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ABSTRACT This paper presents a new machinery of compositional rule of inference called fractional
fuzzy inference system (FFIS). An FFIS is a fuzzy inference system (FIS) in which consequent parts
of a rule base consist of a new type of membership functions called fractional membership functions.
Fractional membership functions are characterized using fractional indices. There are two types of fractional
indices. Each type can be either constant or dynamic. An FFIS intelligently considers not only the truth
degrees of information included in membership functions, but also the volume of the information in the
process of making a conclusion. In other words, the volume of information extracted from a membership
function depends on the truth degree of information. Concretely, the higher the truth degree, the larger the
volume of information that is involved in the process of making a conclusion. It is shown that typical FISs,
e.g. Mamdani’s or Larsen’s FISs, are special cases of FFISs. Specifically, as the fractional indices approach
one, the FFIS approaches a typical FIS. In addition, using two theorems proved in this paper, it is
demonstrated that, independent of the problem in question, a typical FIS never leads to results which are
more satisfactory than those obtained by the FFIS corresponding to the typical FIS provided that a particular
set of fractional indices is taken into account. Put another way, it seems sound to expect that applying FFIS
always leads to more satisfactory results than applying its corresponding FIS. It is also shown that FFIS
grants a special dynamic to FIS which can be also customized according to a new concept called reaction
trajectories map (RTM). Particularly, the RTM enables decision makers to select an FFIS more suitable for
their purpose. Some more concepts such as the left and right orders of an FFIS and the fracture index are
also introduced in this paper.

INDEX TERMS Fractional membership functions, fractional horizontal membership functions, fractional
compositional rule of inference, fractional indices, reaction trajectories map, fractional translation rule.

I. INTRODUCTION
Motivated by Zadeh’s paper [1] presenting a methodology to
express a fuzzy algorithm, the basis of fuzzy logic control
techniques was established by Mamdani’s fuzzy inference
system (FIS) applied on the fuzzy control of a steam engine
in 1975. Successful application of Mamdani’s FIS in con-
trol of Sendai subway in 1978 captured global attentions to
fuzzy sets theory and fuzzy control. So far, much effort has
been made to introduce different FISs by taking into account
various translation rules of fuzzy if-then rules. Specifically,
Mamdani’s FIS uses minimum operator for the translation,
whereas the algebraic product operator is applied in Larsen’s
FIS. There are also other types of FISs whose differences
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with other FISs correspond to consequent parts of a rule base.
Concretely, in Takagi-Sugeno’s FIS the consequent parts are
considered as the crisp functions of inputs. One of the main
reasons for introducing different FISs is to achieve more
satisfactory results. In other words, the variety of FISs expand
the space of fuzzy system outputs which, in turn, enable
decision makers to choose an FIS that is more desirable for
their purpose. Based on the compositional rule of inference
proposed by Zadeh [1], FISs can be categorized in: 1. Compo-
sitional FISs, 2. Non-Compositional FISs. The compositional
FISs, e.g. Mamdani’s and Larsen’s FISs, are those which are
in accordance with the suggestion of Zadeh’s. This paper
concentrates on compositional FISs. Then, hereafter, by FISs
we mean compositional FISs.

The motivation of this work comes from introducing a
new machinery of translation rule or compositional rule of
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inference such that the space of fuzzy system outputs is
expanded more than before without changing the structure
of the system in question, e.g. gains, inputs, outputs, or the
structure of fuzzy system, e.g. rule base and general structure
of membership functions. Such a machinery of compositional
rule of inference makes it possible to access parts of fuzzy
systems output space that used to be inaccessible. That,
in turn, leads to the discovery of new desirable outputs that
were not observable or discoverable before. Fuzzy systems
will eventually perform more satisfactory and efficiently.

