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ABSTRACT Based on deep learning technology, this paper proposes a two-stage colorectal image feature
mining and fast recognition model to achieve fully automatic medical image pathology discrimination.
Drawing on the ideas of multi-factorMeta-regression analysis widely used in the medical field and the model
aggregation framework based on Bayesian prior probability theory, a prognostic model of colorectal tumors
suitable for various situations and scenarios is constructed. And using a combination of public data sets and
real data sets, design two sets of experiments to verify these models from different angles. The algorithmwas
used to select one, four, and five related features from three sequences to construct three sets of prediction
models. The application of the six algorithms failed to obtain a better predictive model (AUC value range
0.439∼ 0.640). The algorithm (AUC value 0.750±0.137) and the algorithm (AUC value 0.764±0.128) can
be used to obtain models with better predictive performance, and the four models are less effective (AUC
value<0.7). In the joint model, the algorithm (AUC value 0.742 ± 0.101) and the algorithm (AUC value
0.718±0.069) can also be used to obtain a model with better prediction performance. Image-based imaging
histology tags can be used as a non-invasive auxiliary tool for preoperative evaluation of histological grading
of CRAC, and are expected to be applied in clinical practice to assist in the development of individualized
treatment plans.

INDEX TERMS Deep learning, colorectal imaging, feature mining, rapid identification.

I. INTRODUCTION
Colorectal cancer is one of the most common malignant
tumors in the digestive system. The morbidity and mortal-
ity rates are increasing year by year. The survival time of
patients with colorectal cancer is significantly related to the
tumor stage [1]–[5]. The 5-year survival rate of patients
with lesions confined to the original position is about 90 %.
And the 5-year survival rate of those with local and distant
metastases dropped to 71% and 14% [6]. The liver is the
most important metastatic organ for colorectal cancer. About
35% to 55% of patients with colorectal cancer will have
liver metastases during the disease [7]. Surgical resection is
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currently the most important treatment for liver metastasis of
colorectal cancer, and it is also the main method for patients
to achieve long-term survival.Whether or not liver metastases
can be surgically removed affects the prognosis of patients:
the median survival time of untreated liver metastases is
only 6.9 months. The 5-year survival rate of unrespectable
patients is almost 0, while the median survival period of
those with complete liver metastases is 35 months, and the
5-year survival rate can reach 30% to 50% [8]. Therefore,
it is the key to improve the prognosis of colorectal cancer
patients to detect metastases as early as possible to improve
the rate of radical surgical resection, and imaging diagnostic
techniques and methods can promote the early detection of
colorectal cancer and its liver metastases [9]. To this end, this
article intends to review the current status and application of
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traditional imagingmethods [56]–[66] and emerging imaging
comic’s methods in the diagnosis and treatment of colorectal
cancer liver metastases [10].

The following research results have been achieved in pre-
dicting the occurrence of liver metastasis based on liver
parenchymal background [11]–[15]. Palangi patients with
colorectal cancer into three groups: no liver metastasis, simul-
taneous liver metastasis, and heterochronous liver metas-
tasis within 18 months [16]. Texture analysis of the liver
disease-free liver parenchyma in the portal phase showed that
the results [17]. The entropy value (o = 1.5, c = 2.5) of the
sex liver metastasis group was significantly higher than that
of the non-hepatic metastasis group (p = 0.02, p = 0.011),
and the uniformity was significantly lower than that of the
non-hepatic metastasis group (p = 0.04, p = 0.02); while
the texture parameters of the metachronous liver metasta-
sis group are not statistically different from the other two
groups: the ROC is established based on the texture parameter
entropy value and uniformity, and the AUC value of the
area under the curve of the diagnosis of liver metastasis is
0.73 to 0.78 [18]. Mathews et al. multi-center retrospective
analysis of 165 patients with colorectal cancer, divided into
non-hepatic metastasis group, simultaneous liver metastasis
group and liver metastasis group within 24 months [19],
analyzed the average gray intensity and entropy of whole
liver texture parameters and uniformity (filtration coefficient
0.5-2.5) in predicting the value of liver metastasis [20], mul-
tivariate analysis showed that only uniformity (c = 0.5) is
an indicator for predicting early metastasis (OR = 0.56),
but no corresponding texture parameters were found Further
predict the mid-term (7-12 months) and late (13-24 months)
transfer [21]. In addition to the study of enhancing CT tex-
ture features, Acharya et al. analyzed liver CT texture fea-
tures of patients with colorectal cancer, including average
gray intensity, entropy, and uniformity characteristics [22].
The results found that the liver metastasis group and the
non-hepatic tumor group the entropy values are different,
and they are different from the uniformity of the extrahep-
atic disease group [23]. In addition to the above texture
analysis based on CT images, especially the portal vein
phase images, Wang et al. analyzed the histogram param-
eters of the whole liver MRI portal vein enhancement rate
and found that there are differences in histogram param-
eters between short-term relapse and non-relapse patients
after treatment [24]. It also confirmed the heterogene-
ity of liver parenchyma background in patients with liver
metastases [25].

