops optimization and goes to the next sampling
time;
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FIGURE 2. Graphical abstract of the optimization concept and methodology.

• if the safety condition is fulfilled, then the next objective
with next level priority is evaluated; i.e. if the output
is within the tolerance intervals. If yes, then the opti-
mization evaluates the next priority level, i.e. minimize
control effort or energy.

• at every sampling time, the set of objectives are evalu-
ated/executed in order of their priority;

• once an objective is optimized, the loop goes to the next
sampling interval and repeats the procedure.

In the MOMPC, the safety is guaranteed by presenting
the system variables are in the interval of the corresponding
ranges, for example the upper bound and lower bound. The
tracking performance is indicated with the Integrate Relative
Error. And the energy is indicated with the control effort. For
example, in the steam/water loop the control efforts are about
the opening of valves. Due to that the hydraulic cylinder is
linked with the valve in the steam/water loop, the frequent
changes in valves mean the frequent changes in hydraulic
cylinder, which will result in a large amount of energy cost.
In this sense, the energy will be saved if there is no change
in the control effort.

The performance and effort are soft constraints, i.e. they
are tailored to fit the objective at hand and not to minimize
a specific cost goal. This allows a much faster computational
convergence while process operation remains active within
safety bounds. The sequential (prioritized) flowchart is iter-
ated at every sampling period and the computational time
within each iteration is recorded.

C. DEALING WITH DELAY AND NONLINEAR DYNAMICS
As the prediction step is in form of (6) and G-matrix can
be time-variable, it implies flexibility to modeling or to

uncertainty [25]. Such simple adaptation property to all types
of model (linear or nonlinear processes) has been mentioned
in a previous adaptive control work; suggesting that an instant
input-output modeling with a variable gain can express all
model dynamics and significantly reduce complexity in mod-
eling [55], [56]. As long as adaptation gain is time invariant,
i.e. not constant and updated at each iteration, it can express
instant input-output relations of all real systems whether or
not they are linear or not. This property was used in an adap-
tive gradient descent control method easy to implement and
low-computational complexity [55], [56]. The study demon-
strated that it works well for stable plant functions. In a
similar manner we obtain the model flexibility by updating
G-matrix at every sampling time instead of consideration of
a constant G-matrix.

Hence, for nonlinear systems, linearization of the process
model is not necessary, in the condition that the G-matrix
is updated at every sampling time in relations (5)-(6). How-
ever, the step input applied to the real process to obtain this
G-matrix coefficients requires an amplitude in the region of
the expected steady state values of the controller output. If this
is not the case, the information is not useful to the controller
as due to nonlinear dynamics, if a large input value is used,
then theGmatrix has no longer information upon the specific
operation point currently used. See further details in [39].
A schematic flowchart is given in the blue rectangle area
denoted EPSAC in Fig. 3.

The complexity of the prediction procedure is increasing
for systems with variable time delay than for those with
constant time delay. This occurs frequently in CPS as part
of the control over communication networks problem. For a
system with time delay, changes in the controlled variable
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FIGURE 3. Smith-Predictor like EPSAC-MPC formulation for processes with variable time delays (SISO) or processes with multiple
time delay functions (MIMO).

(i.e. in the output of the process) are only visible once the
time delay has passed. Therefore, in order to find the optimal
control sequence only output predictions occurring after the
time delay should be taken in the cost function. This means
thatN1 = 1+delay. For systems with constant time delay this
is easy to implement. Then the maximum prediction horizon
N2 can be set to an appropriate value that ensures a stable
and robust response and the control loop can be operated with
fixed controller parameters.

However, for systems with a variable time delay, such
as those presented in [57]–[59], the values of N1, N2 and
the size of the matrices used in the MPC formulation vary
with the number of dead-time samples. To avoid increased
matrix computation times and other implementation pitfalls,
the structure of the process model is revised to design a
predictive controller with constant design parameters. The
generic principle valid for both SISO and MIMO processes
is illustrated in Fig. 3 [58], [60], [61].

