
SPECIAL SECTION ON HUMAN-DRIVEN EDGE COMPUTING (HEC)

Received May 31, 2020, accepted June 26, 2020, date of publication July 8, 2020, date of current version July 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3008081

A Two-Layer Deep Learning Method for Android
Malware Detection Using Network Traffic
JIAYIN FENG 1,2, LIMIN SHEN 1, (Member, IEEE), ZHEN CHEN 1,
YUYING WANG1, AND HUI LI1,2
1School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
2School of Mathematics and Information Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China

Corresponding author: Limin Shen (shenllmm@sina.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61772450, in part by the Hebei Natural
Science Foundation under Grant F2019203287, in part by the Science and Technology Research Project of Colleges and Universities in
Hebei Province under Grant QN2020183, in part by the Hebei Postdoctoral Research Program under Grant B2018003009, and in part by
the Doctoral Fund of Yanshan University under Grant BL18003.

ABSTRACT Because of the characteristic of openness and flexibility, Android has become the most popular
mobile platform. However, it has also become the most targeted system by mobile malware. It is necessary
for the users to have a fast and reliable detection method. In this paper, a two-layer method is proposed to
detect malware in Android APPs. The first layer is permission, intent and component information based
static malware detection model. It combines the static features with fully connected neural network to detect
the malware and test its effectiveness through experiment, the detection rate of the first layer is 95.22%. Then
the result (benign APPs from the first layer) is input into the second layer. In the second layer, a new method
CACNN which cascades CNN and AutoEncoder, is used to detect malware through network traffic features
of APPs. The detection rate of the second layer is 99.3% in binary classification (2-classifier). Moreover,
the new two-layer model can also detect malware by its category (4-classifier) and malicious family
(40-classifier). The detection rates are 98.2% and 71.48% respectively. The experimental results show that
our two-layer method not only can achieve semi-supervise learning, but also can effectively improve the
detection rate of malicious Android APPs.

INDEX TERMS Android, malware detection, deep learning, network traffic.

I. INTRODUCTION
In recent years, Smartphones and tablets have been integrated
into every aspect of people’s lives. The advancedmobile tech-
nologies have made tremendous growth in mobile devices.
The mobile device has many functions, such as browsing
the Internet, making payments, taking a photo and sharing
it. Mobile device is only a small part of the Internet of
Things (IoT) device. According to Ericsson report 2019 [1],
with mobile systems acting as a backbone for both the mobile
phone and Internet of Things (IoT). The number of mobile
subscriptions grew at 2 percent year-on-year and currently
totals around 7.9 billion and 80 percent of traffic will be
generated by mobile networks.

As a smart operation system, Android is the most pop-
ular used mobile platform for smartphones and IoT. With
the ease of use, low-cost and portability nature to be the

The associate editor coordinating the review of this manuscript and

approving it for publication was Lu Liu .

characteristics, Android occupies a top market share. The
increasing users of Android have spawned a substantial
of mobile applications (APPs). The total number of new
Android APPs outnumbers IOS APPs by a ratio nearly 3:1
which reported by Mobile APP Trends Report 2019 [3].
People can download popular mobile APPs which access
internet via Android for more personalized or complicated
things, such as social network APPs, studding APPs, gaming
APPs, information exchangeAPPs, financial transactions and
cloud storage APPs etc. These various APPs generate huge
amounts of mobile traffic data, which contain highly sensi-
tive information. A statistic shows the number of available
applications in the Google Play Store fromDecember 2009 to
March 2020 [4]. The number of available APPs in the Google
Play Store was most recently placed at 2.87 million APPs,
after surpassing 1 million APPs in July 2013.

Though various mobile APPs make our life more conve-
nient, it also brings enormous burden to the mobile and IoT
security protection. According to the G DATA report [5] in

125786 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-2687-2280
https://orcid.org/0000-0002-9325-2279
https://orcid.org/0000-0003-4424-7315
https://orcid.org/0000-0003-1013-4507


J. Feng et al.: Two-Layer Deep Learning Method for Android Malware Detection Using Network Traffic

2017, security experts discovered about 750,000 newAndroid
malware during the first quarter of 2017. It is shown that
a large number of mobile APPs carried out malicious code
and spread to execute various cybercrimes on mobile devices.
Android become themost targeted system bymobile malware
not only because of its large market share and open source
ecosystem of development, but also because Android operat-
ing system allows users to download APPs from third-party
markets, and these APPs may include malicious or suspicious
applications which seduce users to open its permissions to
the APP if they want to use it. Malware is becoming more
obscure and harder to eliminate. Consequently, how to protect
Android devices from malicious APPs is of vital importance.

Google play is the official market store for android APPs
and there are more than hundred third-party market to store
android APPs. Because of the lack of effective verify method,
malware developers can utilize multiple method to evade the
detection provided by Android sand-boxing or other existed
antivirus mechanisms and upload their malicious APPs to
the market and even Google’s official market. These eva-
sion methods include dynamic execution, code obfuscation,
repackaging or encryption [43]. Many android malwares
which contain the mentioned evasion methods above have
already been released in the market which caused great losses
to mobile users, such as Trojans APPs can steal user account
information, Ransomware can block user’s common used
software to blackmail money, and some repackaging APPs
can send SMS messages without user’s concern or implant
mounts of ads, which brings great trouble to users. To prevent
Android malware attacks, researchers and mobile security
products use signature-based or heuristics-based method to
detect malware [6]. However, because of the popularity of the
mobile network, attackers can use powerful code obfuscation
and repackage techniques to conceal their behavior into the
large amounts of network traffic and evade the detection. The
increasing sophistication of the network behaviors of android
malware calls for new defensive techniques that can protect
users from new threats.

To be more effective detect the Android malware, in this
paper, we make the following contributions to detect Android
malware:

1) Static malware detection based on permissions, intent
and component information. The static features
datasets are input into a fully connected neural network
to detect the malware and test its effectiveness through
experiments.