Poon et al. used the electronic medical record data of
colonoscopy at Samsung Medical Center, so it is possi-
ble to estimate the risk of screening advanced colorectal
tumorsmore accurately, including age, gender, smoking dura-
tion [26], drinking frequency and aspirin use as a training
feature, logistic regression was used to develop a predic-
tive model to estimate the risk of colorectal tumors [27].
Since the patient’s characteristics can be obtained using

only questionnaires, it can be generally used by people
undergoing colonoscopy screening and improve prediction
the model judges the risk awareness of patients in the
high-risk group [28]. Z Poon et al. based on the retrospective
cohort study data of breast cancer [29], colorectal cancer [30],
lung cancer, lymphoma and ovarian cancer in the EHR sys-
tem of a cancer diagnosis and treatment institution as train-
ing data [31], developed a predictive model for predicting
neutropenia in cancer patients the risk of the disease and
using external data verification [32], evaluated the model
from the perspective of differentiation and calibration to pro-
vide a basis for determining the patient’s chemotherapy regi-
men [33]. Poon et al. aggregated data from EHR and medical
insurance records into a cancer research network virtual data
warehouse [34], developed a scalable algorithm for predicting
the presence and timing of breast tumor recurrence [35],
and used maximized ROC The area under the curve and the
minimum mean absolute error were determined and verified
using a third-party gold standard recurrence [36]. Compared
with previously published results, the mean absolute error
was significantly reduced [37]. Because the patient data from
the same data center is highly homogenous, it is generally
not necessary to do other special processing on the data to
train the model, so the process of constructing the model
using similar data can be very convenient [38]. But on the
other hand, if such a model is used to predict other data with
different distributions, the model’s performance will not be
as expected [39].

In this paper, two separate models are used for lesion
segmentation and pathological diagnosis, instead of training
the same model and completing two tasks simultaneously in
a multi-output manner [40]. Because the integrated model
is susceptible to the influence of medical image types and
image quality, the scope of application is relatively narrow,
and it is difficult to adapt to the diagnosis needs of mul-
tiple diseases; moreover, segmentation tasks and classifi-
cation tasks have different requirements for the extracted
features, and segmentation tasks hope to get local details
Feature guidance, but the classification task prefers to get
the guidance of abstract semantic features. Using the same
feature extractionmodulemay affect the performance of both.
Because of the two-level task processing mechanism adopted
in this paper, the deep lesion segmentation network and the
deep pathological diagnosis network will use a multi-stage
training method, by setting the task-related losses for the two
models and completing the corresponding training separately
to obtain two High-precision, high-availability model. Con-
sidering that doctors will pay more attention to the areas
where abnormal tissues are located during the diagnosis of
medical images, we have added an attention mechanism to
the feature extraction process of segmentation models and
diagnostic models, so that the model can improve the acti-
vation of key areas and pay more attention to the lesion
itself and Image information of the area adjacent to the
lesion.
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II. IDENTIFICATION AND ANALYSIS OF COLORECTAL
IMAGE FEATURE MINING
A. AGGREGATION MODEL BASED ON GUAYES
HYPOTHESIS
Figure 1 shows the overall structure of the two-stage med-
ical image disease diagnosis model, which consists of the
two sub-models mentioned above, namely the lesion seg-
mentation model and the pathological diagnosis model [41].
In practical application, the segmentation mask output by the
segmentation model will be input into the diagnosis model
together with the original image as the basis for the diagnosis
of disease diagnosis, to reduce the overall misdiagnosis rate.
The mask from the deep segmentation model will partici-
pate in the multi-channel image construction preprocessing
process of the pathological diagnosis model together with
the original image of the medical image, providing more
pathological features for the final diagnosis [42]. After this
move, the two models were unified into a whole, realizing
fully automatic medical image disease diagnosis. It is worth
noting that each sub-model can also be used independently
in different tasks, for example, the output of the segmen-
tation model can be directly used by experts to assist in
customizing treatment or surgical plans, while the diagnostic
model can be used alone to cooperate with expert physician
make more accurate judgments [43]. To effectively evaluate
the performance of the two-stage model, this article will
use multiple indicators to evaluate each sub-model. At the
same time, considering the particularity of medical image
analysis, the segmentation effects and diagnostic capabilities
of the model are also intuitively displayed by displaying their
visualization results. Besides, the two-stage model will also
carry out integrated disease diagnostic tests to illustrate its
relatively high degree of automation.

FIGURE 1. Two-stage medical image disease diagnosis model.

The aggregation model based on the Bayesian hypothe-
sis and a priori knowledge calculation method used can be
obtained by multi-factor Meta-analysis [44]–[48].

UPEIOR = A (1)

APEIOR =
∑m

i=1
(αi + ei) (2)

The calculation of the above two formulas does not include
models from interest groups [49]. When we assume that the
model from the interest group also follows a multivariate
normal distribution, where the mean of the distribution is and
the covariance matrix is Bpi [50]. Based on the above prior
knowledge, the mean and covariance of interest groups are:

BPI=
(
A−1PEIOR+A

−1
PI

)−1(
A−1PEIORUPEIOR+A

−1
PI UPI

)−1
(3)

UPI=

(
U−1PEIOR + U

−1
PI

)−1
(4)

First, verify the models from different sources in the inter-
est group. It is assumed here that the models used are all
logistic regression models [51]. In this way, you can aban-
don the model that is defective in the interest group during
aggregation. In this step, strategies such as intercept update,
model calibration, or model modification can be considered
to improve model performance. The updated model is then
applied to verify the predicted probability of the calculation
result time in the sample.

sin = log it−1(LPin) (5)

The weighted average of the final aggregation model can
be written as:

si =
∑N

n=1
Mnsin (6)

The process of the evolution of the distance regularization
level set curve is the process of continuously reducing ε in
equation (6) and eventually approaching zero [52]. This pro-
cess is expressed by differential equations, and the expression
is shown in (7):

∂α

∂t
= ηdiv [dP (|∇ϕ|)∇ϕ]+ χδg (φ) div

[
g(I )
∇ϕ

|∇ϕ|

]
+ ag(I )δg (φ) (7)

Among them:

Dp(s) =
p′(s)
s

(8)

The C-V model is a kind of region-based segmentation
method [53]. For images with a large difference between the
target region and the background, the C-V model can get a
better segmentation effect. The principle of the C-V model is
to change the energy function of M-S into:∫
�

|I (x)− C1|
2G(φ(x))dx +

∫
�

|I (x)− C2|
2G(φ(x))dx (9)

Suppose the original image is f (x, y), (x, y) is the pixel
coordinates, the mathematical expression of bilateral filtering
is:

f (x, y) =

∑
(i,j)∈S(i,j)

M (i, j)g(i, j)∑
(i,j)∈S(i,j)

M (i, j)
(10)
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The right side of Equation 10) is the weighted average of
pixel values in the neighborhood of the pixel. The weight W
consists of two parts, as shown in equations (11) and (12):

Ms(i, j) = e
|i−x|2+|j−y|2

2δ2x (11)

MR(i, j) = e
|i−x|2−|j−y|2

2δ2x (12)

In equations (11) and (12), M is the spatial proximity
degree representing the molecule, M is the brightness similar-
ity representing the molecule, H decreases with the increase
of the Euclidean distance between (i, j) and (, y), M as the
difference between the brightness values of the two pixels
increases, it decreases. In the part where the image changes
slowly, the pixel values will not differ greatly. Bilateral fil-
tering is now a kind of Gaussian filtering; while in the part
where the image changes drastically, bilateral filtering the
brightness value of the points with similar brightness values
near the edge of the image [54]. An average value is used
to replace the original brightness value, so the bilateral filter
not only smooth the original image but also better maintains
the edge information of the image. The bilateral filter is con-
trolled by three parameters: filter half-width N, parameters δ.
The greater the N, the stronger the smoothing effect; δ and δ,
respectively, controlled the degree of attenuation of the spatial
proximity factor w and the brightness similarity factor w.

B. MULTITASK FEATURE MINING WITH
AN ATTENTION MECHANISM
The fully automatic medical image disease diagnosis model
in this paper consists of two sub-models: lesion segmentation
and pathological diagnosis [55]. First, focus on the sub-model
of lesion segmentation that provides a pathological diagnosis
model for the pathological diagnosis model. It is similar to
U-net, our proposed deep learning lesion segmentation net-
work also uses asymmetric full convolution structure, and that
is, the number of convolutional layers in the feature extraction
process is the same as the number of convolutional layers
in the detail restoration process. Figure 2 shows the overall
structure of the lesion segmentation sub-model. In addition to
following the superior strategy of symmetric FCN (ie, phased
up sampling, stride connection, and integrated segmentation
loss), our multi-task feature supplementary lesion segmen-
tation network with attention mechanism also incorporates
supervision The feature map region attention mechanism
improves the up sampling process to force the predicted
segmentation mask to focus on the area of the key lesion
and integrates the key features supplementation of transfer
learning based on natural object semantic segmentation and
weakly supervised feature filtering based on position detec-
tion To compensate for the lack of insufficient training due
to lack of medical images and to remove the interference of
the irrelevant segmentation mode on the pixel prediction of
lesion segmentation.

The input medical image will first be prepossessed by
image enhancement. Under the premise of highlighting the

FIGURE 2. The overall structure of the lesion segmentation sub-model.

lesion information and reducing the interference of noise
information on the segmentation network, the pre-processed
medical image will first extract the features of different levels
through the segmentation network, and then merge these
features with the filtered natural semantic features, while
using the lesion area Focused attention technology com-
bined with fusion features to obtain a preliminary segmenta-
tion result. Finally, the preliminary segmentation results are
post-processed according to the application scenario, and a
refined segmentation mask is an output.

To make the attention module located deep in the network
fully function, AMTFSLSN creatively uses the multi-level
loss based on the multi-scale segmentation mask to guide the
attention weight training. The multi-level loss is finally added
to the segmentation loss in the form of regular terms and is
optimized together with the conventional segmentation loss.
Besides, because medical images tend to have low contrast,
a large number of common cells and tissues can easily be
misconceived as lesions, so multi-sized area detection weakly
supervised learning is used to train feature filtering convo-
lutional layers to prevent migration learning from different
tasks The weight of the network extracts too many extraneous
features and reduces the false segmentation prediction caused
by these features.

Because the symmetric FCN network structure is generally
deep, to avoid the insufficient training of the shallow attention
module, AMTFSLSN uses multi-scale supervised learning to
guide the attention mapping at each scale. Figure 3 shows
the training principle of the multi-scale supervised attention
module. AMTFSLSN uses an attention module at each scale
level of the expansion path. The network weight parameters
involved in the attention module are not updated using con-
ventional gradient backpropagation but are connected to the
final output through a ‘‘step-by-step connection’’ to directly
update the module parameters using the total loss. To make
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FIGURE 3. The learning process of the supervised attention module.

the training process of the segmentation network correct
the attention weight of different scales, a series of real-size
segmentation masks of different sizes are used to calculate
the dice loss of different modules together with the attention
weight matrix at each scale. These dice losses represent how
close the attention weight matrix is the content that the real
segmentation mark focuses on. The smaller their value, the
closer the importance of the region reflected by the attention
weightmatrix to the actual important position. Byminimizing
multi-scale dice loss during network training, the area of
interest of the attention matrix can be effectively modified.