From figure 3, we can observe that at each sampling
instant, the delay-free model output x(t), resulting from the
process dynamics only, is calculated using the stored values
[x(t−1), . . . , u(t−1), . . .]. At the same sampling instant, the
variable time delay is estimated/computed. Once the delay
value in samples delay = Nd is known, x(t − Nd ) can be
selected out of the stored x-values, such that z(t) = x(t−Nd ).
In this way, the prediction procedure is thoroughly simplified,
resulting in a Smith predictor-like scheme, with separation of
the delay-free part of the process and the varying time delay
on the other hand. In such approach the minimum prediction
horizon N1 is no longer varying and is equal to one sample
and all other optimization variables (matrices and vectors)
containing this value no longer vary in size.

III. SIMULATION ANALYSIS
A. EXAMPLE 1: EMERGENCY DRONE PATH PLANNING
This example is a part of a larger system depicted in Fig. 4,
i.e. emergency drone activation for emergency medicine [62],
[63]. It follows the more generic concept of next-generation
air transportation systems featured in [1]. The purpose is to
bring the drone in a safe manner and through the shortest
path to the location of a prospective victim (B) to assist in
heart resuscitation before the ground ambulance arrives from
its original location (A). As the system is extremely fast,
low computational times of multi-objective optimization is
a highly attractive feature.

Essentially, the drone is a multivariable and highly
non-linear system with unstable open loop dynamic features
[64]. However, due to the embedded attitude controller, it can
be considered as a linear time invariant (LTI) system [65]. The
linear models for each movement have been obtained using
the prediction error method with a pseudo-random binary
sequence (PRBS) excitation, as reported in [66], [67]. The
over-simplified quadrotor model used for both simulation and
prediction in the MPC scheme are:

Hx(s) =
x(s)
V x
in(s)
=

7.27
s(1.05s+ 1)

e−0.1s

Hy(s) =
y(s)

V y
in(s)
=

7.27
s(1.05s+ 1)

e−0.1s

Haltitude(s) =
z(s)
V z
in(s)
=

0.72
s(0.23s+ 1)

e−0.1s

Hyaw(s) =
ψout (s)

Vψin (s)
=

2.94
s(0.031s+ 1)

e−0.1s

(11)

where [x, y, z, ψout ] are the system outputs for x, y,z
positions (m) and yaw angle (rad). The system has four
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FIGURE 4. Conceptual representation of the emergency drone context for rescue assistance. This
example is part of a more generic concept: next-generation air transportation systems.

manipulated variables [V x
in,V

y
in,V

z
in,V

ψ
in ] which correspond

to linear velocity commands encoded under a specific pro-
tocol for the drone. These high-level control signals are
normalized between [−1, 1] and represent the percentages
between [0− 100]% of the configured values for the respec-
tive movements of the quadrotor. The controller parameters
for MO-MPC and MPC are given in Table 1.

TABLE 1. Controller parameters.

The path followed by the AR.Drone during a certain task
is shown in Fig. 5. The task consists in sequentially following
the waypoints, starting at point 0 and ending at 6. On the
other hand, the tracking control performance for the positions
x, y, z and angle / orientation (yaw) of the quad-rotor are
shown in Fig. 6 to Fig. 8.

FIGURE 5. 3D Trajectory tracking of the AR Drone system.

FIGURE 6. Trajectory tracking for x, y position.

FIGURE 7. Trajectory tracking for z position.

Finally, the computational time, tracking error and dis-
turbance rejection for both controllers with different control
horizon values is shown in Fig. 9. It is important to emphasize
that this plot was obtained during the path-follow between the
points 0 to 1.

Fig. 9 indicates that the proposed method has a shorter
computational time than the classical MPC approach, for all
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FIGURE 8. Trajectory tracking for yaw position.

TABLE 2. Performance indexes for the controllers.

control horizon values. On the other hand, it is important to
emphasize that the trade-off value between the computational
time in favour of a better tracking error or disturbance rejec-
tion in the MPC requires a value of 5 < Nc < 6. While,
the MO-MPC this trade-off value is 1 < Nc < 2, which
indicates that the computational complexity of classical MPC
is higher than the proposed MO-MPC for this system. The
performance indexes are summarized in the Table 2, with
definitions in (12). It can be observed a reduction of 10−25%
in the overall cost for the proposed MO-MPC algorithm.