2) Network traffic based effective mobile malware detec-
tion. Our experimental results show that combining
network traffic features with cascading deep learning
CACNN methods can effectively identify malicious
software in Android APPs.

3) Two-layer detection model. The first layer, applying
a fully connected neural network to analyze static
features, and input the results to the next detection
layer. Second layer, network traffic features detection
analyzed the final results to prove that CACNN model

can effectively identify malware. At the same time,
this models can also detect malware by its category
and malicious family. Overall, combining two layer
of detection model can further improve the detection
efficiency.

The following paper is organized as follows: Section 2 dis-
cusses related works. Section 3 introduces the methodology
of our models in detail. Experimental results are reported in
section 4. Section5 gives the conclusions of the paper.

II. RELATE WORK
There are many proposed security mechanisms to detect
Android malware and protect users’ mobile phone from
attacking. Most of the common mechanism is static analy-
sis. Static analysis detects features from APP by unpacking
or disassembling them without running the APP [7]–[11],
these features are extracted from permission [12], [13], sen-
sitive API calling or critical code segments in the source
code [14]–[16]. However the static analysis method cannot
detect certain source code tampering operations. Dynamic
analysis examines the running APP and monitoring the exe-
cution behavior of APP, such as memory utilization, system
calls, network connections and battery power [17]–[21], but
it cannot fully traverse the execution path of the software
and cannot detect certain malicious behaviors. In order to
avoid the limitations of both static and dynamic analysis,
researchers and commercial systems have used combination
of both the mechanisms that has been termed as hybrid analy-
sis. Hybrid analysis is a two-step process where initially static
analysis is performed before the dynamic one [2], [22], [23].
However all these analysis methods above only focuses
on the static detection, dynamic detection or both of
them, and rarely considers the network traffic generated by
malicious APPs.

Currently, almost all the attackers use mobile networks
to obtain sensitive information of user or interact with its
malicious APPs. Therefore, Android APPs can also be ana-
lyzed using network traffic. A number of studies have been
conducted on area of Android malware detection using the
network traffic. One of the first attempts was presented by
Iland et al. in 2011 [24], where the authors presented a
lightweight approach of detecting Android malware and vio-
lations of user privacy through the network traffic. But, this
technique cannot be applied in the encrypted traffic. In 2013,
Tenenboim Chekina et al. [25] proposed a novel network
based behavioral analysis for detecting a new group of mal-
warewith self-updating capabilities which have been found in
the Google Android marketplace. Their results showed that in
most of the applications the threat was detected in the first five
minutes after the infection occurred. In the same year, a new
automatic network profile generator for detecting Android
applications in HTTP was designed by Dai et al. [26], but
the system needs a user seed path when login is involved
and it cannot detect APPs which have no distinct network
behavior and use the same service. Zaman et al. [27] in 2015
demonstrated a work-in progress detection method that was

VOLUME 8, 2020 125787



J. Feng et al.: Two-Layer Deep Learning Method for Android Malware Detection Using Network Traffic

effective against malware communicating with the remote
server C&C servers, which is based on the logs of all
remote locations. In 2017 [28] presented an algorithm to
prioritize network traffic features with minimize number of
features to be analyzed for better detection accuracy and
processing time. Lashkari et al. [29] propose an Android
Malware detection model based on a new network traf-
fic feature set to expedite the efficiency of traffic clas-
sifier. It can classified the APPs into benign, malware
and adware. Aceto et al. [30] aim to improve the perfor-
mance of classification of mobile APPs traffic by propos-
ing a multi-classification approach for mobile and encrypted
traffic classification in 2018. In the same year, another
paper [42] proposed a high-efficient hybrid-detecting scheme
for Android malwares. They employed static and dynamic
methods to analyze features. Additionally, they also presented
some tools such as Com+ feature based on traditional Per-
mission and API call features to improve the performance
of static detection. Wang et al. [31] presented an effective
malware identification and classification method called Traf-
ficAV by combining machine learning algorithm and traffic
analysis. And they added a section of the prototype system in
TrafficAV in [32].

These studies we mentioned above involve many aspects
of malicious traffic analysis. However, the above articles
are rarely combined with deep learning method to analyze
static features and network traffic features. Our approach is
different from the above approaches in the following aspects.
Firstly, a new novel two-layer model to detect malware is pre-
sented. It combines permission, intent and component infor-
mation based static malware detection method and network
traffic based effective mobile malware detection method.
Secondly, the second layer combines network traffic analysis
with a new cascading deep learning CACNN method that is
capable of identifying Android malware with high accuracy.
Moreover, our two-layer framework not only detect benign
and malware, but also classify the APPs by category and
malicious family. In the following sections, we discuss our
two-layer model in more details and make the operation
process of our method more clearly.

III. METHODOLOGY
In this section, we propose a two layer model for detecting
malware. In the first layer, the static analysis method is used
to extract features, then a fully connected neural network
model is used to classify the datasets into benign and mal-
ware. In the second layer, mobile traffic analysis method is
used to extract traffic features from all the benign in the first
layer, then CACNN model is used to classify malware from
the benign. CACNN model can also classify Malware by
category and family. The complete framework is summarized
as Figure 1.

A. STATIC FEATURE EXTRACTION LAYER
The first layer is a binary classificationmodel between benign
and malware sample based on static features.

1) ACQUIRING MANIFEST FILES
To acquire manifest files in batch, APKs are unzipped, and
all the manifest.xml files are extracted and saved with the
name of APK name.xml file in a folder first. The permission,
intent and component information can be obtained from the
manifest.xml file.

2) EXTRACTING PERMISSION INFORMATION
Among mobile operating systems, including Android, Win-
dows Phone and Apple IOS, the naming of permissions gives
intuitive and exact information on what it requests from
OS [33]. Permission models have become one of the primary
security mechanisms for Android systems to provide access
control to sensitive information or components. Thus, the per-
mission feature extraction is conduct to gain the component
information or resources APPs need to share or use from
the manifest.XML files. Through extracting the XML nodes
information from Manifest iteratively, each node is checked
to confirmwhether the node includes user permission, system
permission and components information.