In AMTFSLSN, there are a total of 5 attention modules;
representing the number of pixels contained in the image
area. The numerator of the BDL main item reflects the
degree of coincidence between the focus areas of the true
segmentation focus and the attention weight matrix, and
the denominator reflects the total area occupied by the two
attention areas. The division of the two clearly expresses
the importance of the pixel output by the attention module.
It is to the importance of actual pixels. It cannot be directly
used for training the segmentation network, because it is
not derivable (statistically overlapping the number of pixels
and pixel synthesis is a differentiable operation), and cannot
be directly propagated in the network optimization process.
We can find that lower-level attention weight matrices can
focus on more details, and they can even find more precise
lesion edges, although these lesions have more glitches on
the edges; higher-level attention weight matrices can be more
Localize the area where the lesion is located, like the attention
module 5 of sample 2, although it locates two candidate lesion
areas, themain candidate area is significantlymore concerned
(the main candidate area occupies most of the attention of the
larger value Force weight). The reason for this phenomenon
is that the high-level attention weight matrix uses image-level
advanced semantic features (such as whether it is a lesion,

whether there are burrs on the edge of the lesion, or whether
the lesion is benign or malignant, etc.), and the receptive
fields of these features are often Larger, it is more suitable for
positioning the lesion area, and the low-level attention weight
matrix combines many unrefined details, so it pays more
attention to the local lesion edge and lesion shape. Figure 3
also proves that the multi-scale supervised attention correc-
tion mechanism is effective because no matter which level of
attention weight matrix has no large deviation compared with
the real lesion segmentation mask.

III. COLORECTAL IMAGING AND METHOD ANALYSIS
A. COLORECTAL IMAGE ACQUISITIONS
Preparations used before rectal MRI examination: diet less
than 1 day before the examination, lasting for 4-6 hours
before the examination. Two hours before the examination,
external open-celled dew drops were used to clean the intes-
tine and reduce the impact of feces and gas in the intestinal
cavity. Routine intramuscular injection of 20mg intramus-
cularly 15 to 20 minutes before the examination suppresses
intestinal peristalsis, except for patients with glaucoma,
intestinal obstruction, benign prostatic hyperplasia, or severe
heart disease. After the patient goes to the examination
table, an appropriate amount of ultrasound coupling agent
is injected through the anus to expand the rectum to facil-
itate the disease display. A 3.0 TMR scanners (SignaHDx,
GEHealthcare; GEDiscoveryMR750, GEHealthcare, USA)
with an 8-channel body phased-array coil was used for high-
resolution rectal MR scanning for initial staging and feature
extraction. MRI scan sequence includes (1) high-resolution
oblique axis position (perpendicular to the long axis of
the tumor) T2-weighted image (T2-weighted image, T2WI),
(2) sagittal and coronal position T2WI, (3) axial position
T1 Weighted image (T1-weighted image, T1W1), (4) axial
T2WI lipid pressure, (5) axial diffusion-weighted imaging
(DWI) (b = 0,800s / mm2), (6) axial three-dimensional liver
Accelerated volume acquisition sequence (liver acquisition
with volume acceleration-extended volume, LAVA), injec-
tion of gadolinium contrast agent (Gadopentetate Dimeglu-
mine, Gd-DTPA, Bayer, Germany) via elbow vein, pressure
syringe at 0.1 mmol/kg body weight, 2.0 ml/s rate. A mask
scan was performed before contrast injection, and a 9-stage
enhancement scan was performed after contrast injection.
MR images obtained from the (1) and (6) sequences in this
study are further used to delineate the lesions, and the remain-
ing sequences contribute to clinical staging. The scanning
parameters are shown in Table 1.

The treatment methods of patients with rectal cancer
in this study mainly include (1) total mesenteric exci-
sion (total mechanical excision, TME), (2) simultaneous
contradiction (chemo radiotherapy, CRT), (3) decoglurant
chemotherapy (CRT) followed by TME surgery, (4) Adju-
vant chemotherapy after TME. According to the clinical
guidelines for rectal cancer, follow-up patients are followed
through outpatient or inpatient medical records. The clinical
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TABLE 1. Colorectal image scanning sequence and parameters.

FIGURE 4. Overall architecture of the pathological diagnosis sub-model.

routine follow-up inspection in our hospital is every 3 months
within the first 2 years and every 6 months after 2 years
Including physical examination, enteroscopy, detection of
serum tumor markers (CEA, CA19-9), CT, MRI, positron
emission tomography / CT imaging if necessary. The end-
point of this study was defined as the time of liver metastasis.
End-point events were defined as liver metastases found on
abdominal imaging studies. The initial metastatic organ was
the liver, regardless of whether there were metastases else-
where. The follow-up time is calculated from the first day
after the start of the first treatment. As shown in Figure 4,
it is the overall architecture of the diagnostic sub-model.

The data set used to train and test the lesion segmen-
tation sub-model covers the entire colon and rectum with
three-dimensional CT scan sequences, which are obtained by
scanning the cross-section of the abdominal cavity with a

64-layer multi-row ultrasound probe. A total of 366 patients
with colorectal adenocarcinoma (Colorectal Adenocarci-
noma, CRAC) preliminary signal-enhanced CT sequences
were collected. The first physical examination of these
patients included 10 years from 2009 to 2019. The CT
sequences are taken about a month before surgery. The
patients did undergo preoperative radiotherapy or chemother-
apy before shooting. Each patient’s CT sequence includes
approximately 400-500 abdominal sections with different
cross-sections. The three consecutive sections containing the
lesions were masked by the doctor using the CAD system.
They indicate that the lesions located in specific parts of the
rectum/colon. Each slice marked with a mask is regarded as
a CT scan of the abdominal cavity, so our dataset contains
a total of 366 3 = 1098 CT images. Each image records the
abdominal pelvis, abdominal tissue, colon, and information
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TABLE 2. AUC, ECI and 95% confidence interval of each model.

about the rectum and other parts. We divide the training
set and test set of the model according to a ratio of about
3: 1, where the training set contains 823 CT photos and the
test set contains 275 CT photos. It is worth reminding that,
considering that the morphology of the same tumor lesion is
different on different cut planes. In our experiment, each CT
imagewill be regarded as an independent sample. At the same
time, no distinction was made between lesions with different
degrees of differentiation.