So far, the consequent parts in FISs have been considered
as typical membership functions whose domain is a universe
of discourse and whose range is the membership degree, i.e.
the interval [0, 1]. Simply put, the mechanism of reasoning
in FISs has been applied on typical membership functions.
As a result, considering typical membership functions, the
FISs have been presented. In 2015 [2], Piegat and Landowski
introduced a new representation of a typical membership
function that they called horizontal membership function.
The domain of a horizontal membership function relies on the
square [0, 1] × [0, 1] coming from the membership degrees
and a new variable called relative-distance-measure (RDM)
variable. The range of horizontal membership function is the
domain of its corresponding membership function, i.e. the
universe of discourse. Piegat et al. primarily elaborated on
their proposed approach called RDM fuzzy interval arith-
metic enjoying horizontal membership functions in solv-
ing some problems of fuzzy mathematics, see [3]–[5]. The
successful applications of RDM fuzzy interval arithmetic in
comparison with other approaches such as standard inter-
val arithmetic have been proved by Piegat and Landowski
in [6]–[9]. Then, Mazandarani et al. by introducing a new
framework of fuzzy calculus proved the effective applica-
bility of horizontal membership functions and RDM fuzzy
interval arithmetic in fuzzy dynamical systems, see [10]–[12]
for more details.

In this paper, a new type of membership functions called
fractional membership functions are introduced. A fractional
membership function is originated from a new type of hori-
zontal membership functions termed as fractional horizontal
membership functions. A fractional horizontal membership
function is characterized by an index called fractional index.
Hence, the fractional indices impact on fractional member-
ship functions. Corresponding to any typical membership
function, a fractional membership function exists such that
the fractional membership function approaches the typical
membership function as the fractional index approaches one.
Based on fractional membership functions considered in the
consequent parts of a rule base, a new generation of fuzzy
inference systems is introduced which is called fractional
fuzzy inference system. It is demonstrated that any typical
FIS, e.g. Mamdani’s or Larsen’s FISs, is a special case of
fractional FISs. By two theorems, it is proved that a typical
FIS never yields to results which are more satisfactory than
those obtained by the FFIS corresponding to the typical FIS
provided that a particular set of fractional indices is taken

into account. Then, it seems sound to expect always more
satisfactory results by applying fractional FISs for some sets
of fractional indices. The point to be underscored is that
no changes in the general structure of the system equipped
with fuzzy system is made. As a matter of fact, if a fuzzy
system is at disposal, then its corresponding fractional FIS
can be applied without any changes in the rule base, general
structure of membership functions, gains, inputs, outputs, and
the structure of system in question.

The fractional indices play a major role in fractional FISs.
The fractional indices can be constant or dynamic. How
fractional indices should be determined is explained here.
Moreover, some more detailed explanations are provided
to clarify the process of designing the structure of a frac-
tional FIS. It is shown that fractional FISs with dynamical
indices are in fact FISs in which membership functions are
dynamic internally. In addition, some new concepts such as
horizontal translation rule, horizontal FIS, fractional com-
positional rule of inference, reaction trajectories map, the
left and right orders of an FFIS, and the fracture index are
introduced.

II. PRELIMINARIES
This section presents some necessary definitions and rela-
tions which will be used in this paper. Throughout this paper,
the set of all real numbers is denoted by R, the set of all
type-1 fuzzy numbers (T1FNs) onR by E1. By [Ã]µ we show
the well-known µ-level sets of a fuzzy set Ã whose left and
right end-points are indicated by Aµ and A

µ
, respectively.

In addition, the triangular T1FN Ã is characterized using the
triple (a, b, c), a ≤ b ≤ c, as Ã = (a, b, c); and G(σ,m)

denotes the Gaussian membership function e
−(x−m)2

2σ2 where σ
and m are the standard variation and average of x.
Definition 1 [13]: A type-1 fuzzy set Ã ∈ E1, Ã : R →

[0, 1] is called a type-1 fuzzy number if it is normal, fuzzy
convex, upper semi-continuous and compactly supported
fuzzy subsets of the real numbers.

The T1FN Ã can be represented in a parametric form by
the ordered pair of functions (Aµ,A

µ
), 0 ≤ µ ≤ 1, satisfying

the following properties:

1) Aµ is a bounded, non-decreasing, left continuous
function in (0, 1], and it is right continuous at µ = 0,

2) A
µ

is a bounded, non-increasing, left continuous
function in (0, 1], and it is right continuous at µ = 0,

3) Aµ ≤ A
µ
.

Definition 2 [2], [10]–[12]: Let Ã : [a, b] ⊆ R → E1.
The horizontal membership function AH : [0, 1]× [0, 1]→
[a, b] is a representation of Ã(x) as AH(µ, αA) = x in which
x ∈ [a, b], µ ∈ [0, 1] is the membership degree of x in
Ã(x), αA ∈ [0, 1] is called relative-distance-measure (RDM)
variable (or the horizontal index), and AH(µ, αA) = Aµ +
(A
µ
− Aµ)αA.