3) FORMATION FEATURE VECTOR
The extracted features from all the APPs that contains benign
and malware in process step 2 are used to format feature
datasets. Setting the features attribute extracted from the
APP to 1 in the corresponding attribute field, other attributes
set 0 in the datasets to format feature vector. The structure of
the datasets is described in Table 1.

TABLE 1. Extracted label and feature.

4) STATIC FEATURE DETECTION
The feature detection process is conducted to determine
whether the application is malicious or not after all the
features dataset is generated in step 3. Firstly, we choose
to remove features with low variance, Chi-square test and
extremely randomized tree method for feature selection.
According to the quantity and quality of feature selection,
the extremely randomized tree method is applied finally.
Secondly, a fully connected neural network model is built
to detect malware. The commonly used activation functions
include sigmoid, ReLu, Tanh and Maxout. In our model, the
rectified linear unit (ReLU) is taken as activation function
after comparative experiment with those activation functions.
And the binary_crossentropy loss function is used, so that the
model continuously reduces the cross entropy between output
and label during the training process. Thirdly, the model is
used to classify the APPs into benign and malicious. Finally,
all the benign APPs that detected in this layer are input into
the network traffic analysis layer.

125788 VOLUME 8, 2020



J. Feng et al.: Two-Layer Deep Learning Method for Android Malware Detection Using Network Traffic

FIGURE 1. The overall architecture of the proposed mode.

B. NETWORK TRAFFIC ANALYSIS
All the network traffics are obtained from last output benign
APPs of a fully connected neural network model. Then, the
captured network traffic datasets are input into CACNN layer.
CACNN layer contained two parts. One is binary classifi-
cation model to determine whether the APP is malicious or
not. Another is a multi-classification model, it can classify
malware by category andmalicious family. The detail process
is described as follows:

1) TRAFFIC DATA COLLECTION
The traffic data were acquire from CICAndMal2017 [16].

CICAndMal2017 datasets collected 4,354 malware and
6,500 benign apps from VirusTotal [34], Contagio secu-
rity blog [35] and previous researchers [16], [36] and [37].
Because of the sample errors and repeated label in dif-
ferent datasets, CICAndMal2017 retain 429 malware and
5,065 benign. Then, network traffic data are captured in
three stages. Because of most advanced malware employed
the evasion or transformation technique to dodge detection
(i.e. code permutation, register renaming, idle activation) [2].
Some behaviors of malicious applications will be triggered
only after connecting network update, other behavior of mal-
ware that only triggered over time after the restart process.
In order to trigger all the malware behavior, network traffic
data capture occurs in three minutes after the app is installed,
and 15 minutes before and after restarting the phone.

2) NETWORK TRAFFIC DATA PREPROCESSING
This preprocessing contains three part. First, traffic segment.
Second, traffic trim and generate training/testing datasets.
Third, image generation and TFRecord transformation.

In the stage of malware traffic detection, because HTTP
protocol is the most preferred protocol for most mobile APPs,
TCP and UDP are also the most popular transport layer proto-
cols for network, we handle HTTP, UDP and TCP connection
as the main interaction granularity between the APP and the
network. A TCP flow is a session which is defined as all
packets that has the same 5-tuple (protocol, src_ip, src_port,
dst_ip, dst_port) for which they contain traffic. A complete
TCP flow begins with three-way handshake and ends in four-
way waving. Therefore, flow is also the most basic unit
in traffics. However, several flows generated by APPs con-
tain comprehensive Meta information about all packets, and
we are only interested in HTTP, TCP and UDP. Therefore,
Wireshark is used first to filter the Pcap, then the Pcap was
separated into the basic flow.

a: TRAFFIC SPLIT
The tool of USTC-TK2016 [38] is used to segment a PCAP
into flows. The advantage of USTC-TK2016 is the ability to
split a Pcap file based on flow, i.e. the frames from each TCP
or UDP flow are placed in a separate Pcap file. All Pcap files
are split into flows iteratively and saved into a folder named
by the APP.

b: TRAFFIC TRIM AND GENERATE TRAINING/TESTING
DATASETS
Traffic trimmed stage trims all flow files to 784 bytes.
If the size of split Pcap file is beyond 784 byte, it is
trimmed to 784 bytes. If it is shorter than 784 bytes, the
file will be supplemented hexadecimal zero in the end to
make the file size 784 bytes. Then all the trimmed Pcap
files are divided into 80% training data and 20% testing
data.

VOLUME 8, 2020 125789



J. Feng et al.: Two-Layer Deep Learning Method for Android Malware Detection Using Network Traffic

c: IMAGE GENERATION AND TFRecord TRANSFORMATION
The trimmed files in step (b) are converted to binary matrix,
and then the binary matrix are converted to grayscale image
in training data files and testing data files. Next step, the
image path and corresponding labels are read into memory
recursively, then labels and images are written into TFRecord
files by 2-classifier, 4- classifier and 40- classifier.

3) CLASSIFICATION MODEL TRAINING AND TESTING
The TFRecord data are used to input into CACNN detec-
tion model to classify the malicious APPs from benign
(2-classifier). The CACNN model could be used to classify
the malicious APPs by category (4- classifier) and malicious
family (40- classifier) too.

C. 2-CLASSIFIER, 4-CLASSIFIER AND 40-CLASSIFIER
TRAINING
The model training mainly consists of two steps. One
is compressing the data to obtain its two-dimensional
features through deep convolutional Auto-Encoder model.
Other is feeding the TFRecoder data into the convolutional
Auto-Encoder cascading the convolutional neural networks
to train the malware detection model.