B. DESCRIPTION OF EXPERIMENTAL EQUIPMENT AND
EVALUATION STANDARDS
For the fairness of the experiment, all the algorithms/models
involved in the comparison are completed under the same
physical configuration. This article uses the 32-core Intel
(R) Core (TM) i7-6850K CPU (main frequency is 3.60GHz)
to perform conventional calculations and uses the four-way
GeForce GTX1080P GPU for image processing and deep
learning operations. The memory is 64GB and the frequency
is 1600MHz. The operating system is Ubuntu16.04.1. The
model code is consistently written in Python. The lesion
segmentation network is based on the Keras deep learning
platform and the backend is Tensor flow. The pathological
diagnosis network is based on the Pytorch deep learning
platform. Both store model parameters and structure in a
common model format. When conducting experiments, each
algorithm/model takes up only one GPU resource to complete
the experiment.

For segmentation prediction results, we will use 5 com-
monly used segmentation evaluation indicators to conduct a
comprehensive performance evaluation. These five indicators
include pixel precision (recision), pixel recall (recall), dice
coefficient (dice coefficient), Hausdorff distance, an IOU.
They are defined by formula (13) ∼ formula (18):

P =
|TPPS|

|TPPS| + |FPPS|
(13)

R =
|TPPS|

|TPPS| + |FNPS|
(14)

DC =
2 |GT ∩ PM |

|GT ∪ PM | + |GT ∩ PM |
(15)

h = max(h(GTMS,PMMS), h(PMMS,GTMS)) (16)

h(A,B)=max
∣∣∣∣∣∣PA − PB∣∣∣∣∣∣ (17)

I =
|GT ∩ PM |
|GT ∪ PM |

(18)

TP (True Positive) represents the true number of posi-
tive classes in the samples classified as positive, TN (True
Negative) represents the true number of negative classes in
the samples classified as negative, and FP (False Positive)
represents the misjudgment of negative samples It is the
number of samples in the positive category, and FN (False
Negative) represents the number of samples in which the
positive samples are judged to be negative. Similar to the
test results of the segmentation model, the five evaluation
indicators of pathological diagnosis all take the test results
of the test set as the test results. At the same time, to avoid
statistical error and result from deviation, all experiments
used the average value of 15 independent runs. Also, to
measure the stability of the pathological diagnosis results,
the standard deviation (Standard Deviation, STD) will be
calculated when comparing with the frontier method, and the
significance comparison analysis will also be completed in
the comparison between DLDPPF and the frontier method.
As shown in Table 2, the AUC, ECI, and 95% confidence
intervals for each model.

Finally, the area AUC of the receiver operating charac-
teristic curve (Receiver Operating Characteristic, ROC) will
be recorded to evaluate the generalization ability to partici-
pate in comparison methods. The training of the pathologi-
cal diagnosis model requires the segmentation mask of the
lesion as an input. To avoid the influence of segmentation
errors on the training effect of the diagnostic model, dur-
ing the training process, the segmentation mask required for
multi-channel image construction will use the lesion mark-
ers obtained by experts through ‘‘Double Reading’’. Dur-
ing the test, the pathological diagnosis model will use the
segmentation model trained by enhanced sequence breast
cancer MRI to provide segmentation mask input. In other
words, the pathological diagnosis model will be tested in
the two-stage medical image disease diagnosis framework
proposed in this paper for testing.

IV. RESULTS ANALYSIS
A. COMPARATIVE ANALYSIS OF AMTFSLSN STRATEGY
Figure 5 shows the effects of using each strategy in AMTF-
SLSN individually or in combination. The optimal value
under each test indicator is marked in bold, and Baseline
refers to the basic network structure of AMTFSLSN (Back-
bone), a fully symmetric FCN similar to U-net is used here,
and does not contain any of the strategies proposed in Chap-
ter 3. Through Figure 5, we can see that the full version of
AMTFSLSN has the best overall performance, and three of
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FIGURE 5. Comparison of the effects of various strategies.

the five indicators are far superior to the other five strategy
combinations, especially overlapping indicators in two more
difficult areas. On dice coif and IOU, they achieved good
results of 0.72 and 0.58. This is mainly because AMTFSLSN
can accurately restore the detailed information of the lesion
after the supplement of the filtered features, such as the burr
at the edge of the lesion, the connectivity of the tissue block
of the lesion, and so on. At the same time, the supervised
attention mechanism also corrects the location of the lesion
at different scales, so that the full version of the model can
achieve high lesion coverage even under the condition of
colorectal cancer with variable tumor location and shape.