IAEi =
Ns−1∑
k=0

|ri(k)− yi(k)| (i = 1, 2, · · · , 4)

ISEi =
Ns−1∑
k=0

(ri(k)− yi(k))2 (i = 1, 2, · · · , 4)

ISUi =
Ns−1∑
k=0

(ui(k)− ussi(k))2 (i = 1, 2, · · · , 4)

(12)

B. EXAMPLE 2: STEAM-WATER LOOP MANAGEMENT IN
LARGE SHIPS
The second example is a highly complex system with high
degree of interaction among the sub-systems (five). These
sub-processes are common in chemical, pulp, paper, petro-
chemical and steel industry. In this particular example, the
method is applied to a steam/water loop with five inputs
and five outputs as detailed in [68] and depicted in Fig. 10.
The system is highly nonlinear [69] but a simplified nominal

model is given by the set of equations (13), in which the
input vector u = [u1, u2, u3, u4, u5] contains the positions
of the valves that control the flow rates of feedwater to the
drum (u1), exhaust steam from the exhaust manifold (u2),
exhaust steam to the deaerator (u3), water from the deaerator
(u4) and water to the condenser (u5); the output vector y =
[y1, y2, y3, y4, y5] contains the values of the water level in
drum (y1), pressure in exhaust manifold (y2), water level (y3)
and pressure (y4) in deaerator, and water level of condenser
(y5), respectively.

y1
y2
...

y5




G11 G12 · · · G15

G21 G22 · · · G25
...

...
. . .

...

G51 G52 · · · G55




u1
u2
...

u5

 (13)

where:

G11(s)=
0.0000987

(s+0.1131)(s+0.0085+0.032j)(s+0.0085−0.032j)

G22(s) =
0.7254

(s+ 1.2497)(s+ 0.0223)

G23(s) =
−0.5

(s+ 1.9747)(s+ 0.0253)

G33(s) =
0.0132

(s+ 0.0265+ 0.0244j)(s+ 0.0265− 0.0244j)

G34(s) =
−0.009

(s+ 0.0997)(s+ 0.0411

G41(s) =
−0.0008

(s+ 0.012+ 0.126j)(s+ 0.012− 0.126j)

G44(s) =
0.0005152

(s+ 0.012+ 0.038j)(s+ 0.012− 0.038j)

G54(s) =
−0.00015

(s+ 0.0175+ 0.0179j)(s+ 0.0175− 0.0179j)

G55(s) =
0.00147

(s+ 0.025+ 0.0654j)(s+ 0.025− 0.0654j)
G12 = G13 = · · · = G53 = 0.

The ranges and operating points of the output variables are
listed in Table 3.

The rates and amplitudes of the five manipulated inputs are
constrained to:

−0.007 ≤
du1
dt
≤ 0.007 0 ≤ u1 ≤ 1

−0.01 ≤
du2
dt
≤ 0.01 0 ≤ u2 ≤ 1

−0.01 ≤
du3
dt
≤ 0.01 0 ≤ u3 ≤ 1

−0.007 ≤
du4
dt
≤ 0.007 0 ≤ u4 ≤ 1

−0.007 ≤
du5
dt
≤ 0.007 0 ≤ u5 ≤ 1

(14)

The input units are normalized as percentage values of the
valve opening (i.e., 0 represents a fully closed valve, and 1 is
completely opened). Additionally, the input rates are mea-
sured in percentage per second.

VOLUME 8, 2020 128159



C. Ionescu et al.: Low Computational Cost, Prioritized, MO Procedure for Predictive Control Towards CPS

FIGURE 9. Computational time, absolute integral error (IAE) and integral squared error (ISE) for different control horizon values (a) MO-MPC (top
figures) and (b) MPC (bottom figures).

FIGURE 10. Schematic representation of the steam/water loop in large ships and the interaction between
the various sub-systems; see text for variable notation.