1) CONVOLUTIONAL AUTO-ENCODER MODEL
After the traffic data preprocessing, all the traffic files are
converted into TFRecord datasets. A convolutional Auto-
Encoder (CAE) model is adapted to unlabeled images for
testing whether the APP traffic data could cluster according
to its lower-dimension feature. An Auto-Encoder is an unsu-
pervised neural network where the input and the output have
the same number of the nodes [39]. Hidden layers must be
symmetric about center. And the number of nodes for hidden
layers must decrease from left to centroid (encoder), and
must increase from centroid to right (decoder). Convolutional
Neural Network (CNN) is a special type of neural network.
It contains a feature extractor composed of convolutional
layer, activation layer and sub-sampling (pooling) layer. CNN
is used to detect some patterns first, and feed these pat-
terns to neural networks. In this way, it can process images
in less complex way whereas get more successful results.
However, it is tested for labeled supervised learning prob-
lems. As for unlabeled images for clustering, convolutional
auto-encoder model is needed. The CAE model is similar to
Auto-Encoder, Auto-Encoder network design is symmetric
about centroid. The number of nodes reduce from left to
centroid, and increase from centroid to right. Centroid layer
would be compressed representation. It will apply the same
procedure for CNN.

Convolutional layer - convolution: k convolution kernels
(W ) are initialized, each convolution kernel is matched with
a bias b, and then it convolved with the input x to produce k
characteristic graphs h. The formula is provided in (1)

hk = σ (x∗W k
+ bk ) (1)

where the bias is broadcasted to the whole map in the Eq.1,
the activation function σ is ReLU. ∗ denotes the 2D convolu-
tion [4].

Convolutional layer – autoencoder: Convolution opera-
tion is performed in each feature graph h and its correspond-
ing transposed convolution kernel. The formula is provided
in (2)

y = σ (
∑
k∈H

hk ∗ W̃ k
+ c) (2)

where the convolution operation summed the result
and add the bias c, W̃ is the transposition of W ,
the activation function σ is ReLU. ∗ denotes the 2D
convolution.

The cost function to minimize is the cross entropy which
is portrayed in Eq. 3

Hθ ′ (θ ) = −
∑
i

y′ilog(yi) (3)

where θ is a function ofW and b, yi is the result of prediction.
The weights are then updated using Adadelta.

It can call left to centroid side as convolution whereas
centroid to right side as deconvolution. Deconvolution side
is also known as unsampling or transpose convolution. The
CAE is applied for unsupervised learning where partial
APP traffic image data were used as unlabeled data train-
ing. APP traffic images were input into the model, and
then compress it into two dimensions clustering data from
left to centroid side. Then, deconvolution side is applied
to reconstruct the original traffic image data. Finally, the
weights are stored in the HDF5 file as the input of next
model.

2) CACNN MODEL IS USED TO CLASSIFY MALWARE
CACNN model is an enhanced CNN which cascades CAE
and CNN. The compressed clustering data were acquired
from left to centroid side in step 1 as the input of the fol-
lowing classifier for supervised learning. CNN used for the
supervised learning where part of traffic images data were
used as labeled data and trained this model. Then the output
data is converted into a 1D pixels array and input into the three
layers of fully connected neural network. Finally, a softmax
loss function which is portrayed in Eq. 4

softmax(yj) =
eyj

K∑
k=1

eyk
for j = 1, 2, 3...k (4)

is used to separate the malicious APPs from the datasets. k is
the number of categories. k is 2 when the binary classification
(2-classifier) is used to classify the malware and benign, k is
4 when the malwares are classified by category (4-classifier),
and k is 40 when the malicious APPs are classified by mal-
ware family (40-classifier). yi is the classification probability
of it belongs to. The schematic of the CACNN is depicted in
Figure 2.

125790 VOLUME 8, 2020



J. Feng et al.: Two-Layer Deep Learning Method for Android Malware Detection Using Network Traffic

FIGURE 2. Architecture of CACNN.

IV. EXPERIMENT
We implement the proposed method using Keras, the Python
Deep Learning library with Tensorflow backend. In this
section, a detailed description of the dataset and experimented
environment is provided first in section 5.1. Second, the
data preprocessing is described in section 5.2. Third, the
performance metrics evaluated in our experiment is recalled
in section 5.3. Then, the number of training samples for the
detection model were analyzed to achieve good detection
result. Finally, our method was compared with other deep
learning methods, static detection methods and traffic flow
detection methods.

A. DATASETS
For the evaluation of our model, 5065 benign APPs
and 4354 malware samples were used from CICAndMal2017
dataset [16]. The benign APPs were collected from Google
play market published in 2015, 2016 and 2017. These APPs
were collected based on their popularity and identified based
on the detection results from VirusTotal [34]. Only those
APPs that VirusTotal determined as benign are included to
the benign APP set. Ultimately, 5065 of them were reserved
as benign APPs and 4354 of them were reserved as mal-
ware APPs. And 1700 benign and 429 malware network
traffics were captured in the installation of APPs, before
restart and after restart. All the malware have four categories,
they are adware, ransomware, scareware and SMS malware.
Each categories have different family. Adware has Dow-
gin, Ewind, Feiwo, Gooligan, Kemoge, koodous, Mobidash,
Selfmite, Shuanet and Youmi family. 440 malwares were
collected, and 104 traffics were captured in this family. Ran-
somware has Charger, Jisut, Koler, LockerPin, Simplocker,
Pletor, PornDroid, RansomBO, Svpeng and WannaLocker
family. 1094 malwares were collected totally, and 101 traf-
fics were captured in this family. Scareware has AndroidDe-
fender, AndroidSpy.277, AV for Android, AVpass, FakeApp,
FakeApp.AL, FakeAV, FakeJobOffer, FakeTaoBao, Penetho
and VirusShield family. 1442 malwares were collected
totally, and 112 traffics were captured in this family. SMS-
malware has BeanBot, Biige, FakeInst, FakeMart, FakeNo-
tify, Jifake, Mazarbot, Nandrobox, Plankton, SMSsniffer and
Zsone family. 1269 malwares were collected, and 92 traffics
were captured in this family.