Note 1: The horizontal membership function of Ã ∈ E1 is
also denoted byH(Ã) , AH(µ, αA).
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Note 2: The horizontal membership function of Ã ∈ E1
can be also represented byH(Ã) , AH(µ, βA) = A

µ
−(A

µ
−

Aµ)βA, βA ∈ [0, 1].
Hereafter, without losing genrality, the α horizontal index

is used in relations. The relations can be also written by the
β horizontal index.
Note 3: The µ-level sets of Ã ∈ E1 can be obtained using

H−1(AH(µ, αA))

= [Ã]µ

=

[
inf
γ≥µ

min
αA∈[0,1]

AH(γ, αA), sup
γ≥µ

max
αA∈[0,1]

AH(γ, αA)

]
. (1)

Definition 3: Let Ã : [a, b] ⊆ R → E1. The fractional
horizontal membership function AH : [0, 1] × [0, α∗A] →
[c, d] ⊆ [a, b] is a fractional representation of Ã(x) as
AH(µ, αA) = x in which x ∈ [c, d], µ ∈ [0, 1] is the
membership degree of x in Ã(x), αA ∈ [0, α∗A] is the hori-
zontal index, and α∗A ∈ [0, 1] is called the fractional index.
Moreover, AH(µ, αA) = Aµ + (A

µ
− Aµ)αA.

Definition 4: The membership function Ã ∈ E1 cor-
responding to a fractional horizontal membership function
whose fractional index is α∗A, is called the fractional mem-
bership function and denoted by Ãα∗ .

Theµ-level sets of the fractional membership function Ãα∗
is obtained using

H−1(AH(µ, αA))

= [Ãα∗ ]µ

=

[
inf
γ≥µ

min
αA∈[0,α∗A]

AH(γ, αA), sup
γ≥µ

max
αA∈[0,α∗A]

AH(γ, αA)

]
. (2)

Note 4: The arrow ‘‘→’’ in the upper of a linguistic term
means that the fractional index of fractional membership
function of the linguistic term is in the sense of α∗. For
example, the linguistic term ‘‘positive big’’ (or PB) whose
fractional index of fractional membership function is α∗ is
denoted by

−→
PB. Analogously, the arrow ‘‘←’’ in the upper of

a linguistic term means that the fractional index of fractional
membership function associated with the linguistic term is in
the sense of β∗, e.g.

←−
PB. Moreover, in the case that fractional

index α∗ or β∗ is equal to one, the arrow in the upper of a
linguistic term is omitted. Then, PBmeans that the fractional
index of membership function of positive big is one.

Fig. 1 shows the horizontal membership function, frac-
tional horizontal membership functions and fractional mem-
bership functions of a triangular fuzzy number associated
with the linguistic term ‘‘positive big’’ (or PB).
Definition 5: The coordinate plane in which all fuzzy

membership functions of linguistic terms of a linguistic vari-
able exist is called membership functions plane. Moreover,
the right half-plane (RHP) is the set of all points in the
plane whose values are positive. Similarly, the left half-plane
(LHP) is the set of all points in in the plane whose values are
negative.

FIGURE 1. The fractional membership functions and fractional horizontal
membership functions of the triangular fuzzy number Ã = (1, 2, 3).

FIGURE 2. The membership functions plane.

Fig. 2 shows a membership functions plane consisting
of 5 membership functions labeled as negative big (NB),
negative small (NS), near zero (Z), positive small (PS), and
positive big (PB). According to Definition 5, membership
functions PB and PS are in the RHP, however, NB and NS
are in the LHP.

III. FRACTIONAL FUZZY INFERENCE SYSTEMS
A fuzzy inference system is the process of obtaining a con-
clusion for a given input that may not have been encountered
before. Thus, it plays a major role in the structure of a fuzzy
system.
Note 5: In this paper we consider fuzzy systems with crisp

inputs. In addition, for the sake of simplicity, fuzzy systems
which are considered are those in which the consequent parts
of the rule base consist of triangular or trapezoidal fuzzy
numbers.