Also achieving better results on detached and IOU is the
‘‘Baseline + Expansion Path Attention Module’’ strategy
combination. Using a multi-scale attention module alone can
also achieve a high segmentation accuracy enough to explain
its position correction effect. The strategy combination also
defeated the full version of AMTFSLSN at the Hausdorff
distance, which may be caused by the more coherent lesion
blocks it predicts; AMTFSLSN also uses a lot of supplemen-
tary semantic segmentation features, so it is more stringent
for the prediction of pixels. Another strategy combination
to defeat AMTFSLSN is ‘‘Baseline + Feature Supplement’’.
It is slightly better than AMTFSLSN in precision. This may
be because the supplementary features it obtained have not
been filtered by the filter layer, thus slightly more pixels
are judged as focus pixels, making potential focus pixels
easier to find; but it also affects In addition to the recall,
the misjudgment of pixels in normal tissues is increased.
A similar situation also appears in the ‘‘Baseline + Shrink
Path Pre-training’’ strategy combination, because the convo-
lution module of the shrinking path uses rich daily seman-
tic segmentation data for pre-training, which also increases
the richness of the extracted features to some extent. After
adding the weakly supervised learning filter layer, the strat-
egy combination alleviates the situation and improves the
recall. Interestingly, although the full version of AMTFSLSN
has two indicators that are not optimal, it still achieves

considerable results, only slightly worse than the winning
strategy combination.

Figure 6 shows the changes in the training set loss and
test set loss of each strategy combination during the training
process (we used the dice loss in the experiment). Obviously,
during the training process, the loss of the training set changes
more smoothly and smoothly, while the loss of the test set
fluctuates greatly in the early stage of training, which is in
line with the training rules of deep learning models because
the segmentation network is based on the feature information
provided by the training set. For optimization, the test set
belongs to new data, so in the early stage of training, before
the model has learned the underlying mode, the loss of the
test set will fluctuate greatly. Another obvious phenomenon
is that the strategy combination that uses more daily semantic
segmentation data to assist training will converge faster (for
example: ‘‘Baseline + feature supplement’’ and ‘‘Baseline
+ contraction path pre-training’’. Green line), and the model
stabilization time is earlier (as can be seen from Figure 6 (b),
the training loss during stabilization will be lower. However,
this strategic combination will make the model more likely to
fall into the local optimal, because according to Figure 6 (b),
we can find that the strategy combination that ultimately
results in the lowest loss in the test set is the full version of
AMTFSLSN (black line in the figure). Convergence strate-
gies of the remaining strategy combinations are almost con-
sistent with AMTFSLSN, but none of them have achieved
high segmentation accuracy like AMTFSLSN.

FIGURE 6. The relationship between the loss of the supervised attention
module and the total loss during the training processes.

Because attention modules at various scales in AMTF-
SLSN use ‘‘stride connection’’ to directly connect to the total
loss to complete supervised training, each attention module
has its loss. Figure 7 is used to observe the impact of the loss
change of each level of attention module on the total loss.
It should be noted that Figure 7 uses a dual Y-axis format
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to organize graphic information. Only the black ‘‘breakpoint
line’’ in the figure represents the change in a total loss, and the
remaining color curves represent the loss change in attention
modules of different scales. Only the strategy combination
using the attention module with the position correction mech-
anism is discussed here (that is, the full version of AMTF-
SLSN and ‘‘Baseline+ Expansion Path Attention Module’’).
Obviously, although the five attention modules are located
at different scales of the segmentation model, their change
trends are very close, and they also dominate the changemode
of the total loss, because the losses of all attentionmodules are
used as regular terms to constrain the total Loss optimization
can naturally control the direction of optimization. Similarly,
the loss change curve of the training set is smoother and
smoother than that of the test set. During the training process,
the test set even experienced large oscillations, such as 10 ∼
12 Epoch in Figure 7 and 6 ∼ in Figure 7. This shows that
the optimizer is jumping out of the local optimal and moving
towards a more optimal solution. Looking at Figure 7, we can
also find that the optimization effect of the attention module
at the middle level will be better (yellow, blue and green lines
in the figure), which may be because the feature map output
by the middle-scale network module can be better Balanc-
ing pixel-level features and image-level features will not be
affected by the transition of one of the features, but for the test
set, the optimization of themiddle-level attentionmodule also
produces greater fluctuations (such as Figure 7 Loss curve of
attention module 2).

FIGURE 7. Network parameter statistics of different strategy
combinations.

B. LAYERED ANALYSIS OF THE EFFICACY OF
COLORECTAL IMAGING LABELING
As shown in Figure 8, hierarchical analysis based on rectal
adenocarcinoma and colon adenocarcinoma further verified
the effectiveness of the imaging histology label in evaluating
the histological grade of adenocarcinoma before surgery. The
AUC of the rectal adenocarcinoma group and colon adenocar-
cinoma group was 0.895 (95% CI: 0.838–0.952), 0.725 (95%
CI0.653-0.797). When the cut-off value of the Rad-score is

FIGURE 8. Receiver operating characteristic curve of the training group
and verification group.

also taken as -0.284, the SEN, SPE, PPV, NPV, and ACC of
the imaging histology label used for preoperative evaluation
of adenocarcinoma histological grade in rectal adenocarci-
noma are 0.789, 0.821, and 0.600, respectively., 0.920, 0.813;
in colon adenocarcinoma, its SEN, SPE, PPV, NPV, and ACC
were 0.500, 0.871, 0.712, 0.732, and 0.727, respectively. The
correction curves of the rectal adenocarcinoma group and
colon adenocarcinoma group showed that the imaging histol-
ogy label used for preoperative evaluation of adenocarcinoma
histological grade had a good calibration degree, and the P
values of H-L test were 0.119 and 0.752, respectively.

Use the 50% cross-validation method and two machine
learning algorithms (SVM and LR) to build four sets of
models, namely the T2WI model (constructed from 5 optimal
T2WI feature sets) and the VP model (consisted of 8 optimal
venous phase features) Set construction), T2WI+ VP model
(constructed from a total of 13 feature sets selected by the
two sequences) and T2WI / VP model (constructed from
the 22 optimal feature sets selected from the 2058 features
combined by the two sequences). The ROC curve and average
predicted value of the four-group model using the five-fold
cross-validation method are shown in Figure 9 and Figure 10.