B. DATA PREPROCESSING
After obtaining all the APPs and its network traffic data.
The static features are extracted first. 8115 features of the

permissions and intent actions were acquired from Manifest-
File.xml of APK, and saved them in a CVS file. Then, the
traffic network images feature data are produced which is
introduced in methodology and saved as TFRecord files. The
size of each grayscale image is 784 bytes. The visualization
results are showed in Figure 3 and Figure 4.

FIGURE 3. Benign traffic images.

Figure 3 shows the extraction sample images of benign
traffic and Figure 4 shows the extraction sample images of
malicious traffics. Meanwhile, Figure 4 is also shown the
characteristic of different category of malicious traffic. The
visualization result of all the network traffic shows that there
are some different between benign traffic images and mal-
ware traffic images, and it is obvious that there are some
different among malicious category traffic images data.

After obtaining the datasets and preprocessing the data, the
final data statistics are shown in table 2. According to the
characteristic of CVS file and the network traffic of APPs,
it is considered to use fully connected neural network to detect
malicious APPs based on permissions and intents in CVS,
and use CACNN model to distinct different network traffic
of APPs.

C. PERFORMANCE METRICS
As for a binary classifier of the detection model, there are
four circumstance, if the APP is benign and is predicted to
be a benign, it is a True Positive Rate (TPR); if the APP is
malicious and is predicted to be a benign, and it is called False
Positive Rate (FPR). Accordingly, if the APP is a malware
and is predicted to be a malicious APP, it is called a true

VOLUME 8, 2020 125791



J. Feng et al.: Two-Layer Deep Learning Method for Android Malware Detection Using Network Traffic

FIGURE 4. Malware traffic images.

TABLE 2. Dataset statistics.

Negative Rate (TNR), and if the benign is predicted to be a
malware, it is False Negative Rate (FPR). A good detection
model should identify as manymalware APPs as possible and
minimize the False Positive Rate. However, inmulti-classifier
and imbalanced problems, the detection rate or FPR cannot
determine whether a model is good or not. And there are usu-
ally other performance metrics were used: accuracy (ACC),
precision (P), recall (R) and f-measure value. Accuracy was
used to evaluate the overall performance of the detection
model. The formula portrayed in Eq. 5.

ACC =
TP+ TN

TP+ FP+ FN + TN
(5)

Precision is used to evaluate the rate of the number of true
positive APPs to the number of predicted positive APPs. The
formula portrayed in Eq. 6.

P =
TP

TP+ FP
(6)

Recall indicated the rate of the true positive APPs to the
total number of APPs. The formula portrayed in Eq. 7.

R =
TP

TP+ FN
(7)

F-measure value is a relatively fair metric to understand
and compare the performance of malware detection [41],
it considers both the precision P and the recall R to com-
pute the score. Due to our malware recognition is actually
an imbalanced classification datasets (our dataset has 429
malicious samples and 1700 benign samples). F-measure
comprehensively considers the detection rate and error rate
of identifying malicious samples, and therefore is suitable for
model evaluation. The formula is provided as follow:

F =
(α2 + 1)P∗R
α2(P+ R)

(8)

The formulas is F1-measure, when α = 1.
To verify the accuracy and precision of the first static

analysis layer, the fully connected neural network model was
used to extracted datasets as input, there are 8115 features of
permission and intent in the datasets. First, all the features
were input into the model to observe the values of evalua-
tion parameters, then the number of features were gradually
decreased which is not important to the datasets, for instance,
we delete the total number of APPs occupied in a feature
is less than or equal to 1. The threshold was set in 1, 5, 10
and 20 respectively. The values of evaluation parameters are
showed as follows in Figure 5.

FIGURE 5. Evaluation value of static analysis layer.

When all the datasets were input into the model, the accu-
racy is 0.9222, precision is 0.9035, and recall and F-measure
are 0.7 and 0.8125 respectively. When the total number of
APPs occupied in a feature is less than or equal to 1, it will
be deleted. The accuracy is 0.9523, precision is 0.943, and
recall and F-measure are 0.9348 and 0.9383. The precession
increased dramatically because the features which less than or
equal to 1 are definitely infrequent features and can be deleted
in the feature datasets. And when the deleted features are less
than or equal to 20. The accuracy is 0.961, precision is 0.9523,
and recall an F-measure are 0.9411 and 0.9454 respectively.
The performance metrics change stably, however the features
we delete are 2423 which will be loss correction too much.
So the threshold we select is 1 and delete the total number
of APPs occupied in a feature is less than or equal to 1.

125792 VOLUME 8, 2020



J. Feng et al.: Two-Layer Deep Learning Method for Android Malware Detection Using Network Traffic

FIGURE 6. The accuracy of CACNN.

Though the accuracy is 0.9522 when the threshold is 1, the
false positive rate and false negative rate are 0.05488 and 0.25
respectively. This means that there is a one-fourth probability
that the malware will be predicted as benign one, whereas the
FPR is low enough that it rarely predict malware as benign
one. Therefore, the next step detection is very important. All
the benign APPs that the first model detected will be input
into the CACNN model.

The second layer obtain network traffic data of APPs first,
then the datasets will be classified into malware and benign
after data preprocessing. Next, the input malware samples

FIGURE 7. Loss in the classifiers.

were classified into four malware categories (Adware, Ran-
somware, SMSMalware, Scareware) and 40 malware fami-
lies(koler, svpeng, lockerpin, jisut, simplocker, wannalocker,
charger, RansomBO, pletor, porndroid, mobidash, gooli-
gan, dowgin, youmi, kemoge, feiwo, shuanet, ewind, self-
mite, avpass, AndroidDefender, virusshield, android.spy.277,
fakeapp, fakejoboffer, FakeApp.AL, fakeav, penetho, Fake-
TaoBao, AvForAndroid, mazarbot, fakemart, beanbot, jifake,
zsone, fakeinst, smssniffer, nandrobox, biige, plankton).