We compare performance of MO-MPC, distributed MPC
and centralized MPC. In particular for this process, a dis-
tributed MO-MPC as proposed in [18] is applied to the
steam/water loop, in which the outputs of the controller are
calculated individually, as through a communication network,
the interactions of the system take place. The controller

tuning parameters are summarized in Table 4. The tuning of
the parameters followed the recommendations from [25].

The simulation performance of the system for all five loops
for reference tracking are shown in Fig. 11 and Fig. 12,
depicting controlled and manipulated variables and compar-
ing all three control strategies.
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FIGURE 11. Responses of the steam/water loop under the MODIMPC, distributed (DIMPC) and centralized (CMPC) controllers (a) drum water level
control loop, (b) exhaust manifold pressure control loop, (c) deaerator pressure control loop. Left column depicts the controlled variables
(reference tracking test), right column gives the manipulated variables.

TABLE 3. Parameters used in steam/water loop operation.

TABLE 4. Controller parameters.

A significant difference has been obtained among the two
methods, as the computational time for MO-MPC is 2.8085
seconds, while for distributed MPC is 17.7620 and for cen-
tralized MPC is 29.3658 seconds. The indexes about tracking

TABLE 5. Performance indexes for the compared controllers.

error and control effort are listed in Table 5 with definitions
in (15).
IAREi =

Ns−1∑
k=0

|ri(k)− yi(k)|/ri(k) (i = 1, 2, · · · , 5)

ISUi =
Ns−1∑
k=0

(ui(k)− ussi(k))2 (i = 1, 2, · · · , 5)

(15)

The simulation results suggest that a significant computa-
tional effort can be saved, without much trade-off for perfor-
mance and control effort. Despite the high complexity of the
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FIGURE 12. Responses of the steam/water loop the MODIMPC, distributed (DIMPC) and centralized (CMPC) controllers (a) deaerator water
level control loop and (b) condenser water level control loop. Left column depicts the controlled variables (reference tracking test), right
column gives the manipulated variables.

interaction in this system, the MO-MPC method proves to be
a suitable control strategy.

C. EXAMPLE 3: SEDATION-HEMODYNAMIC REGULATION
DURING GENERAL ANESTHESIA
This example is again a relevant choice as discussed in [1],
within the biomedical and healthcare systems. The selected
process is a regulatory problem for drug management in gen-
eral anesthesia, with two major systems (counter) interacting
in terms of clinical effects: sedation and hemodynamic state.
The regulatory paradigm has been detailed in [59], [70]–[72].
The conceptual representation of the various synergic and
antagonistic interactions between sedation and hemodynamic
systems is given in Fig. 13.

The following is a description of the model parameters and
the references from where their values have been extracted or
adapted to mimic the clinical effect.

The PK part of the hypnosis model is a transfer function
model of the form

HP(s) =
K (s+ z1)(s+ z2)

(s+ p1)(s+ p2)(s+ p3)(s+ p4)
(16)

with parameters z1 = −10; z2 = −15; p1 = −1; p2 =
−0.8; p3 = −0.02; p4 = −0.5 and K = −0.005. The
hypnotic drug input of this model is Propofol (mg/kg*min)
and the output is effect site concentration CeP (mg/ml). The
PD part of the hypnosis model is a nonlinear Hill curve in the
form

Effect =
CePγP

CePγP + C50PγP
(17)

where CeP is the output of the PK model from (16), C50P
is the concentration at half-effect and γP denotes the drug
resistance/sensitivity of the patient. For this simulator, the
values C50P = 2.2 and γP = 2. The PK part of the analgesia
model is a transfer function model of the form as in (16)
with parameters z1 = −15; z2 = −5; p1 = −2; p2 =
−1.5; p3 = −0.01; p4 = −0.75 and K = −0.0025. The
opioid drug input of this model is Remifentanil (mg/kg*min)
and the output is effect site concentration CeR (mg/ml). The
PD part of the hypnosis model is a nonlinear Hill curve in
the form of (17), with values C50R = 13.7 and γR = 2.4
have been used. The combined synergic effect of Propofol
and Remifentanil on the hypnotic output (Bispectral Index in
this case) has been taken into account in a simplified model
proposed in [73]. There is evidence to support the claim that
Remifentanil affects negativelymean arterial pressure (MAP)
and a model has been approximated from [74]:

MAPRemi =
−1

0.81 ∗ 15s+ 0.81
(18)

followed by a PD model with γRMAP = 4.5 and
C50RMAP = 17.
The hemodynamic model has been taken from [75] and has

two inputs: Dopamine and Sodium Nitroprusside (SNP), and
two outputs: Cardiac Output (CO) and MAP:[

5
300s+1e

−60s 12
150s+1e

−50s

3
40s+1e

−60s −15
40s+1e

−50s

]
(19)

This sub-process is a highly challenging one in terms of
control, as the time delay is significantly high over the time
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FIGURE 13. Conceptual representation of the interactions present in the sedation and hemodynamic systems during
general anesthesia.

FIGURE 14. Hypnosis induction phase for MO-MPC, MPC and DIMPC
optimization schemes.

constant of the process and the system has a large interaction
degree. As the cardiac output tends to increase, the hyp-
notic state tends to increase towards consciousness values,
as the drug is cleared at faster rates from the organisms.
This antagonistic situation is difficult to maintain in clinical
onset. Sedation tends to lowerMAP and CO, while these need
to be maintained at a safe interval value for the patient to
remain in stable vital conditions. The controller parameters
for both cases have been a control horizon Nc = 1, delay
N1 = 1 and prediction horizon of N2 = 20 samples, with
a sampling period of 5 seconds. The special scheme for
delay compensation has been used as explained in previous
section to accommodate the delay values in the hemodynamic
model. The results of the comparison are given in Fig. 14
for the sedation state of the patient and in Fig. 15 for the
cardiac output. The results indicate the MO-MPC scheme
has lower performance compared to the MPC scheme, but
manages to remain within the desired tolerance intervals. The
computational time for MO-MPC was 1.459 seconds, while
for centralized MPC was 2.78 seconds and for distributed
MPC was 2.09 seconds.

FIGURE 15. Cardiac output regulation during the induction phase for
MO-MPC, MPC and DIMPC optimization schemes.

IV. DISCUSSION
The simplified multi-objective approach for optimization of
MPC for multivariable systems presented in this paper has the
benefit of low computational burden and a relatively easy to
implement flow of execution. The results obtained in simu-
lations of representative CPS suggest the method is suitable
for control of highly interactive systems with constraints.
As safety is taken into account, it implies a minimal stability
present in the loop and this is observable from the results. The
study has been performed under ideal process dynamic condi-
tions, i.e. no modelling errors were assumed. In this way, the
differences observed between MO-MPC and distributed and
centralized MPC algorithms are solely due to the differences
in the implementation of the optimization flow diagrams.
Analysis in presence of higher model mis-match indicates a
performance degradation for MO-MPC, as expected.

The proposed sequential minimal MO-MPC method is
applicable to processes which do not require precision control
or high control accuracy. Such processes are mainly observed
in mechanical system manufacturing and mechatronic appli-
cations, and heterogeneous processes such as cyber physical
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systems. Moreover, process control for product manufac-
turing, steel, chemical, food and other such related indus-
trial applications always indicates tolerance intervals for
performance specifications and requires that most impor-
tantly, safety limits are kept at all times. Energy saving by
means of penalizing control action variability is an impor-
tant feature but in this study has been used with lowest
priority; we have presented a separate study on a windmill
park for indicating the further potential of using multiobjec-
tive optimization with various timelapse priorities [29]. One
may consider to switch priorities between performance (i.e.
product specification) and consumption (i.e. control effort
saving). In this case, the MO-MPC results in a conservative
performance, i.e. a robust control which may be relevant in
case of high model-plant mis-match.

Finally, from all relevant features of CPS we have success-
fully addressed most of them, in what concerns heterogeneity
of the sub-systems, strong interactions, distributed control
andmulti-objective optimization requirements. The examples
presented in this paper are versatile andmay be used as a basis
for other related applications.

As a further challenge related to CPS, it would be inter-
esting to investigate the effect of variable time delays with
the proposed scheme against a fully compensated centralized
MPC scheme.
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