FIGURE 9. The average prediction performance of each ROC of the four
groups of prediction models.

Machine learning algorithms LR and SVM can be used
to build predictive models. Choosing appropriate machine
learning algorithms may help to improve the stability and
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FIGURE 10. ROC curve of the four prediction models.

predictive performance of the model. Some studies have
reported the advantages of the LR and SVM algorithms in
tumor research. Some studies believe that the SVM algorithm
is slightly better than the LR algorithm. In our study, the LR
algorithm of the VP model is superior to the SVM algorithm,
while in the other three models. There is no obvious differ-
ence between the two algorithms in the two. It is generally
believed that the LR and SVM algorithms are more suitable
for the model construction of small sample sizes and binary
variables, but for MRI enhanced sequences, our small sample
results recommend the LR algorithm. Besides, in terms of the
algorithm used, our prediction model is also stable. In this
study, a five-fold cross-validation method commonly used in
machine learning research is used to build prediction models
to avoid selection bias as much as possible, and this method
is more suitable for the construction of small sample models.
Besides, we conducted 100 rounds of cross-validation to test
the stability and repeatability of the results of one round of
cross-validation. The results show that the round of cross-
validation is reliable and representative, and it also ensures
that the results are not obtained by chance.

The T2WI and VP sequences were screened using the
LASSO algorithm to obtain 5 and 8 optimal comics’ fea-
tures, respectively. This is consistent with the enhancement
sequences obtained from previous studies to obtain more
available related features. The possible reason is that the
enhancement sequence image contains. More blood supply
information and better-reflected tumor heterogeneity.

The T2WI / VP model constructed by 22 features
selected from the 2058 features combined by the T2WI
and VP sequences is superior to the T2WI + VP model
constructed by combining the 13 omits features selected by
the two sequences, which may be related to The interac-
tion between the features of different sequences is related.
Combining MRI multiple sequences may help to extract
more valuable features, to build a more stable and effective
model. However, using too many sequences will affect the
clinical application of image segmentation because of the
time-consuming and labor-intensive. Therefore, it is more
important to choose the most valuable sequence.

In this study, the T2WI / VP model constructed by the LR
algorithm is superior to the other three groups in predicting
MLM. Therefore, for patients with rectal cancer, the multi-
sequence MR imaging histology prediction model is help-
ful for early prediction and follow-up examination. Early
detection of metastases may change treatment strategies, and
more high-risk patients with MLMmay have the opportunity
to receive individualized treatment to improve prognosis.
Machine learning-based imaging optics models may suggest
the presence of occult metastatic lesions, which are difficult
to find with existing imaging examination methods. This
retrospective study included few clinical features and no
significant differences between groups, so it was not used to
construct a predictive model. Prospective studies that include
more relevant clinical parameters in the future may improve
the predictive power of the model and thus play a greater role
in clinical value.

C. EVALUATION EFFECT ANALYSIS
VGG16 with 13 convolutional layers and 3 fully connected
layers pre-trained in ImageNet are used to initialize the fea-
ture extraction network. All new layers are randomly ini-
tialized by extracting weights from a zero-mean Gaussian
distribution with a standard deviation of 0.01; the training
process uses two stages of training, each of which includes
80,000 RPN candidate regions (the first 60,000 times) The
learning rate is 0.001, and the subsequent 20,000 times the
learning rate is 0.0001) and 40,000 times based on the candi-
date region-based feature vector classification and regression
(the first 30,000 times the learning rate is 0.001, the last
10,000 times the learning rate is 0.0001); the amount of
exercise (momentum) is 0.9, weighted delay (weight decay)
is 0.0005; the anchor scale (scale of anchor) of the area gener-
ation network is set to 1282, 2562, 5122, and the anchor ratio
(aspect ratio of anchor) is set to 0.5, 1, 2; in training In the
process, by calculating the error value between the predicted
value and the true value, using the error back-propagation
(end to end back-propagation) algorithm and SGD (Stochas-
tic Gradient Descent) method, adjust the weighting (weight)
and other deep learning network parameters, and then con-
tinue to iterate Reduce the value of the loss function to
converge the network. The Loss curve of the training process
is shown in (Figure 11).

The validation group included 6030 images of 100 patients.
The time for manual diagnosis of a single case is about 600s,
and a total of 912 images are diagnosed with lymph node
metastasis; the total time consumed by FRCNN automatic
lymph node detection platform to diagnose the target image
is 1071.81s, that is, the average image recognition time for
each image is about 0.18s, single The case took an aver-
age of 10.72s, and a total of 987 images were diagnosed
with lymph node metastasis. A total of 772 images with the
same diagnosis results (that is, the location of lymph nodes
and the number of metastases are the same). First, to fully
reflect the training effect in the training process, we recorded
the accuracy and recall rate of the nodule categories in the
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FIGURE 11. Loss curve of the training process of colorectal lymph node assisted diagnosis system
based on deep neural network.

FIGURE 12. Accuracy-recall curve of high-resolution MRI colorectal lymph
node assisted diagnosis system based on deep neural network.

training set and verification set, and plotted the data as a
PR curve, as shown in Figure 12. The area under the curve
is 0.3949.