D. CLASSIFICATION EVALUATION
After data preprocessing in step B, there are 623980 train-
ing samples and 69371 test samples. Three experiments

VOLUME 8, 2020 125793



J. Feng et al.: Two-Layer Deep Learning Method for Android Malware Detection Using Network Traffic

FIGURE 8. Comparisons of our method with CNN.

were carried out to test the accuracy of binary classification
(2-classifier), category classification (4-classifier) and mali-
cious family classification (40-classifier). The experiment
results were showed as follows.

From Figure 6 (a), we can see that CACNN achieves
an impressive 99.3% accuracy in training samples and
99.19% accuracy in testing samples by binary classification
(2-classifier), and 98.22% accuracy in training samples and
97.3% accuracy in testing samples by category (4-classifier)
in Figure 6 (b), and 71.48% accuracy in training samples
and 70.16% accuracy in testing samples by malicious family
(40-classifier) in Figure 6 (c). It is found that the effect of the
classifier perform well in 2-classifer and 4-classifier, but it

FIGURE 9. Comparison of our method with [16] and [2].

perform averagely in 40-classifier. This is because the images
are similar in the same category but a little more different
in malicious family. In future work, we should find ways
to improve the accuracy of the classifier in family malware
detection.

The experiment results of training and testing loss in
binary classification (2-classifier), category classification
(4-classifier) and malicious family classification
(40-classifier) are showed in Figure 7.

Figure 7 depicts the training and testing value of loss,
we can see that the loss of the classifier in figure 7 (a) is
from 0.6681 to 0.0245 in training sample and from 0.6675 to
0.0231 in test sample respectively. The loss of the classifier
in figure 7 (b) is from 1.1502 to 0.0221 in training sample
and from 1.1201 to 0.0226 in test sample respectively. And
the loss of the classifier in figure 7 (c) is from 2.256 to 0.115
in training sample and from 2.131 to 0.1113 in test sample
respectively. From Figure 7, it is found that the classifier per-
form smoothly after 300 loop. And the test sample fluctuates
more than the training sample because the test sample has a
smaller amount of data.

Figure 8 is the accuracy comparisons of CNN and our
method in binary classification (2-classifier), category clas-
sification (4-classifier) and malicious family classification
(40-classifier).

From Figure 8 (a), the accuracy curves of CNN and our
method are close in binary classification. And there are

125794 VOLUME 8, 2020



J. Feng et al.: Two-Layer Deep Learning Method for Android Malware Detection Using Network Traffic

obvious difference in Figure 8 (b) and Figure 8 (c). That
means CNN and our method all have excellent performance
in accuracy of binary classification, the two classifiers per-
form smoothly after 150 loops. However our method per-
forms better than CNN in accuracy of multi-classification.
In 4-classifier, our method reached 98.22%, and CNN only
reached 82.26% after 500 loops. Our method and CNN
reached 70.14% and 50.38% in 40-classifier respectively.

Figure 9 is the comparison of precision and recall in our
method, [16] and [2] in CICAndMal2017 dataset.

As seen from the Figure 9, the precisions of our method
is 99.2% in 2-classifier, 98.4% in 4-classifier and 73.5% in
40-classifier respectively. The results are 95.3%, 83.3% and
59.7% in [2] and 85.8%, 49.9% and 27.5% in [16]. The
recalls are also increased into 98.2% in 2-classifer, 96.4%
in 4-classifer and 74.2% in 40-classifer in our method. And
the recalls are 95.3%, 81% and 61.2% in [2] and 88.3%,
48.5% and 25.5% in [16] respectively. As we can see from
the experiments result, our method express better in multi-
classification in precision and recall.

V. CONCLUSION
In this research, a two-layer Android malware detection
model is presented. The first layer is permission, intent
and component information based static malware detection
model. The static features were combined with fully con-
nected neural network to detect the malware, and the effec-
tiveness was tested through experiments. Then, the results
(benign APPs) were input into next layer. In the second layer,
a new cascading deep learning CACNN method was used
to detect network traffic features of APPs. The experimental
results show that our methods can effectively identify mali-
cious Android APPs. Moreover, the new two-layer model can
also detect malware by its category and malicious family.
Overall, combining two levels of detection work can further
improve the detection efficiency.

REFERENCES
[1] (2019). Ericsson Mobili Ty Report. [Online]. Available: https://www.

ericsson.com/en/mobility-report/reports
[2] L. Taheri, A. F. A. Kadir, and A. H. Lashkari, ‘‘Extensible Android

malware detection and family classification using network-flows and API-
calls,’’ in Proc. Int. Carnahan Conf. Secur. Technol. (ICCST), Oct. 2019,
pp. 1–8.

[3] [Online]. Available: http://www.360doc.com/content/20/0122/20/
33989007_887496741.shtml

[4] [Online]. Available: https://www.statista.com/statistics/266210/number-
of-available-applications-in-the-google-play-store/

[5] C. Lueg, ‘‘8,400 new Android malware samples every day,’’ G Data,
Bochum, Germany, Tech. Rep., Apr. 2014. [Online]. Available:
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-newandroid-
malware-samples-every-day

[6] A. Arora, S. Garg, and S. K. Peddoju, ‘‘Malware detection using network
traffic analysis in Android based mobile devices,’’ in Proc. 8th Int. Conf.
Next Gener. Mobile Apps, Services Technol., Sep. 2014, pp. 66–71.

[7] C. Urcuqui-López and A. Navarro Cadavid, ‘‘Framework for malware
analysis in Android,’’ Sistemas y Telemática, vol. 14, no. 37, pp. 45–56,
Aug. 2016.

[8] N. Peiravian and X. Zhu, ‘‘Machine learning for Android malware detec-
tion using permission and API calls,’’ in Proc. IEEE 25th Int. Conf. Tools
Artif. Intell., Nov. 2013, pp. 300–305.