Although the two sub-models of the two-stage medical
image diagnostic method has achieved good results on some
difficult data sets. But because they still use a non-heuristic
optimizer during training, their final stable results are not nec-
essarily the optimal results. Performance may decline after
replacing a batch of data sets. Here, we consider using some
heuristic multimodal optimization strategies to replace the
optimization algorithm used in training, so that the final opti-
mization results can be used in a wider range. Our laboratory
has achieved some results on these strategies, which can be
adapted appropriately. Also, because both the lesion segmen-
tation sub-model and the pathological diagnosis sub-model
adopt a multi-channel CNN architecture, operations can be

performed in parallel. Therefore, we will also consider using
the laboratory’s achievements in distributed deep learning
to improve the specific implementation of the model. The
specific method is: during training, several batches of image
data are input into several different graphics processing units
(Graphics Processing Unit. GPU), and a forward propaga-
tion and backpropagation are completed at the same time.
Finally, the gradient obtained by the total operation is updated
the model weight synchronously. The lesion segmentation
model and pathological diagnosis model use different com-
puting resources and tags to complete the training, respec-
tively. When inference (Interference), the two-stage parallel
architecture is used to reduce the calculation time, the main
and auxiliary network of the split model, the ‘‘static’’ and
‘‘dynamic’’ two-way network of the diagnostic model are
simultaneously operated by different GPUs, and the two sub-
models. The calculation modules on different scales also
complete the calculations in parallel. Of course, the specific
implementation of parallelization should also consider the
degree of support of the underlying deep learning framework,
such as the need to set a reasonable number of convolution
kernels and parallel CUDA programming to achieve device
control.

At the same time, to more intuitively and comprehensively
reflect the regression and classification results during the test,
we counted the number of true positives / false positives in all
the nodule regions marked in the test set and calculated the
true positive rate under different probability threshold (TP)
and false-positive rate (FP), drawn as ROC curve as shown in
(Figure 13), after calculation, the area under the ROC curve
is 0.8862, that is, the AUC value is equal to 0.8862, which
accurately and comprehensively reflects the test data Set the
effect on the trained model.
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FIGURE 13. Receiver operating characteristic curve of high-resolution
MRI colorectal lymph node assisted diagnosis system based on deep
neural network.

Aiming at the problem that a pathological diagnosis is
prone to insufficient medical features, a two-way CNN fea-
ture extractor with a ‘‘static-dynamic’’ structure is used in
combination with feature redundancy penalty loss to increase
the richness of the extracted features. Among them, ‘‘static’’
CNN is mainly used to extract general multi-scale medical
features, while ‘‘dynamic’’ CNN is based on context-aware
mechanisms and channel attention units to extract pathologi-
cal semantic features that aremore relevant tomedical scenes.
To properly retain the required features at different scales.
The pathological diagnosis sub-model also uses a multi-level
feature filter to achieve controllable retention of the features
of each level. Also considering the lack of training data and
to reduce the computational overhead of the training process,
the ‘‘static’’ CNN uses transfer learning for training, so that
it can have a more general feature extraction capability.

The colorectal high-resolution MRI automatic lymph node
recognition system based on the deep neural network has
high accuracy and high efficiency and has clinical signifi-
cance in assisting diagnosis. The two-stage medical image
disease diagnosis method proposed in this paper has achieved
excellent performance in the colorectal cancer CT dataset.
Aiming at the problem that pixel segmentation of lesions
is easy to be misjudged, a multi-scale attention mechanism
for position correction, and a feature supplement mechanism
with regional feature filtering are proposed. During training,
the attention module can learn the pattern of lesion position
correction from lesion masks of different sizes, and influ-
ence the segmentation of the actual lesion in the form of an
attention weight matrix. Feature filter layer learns the corre-
sponding filter activation through multi-stage weak supervi-
sory training that only contains the coordinates of the lesion
area, to complete the preservation of the details of important
lessons. Also, considering the serious shortage of training
data, the auxiliary road network of the lesion segmentation
sub-model uses multi-stage transfer learning to complete
the training, ensuring that the auxiliary road network can
rely on rich feature extraction modes to provide sufficient

supplementary features. Whether it is lesion segmentation
or pathological diagnosis, it has overcome the cutting-edge
methods in the corresponding field in terms of overall per-
formance. These experimental results also prove that the
method in this paper has a wide range of applications and has
contributed to fully automatic intelligent disease diagnosis.

V. CONCLUSION
In this paper, the deep learning algorithm of colorectal
image feature mining and rapid identification has a high
24-month MLM prediction performance for the rectal MR
imaging comics feature model before treatment, especially
the model built with the LLR algorithm has the best perfor-
mance. In addition to the VP algorithm, the LR algorithm
is superior to the SVM algorithm, there are no significant
differences between the two algorithms in the other three
sets of models. The lesion segmentation network integrates
a supervised attention mechanism for correcting the loca-
tion of the lesion and multi-scale feature supplements that
include regional feature filtering to mitigate the misjudgment
of pixels in the mass. The pathological diagnosis network
uses a dual-channel convolutional neural network feature
extractor with feature redundancy control and multi-layer
feature filtering based on maximum correlation to mine more
diverse and useful pathological features to improve the diag-
nostic accuracy. The lesions obtained from the segmented
sub-network will be submitted to the pathological diagnosis
network to assist in the final diagnosis of the disease. Also,
two models overhead through transfer learning and use the
multi-channel network structure to improve the richness of
the extracted features, which also provide the basis for the
parallelization of the model. Our work uses two challenging
medical image datasets to test the two subnetworks sepa-
rately. This one dataset is colorectal cancer electronic com-
puted tomography dataset. The experimental results show that
both the segmentation model and the diagnostic model have
achieved excellent results, and are significantly better than the
cutting-edge methods. At the same time, it also verifies the
effectiveness and reliability of the two-stage medical image
disease diagnosis model proposed in this paper.
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