[9] L. Onwuzurike, E. Mariconti, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini, ‘‘MaMaDroid: Detecting Android malware by building
Markov chains of behavioral models (extended version),’’ ACM Trans. Inf.
Syst. Secur., vol. 2, no. 2, pp. 14.1–14.34, 2019.

[10] S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, ‘‘HinDroid: An intel-
ligent Android malware detection system based on structured heteroge-
neous information network,’’ in Proc. 23rd ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining. New York, NY, USA: ACM, Aug. 2017,
pp. 1507–1515.

[11] H. Kang, J.-W. Jang, A.Mohaisen, andH.K. Kim, ‘‘Detecting and classify-
ing Android malware using static analysis along with creator information,’’
Int. J. Distrib. Sensor Netw., vol. 11, Jun. 2015, Art. no. 479174.

[12] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and
B. Zang, ‘‘Vetting undesirable behaviors in Android apps with permission
use analysis,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.
(CCS). New York, NY, USA: ACM, 2013, pp. 611–622.

[13] L. Sun, Z. Li, Q. Yan, W. Srisa-an, and Y. Pan, ‘‘SigPID: Significant
permission identification for Android malware detection,’’ in Proc. 11th
Int. Conf. Malicious Unwanted Softw. (MALWARE), Oct. 2016, pp. 1–8.

[14] X. Wang, K. Sun, Y. Wang, and J. Jing, ‘‘DeepDroid: Dynamically enforc-
ing enterprise policy on Android devices,’’ in Proc. Netw. Distrib. Syst.
Secur. Symp., 2015, pp. 1–15.

[15] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, ‘‘MalDozer: Auto-
matic framework for Android malware detection using deep learning,’’
Digit. Invest., vol. 24, pp. S48–S59, Mar. 2018.

[16] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani, ‘‘Toward
developing a systematic approach to generate benchmarkAndroidmalware
datasets and classification,’’ in Proc. Int. Carnahan Conf. Secur. Technol.
(ICCST), Oct. 2018, pp. 1–7.

[17] B. Amos, H. Turner, and J. White, ‘‘Applying machine learning classifiers
to dynamic Android malware detection at scale,’’ in Proc. 9th Int. Wireless
Commun. Mobile Comput. Conf. (IWCMC), Jul. 2013, pp. 1666–1671.

[18] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, ‘‘RiskRanker: Scalable
and accurate zero-dayAndroidmalware detection,’’ inProc. 10th Int. Conf.
Mobile Syst., Appl., Services (MobiSys), 2012, pp. 281–294.

[19] V. Rastogi, Y. Chen, and W. Enck, ‘‘AppsPlayground: Automatic security
analysis of smartphone applications,’’ in Proc. 3rd ACM Conf. Data Appl.
Secur. Privacy (CODASPY), 2013, pp. 209–220.

[20] J.-W. Jang, J. Yun, J. Woo, and H. K. Kim, ‘‘Andro-profiler: Anti-malware
system based on behavior profiling of mobile malware,’’ in Proc. 23rd Int.
Conf. World Wide Web-WWW Companion, 2014, pp. 737–738.

[21] A. Shabtai, U. Kanonov, and Y. Elovici, ‘‘Intrusion detection for mobile
devices using the knowledge-based, temporal abstraction method,’’ J. Syst.
Softw., vol. 83, no. 8, pp. 1524–1537, Aug. 2010.

[22] R. Vinayakumar, K. P. Soman, P. Poornachandran, and S. Sachin Kumar,
‘‘Detecting Android malware using long short-term memory (LSTM),’’
J. Intell. Fuzzy Syst., vol. 34, no. 3, pp. 1277–1288, Mar. 2018, doi: 10.
3233/JIFS-169424.

[23] (Oct. 25, 2016). Malware Detection Methods. [Online]. Available:
http://www.avg.com/us-en/avg-software-technology

[24] D. Iland, A. Pucher, and T. Schauble, ‘‘Detecting Android malware on
network level,’’ Univ. California, Santa Barbara, CA, USA, 2011, vol. 12.

[25] L. Tenenboim-Chekina, O. Barad, A. Shabtai, D. Mimran, L. Rokach,
B. Shapira, and Y. Elovici, ‘‘Detecting application update attack on mobile
devices through network featur,’’ in Proc. IEEE Conf. Comput. Commun.
Workshops (INFOCOM WKSHPS), Apr. 2013, pp. 91–92.

[26] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song,
‘‘NetworkProfiler: Towards automatic fingerprinting of Android apps,’’ in
Proc. IEEE INFOCOM, Apr. 2013, pp. 809–817.

[27] M. Zaman, T. Siddiqui, M. R. Amin, and M. S. Hossain, ‘‘Malware
detection in Android by network traffic analysis,’’ in Proc. Int. Conf. Netw.
Syst. Secur. (NSysS), Jan. 2015, pp. 1–5.

[28] A. Arora and S. K. Peddoju, ‘‘Minimizing network traffic features for
Android mobile malware detection,’’ in Proc. 18th Int. Conf. Distrib.
Comput. Netw. (ICDCN). New York, NY, USA: ACM, 2017, pp. 1–10.

[29] A. H. Lashkari, A. F. A. Kadir, H. Gonzalez, K. F. Mbah, and
A. A. Ghorbani, ‘‘Towards a network-based framework for Android mal-
ware detection and characterization,’’ in Proc. 15th Annu. Conf. Privacy,
Secur. Trust (PST), Calgary, AB, Canada, Aug. 2017, pp. 233–23309,
doi: 10.1109/PST.2017.00035.

[30] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, ‘‘Multi-classification
approaches for classifying mobile app traffic,’’ J. Netw. Comput. Appl.,
vol. 103, pp. 131–145, Feb. 2018.

VOLUME 8, 2020 125795

http://dx.doi.org/10.3233/JIFS-169424
http://dx.doi.org/10.3233/JIFS-169424
http://dx.doi.org/10.1109/PST.2017.00035


J. Feng et al.: Two-Layer Deep Learning Method for Android Malware Detection Using Network Traffic

[31] S. Wang, Z. Chen, L. Zhang, Q. Yan, B. Yang, L. Peng, and Z. Jia,
‘‘TrafficAV: An effective and explainable detection of mobile malware
behavior using network traffic,’’ in Proc. IEEE/ACM 24th Int. Symp. Qual.
Service (IWQoS), Jun. 2016, pp. 1–6.

[32] S.Wang, Z. Chen, Q. Yan, B. Yang, L. Peng, and Z. Jia, ‘‘Amobile malware
detection method using behavior features in network traffic,’’ J. Netw.
Comput. Appl., vol. 133, pp. 15–25, May 2019.

[33] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, ‘‘PScout: Analyzing the
Android permission specification,’’ inProc. ACMConf. Comput. Commun.
Secur. (CCS). New York, NY, USA: ACM, 2012, pp. 217–228.

[34] Virustotal.URL. [Online]. Available: https://www.virustotal.com/
[35] V Total. (2016). Contagio Mobile Malware Mini Dump. [Online]. Avail-

able: http://contagiominidump.blogspot.ca/
[36] A. F. A. Kadir, N. Stakhanova, and A. A. Ghorbani, ‘‘Android botnets:

What urls are telling us,’’ in Proc. Int. Conf. Netw. Syst. Secur. Springer,
2015, pp. 78–91.

[37] H. Gonzalez, N. Stakhanova, and A. A. Ghorbani, ‘‘Droidkin: Lightweight
detection of Android apps similarity,’’ in Proc. Int. Conf. Secur. Privacy
Commun. Syst. Springer, 2014, pp. 436–453.

[38] W.Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, ‘‘Malware traffic classifi-
cation using convolutional neural network for representation learning,’’ in
Proc. Int. Conf. Inf. Netw. (ICOIN), Da Nang, Vietnam, 2017, pp. 712–717.

[39] P. Baldi and Z. Lu, ‘‘Complex-valued autoencoders,’’Neural Netw., vol. 33,
pp. 136–147, Sep. 2012.

[40] J. Masci, U. Meier, D. Ciresan, and J. Schmidhuber, ‘‘Stacked convo-
lutional auto-encoders for hierarchical feature extraction,’’ in Proc. 21st
Int. Conf. Artif. Neural Netw. Artif. Neural Netw. Mach. Learn. (ICANN).
Espoo, Finland: Springer-Verlag, Jun. 2011, pp. 52–59.

[41] L. Cen, C. S. Gates, L. Si, and N. Li, ‘‘A probabilistic discriminative model
for Androidmalware detectionwith decompiled source code,’’ IEEETrans.
Dependable Secure Comput., vol. 12, no. 4, pp. 400–412, Jul. 2015.

[42] Y. Liu, K. Guo, X. Huang, Z. Zhou, and Y. Zhang, ‘‘Detecting Android
malwares with high-efficient hybrid analyzing methods,’’Mobile Inf. Syst.,
vol. 2018, pp. 1–12, Mar. 2018.

[43] M. Conti, Q. Q. Li, A. Maragno, and R. Spolaor, ‘‘The dark side(-channel)
of mobile devices: A survey on network traffic analysis,’’ IEEE Commun.
Surveys Tuts., vol. 20, no. 4, pp. 2658–2713, 4th Quart., 2018.

JIAYIN FENG was born in Hebei, China. She
received the B.S. degree in computer science and
the M.S. degree in computer application science
from Yanshan University, Qinhuangdao, China,
in 2005 and 2008, respectively, where she is cur-
rently pursuing the Ph.D. degree. She has more
than ten years of teaching experience with the
Department of Computer Science, Hebei Normal
University of Science and Technology. Her current
research interests include mobile network security,

deep learning, and information security.

LIMIN SHEN (Member, IEEE) received the B.S.
and Ph.D. degrees in computer science and tech-
nology from Yanshan University, China. He is a
Professor and a Ph.D. Supervisor with the College
of Computer Science and Engineering, Yanshan
University. His main research interests include
service computing, collaborative computing, and
cooperative defense.

ZHEN CHEN received the B.S. and Ph.D. degrees
in computer application technology from Yanshan
University, China, in 2010 and 2017, respectively.
He is an Associate Professor with the College
of Computer Science and Engineering, Yanshan
University. He is currently working on service
computing, cloud computing, and collaborative
computing.

YUYING WANG received the M.S. degree from
the Institute of Electrical Engineering, Yanshan
University, Qinhuangdao, China, in 2018, where
she is currently pursuing the Ph.D. degree in
information science and engineering. Her current
research interests include software formalmethods
and information security.

HUI LI is currently pursuing the Ph.D. degree with
the School of Computer Science and Technology,
Yanshan University. Her research interests include
information security, mobile application security,
and mobile information systems.

125796 VOLUME 8, 2020


	INTRODUCTION
	RELATE WORK
	METHODOLOGY
	STATIC FEATURE EXTRACTION LAYER
	ACQUIRING MANIFEST FILES
	EXTRACTING PERMISSION INFORMATION
	FORMATION FEATURE VECTOR
	STATIC FEATURE DETECTION

	NETWORK TRAFFIC ANALYSIS
	TRAFFIC DATA COLLECTION
	NETWORK TRAFFIC DATA PREPROCESSING
	CLASSIFICATION MODEL TRAINING AND TESTING

	2-CLASSIFIER, 4-CLASSIFIER AND 40-CLASSIFIER TRAINING
	CONVOLUTIONAL AUTO-ENCODER MODEL
	CACNN MODEL IS USED TO CLASSIFY MALWARE


	EXPERIMENT
	DATASETS
	DATA PREPROCESSING
	PERFORMANCE METRICS
	CLASSIFICATION EVALUATION

	CONCLUSION
	REFERENCES
	Biographies
	JIAYIN FENG
	LIMIN SHEN
	ZHEN CHEN
	YUYING WANG
	HUI LI