Let R , (Ã, B̃, I) denote a fuzzy rule where Ã, B̃ ∈ E1 are
membership functions describing linguistic terms (or values)
of linguistic variables in the antecedent and consequent parts
of the fuzzy rule, respectively. By combining the antecedent
and consequent parts membership functions, the operator I,
as a translator or an interpreter, translates the fuzzy rule R into
a fuzzy relation. Specifically, the following fuzzy rule
R: If X is Ã Then Y is B̃,
might be interpreted as I(Ã(x), B̃(y)) = Ã(x) ∧ B̃(y)

where x and y are the generic numerical values of X and Y ,
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FIGURE 3. The horizontal translation rule.

respectively; and the base operator ‘‘∧’’ denotes the min-
imum operator (in Mamdani’s FIS) or algebraic product
operator (in Larsen’s FIS). In the presence of an additional
premise such as ‘‘X is x0’’, which is known as a crisp
input in the context of this paper, the compositional rule
of inference asserts that we can infer the consequent part
of the fuzzy rule from combining the truth degree of the
antecedent part, i.e. µ∗, and the membership function of
consequent part as I(µ∗, µ) = µ∗ ∧ µ where µ∗ =
Ã(x0), µ = B̃(y). Thus, the fuzzy rule R in the presence
of a crisp input translates into I(µ∗, µ) = µ∗ ∧ µ. Here-
after, we denote µ∗ = Ã(x) where the subscript of x has
been suppressed for the sake of simplicity. The translation
of a fuzzy rule can be also represented using horizontal
membership functions which is called horizontal translation
rule.
Definition 6: Consider the fuzzy rule R as
R: If X is Ã Then Y is B̃,
and let µ∗ = Ã(x) and µ = B̃(y). Then, the operator

IH translates the fuzzy rule R horizontally as IH(µ′) ,
H−1

(
BH(µ′, αB)

)
where µ′ = µ or µ′ = µ

µ∗
provided

that the operator acts as the minimum or algebraic product
operator, respectively, and 0 ≤ µ ≤ µ∗.

Fig. 3 illustrates the horizontal translation rule for the fuzzy
rule R with a crisp input and by taking the minimum operator
as the base operator into account, i.e. µ′ = µ, 0 ≤ µ ≤ µ∗.
Proposition 1: The horizontal translation of a fuzzy rule is

equivalent to the typical translation of the fuzzy rule, i.e. the
operator IH(µ′) is equivalent to I(µ∗, µ) = µ∗ ∧ µ.

Proof: Suppose that B̃ = (b1, b2, b3) is a triangular
fuzzy number in the consequent part of a rule; andµ∗ = Ã(x0)
is the membership degree of crisp input x0 in the antecedent
part. Let the base operator be minimum operator. Then, B̃
is clipped by µ∗ as shown in Fig. 4. Thus, I(µ∗, µ) = µ,
0 6 µ 6 µ∗. According to Fig. 4, I(µ∗, µ) = B̃∗ and B̃∗ is a
trapezoidal membership function as B̃∗ = (b1, b∗2, b

∗

3, b3) in
which

b∗2 = b1 + (b2 − b1)µ∗

b∗3 = b3 − (b3 − b2)µ∗

FIGURE 4. A triangular fuzzy number clipped by a truth degree.

Then, the horizontal membership function of B̃∗ is obtained
as

H(B̃∗) = b1 + (b2 − b1)µ+ (b3 − b1)(1− µ)αB

where 0 6 µ 6 µ∗. Since H(B̃∗) = H (I(µ∗, µ)) =
BH(µ′, αB), then the proof is complete. For the cases with
the algebraic product operator as the base operator or the
consequent part with a trapezoidal membership function, the
proof is similar to the previous one and hence omitted.

Assume x01 and x02 are crisp inputs of a fuzzy system
whose ith rule, Ri, i = 1, . . . , n; has the following form:
Ri: If X1 is Ã1i and X2 is Ã

2
i Then Y is B̃i.

Hence, the fuzzy inference system can be written as
B̃ =

∨n
i µ
∗
i ∧ µi in whichµ

∗
i = Ã1i (x01)∧Ã

2
i (x02),µi = B̃i(y)

and ‘‘
∨
’’ denotes a union operator.

Definition 7: Let Ãji ∈ E1, i = 1, . . . , n; j = 1 . . . ,m, be
the membership function corresponding to a linguistic term
of jth input in the ith rule of a rule base; and B̃i ∈ E1 be the
membership function corresponding to a linguistic term in the
consequent part. Then, the horizontal fuzzy inference system
corresponding to the rule base with crisp inputs x0j is defined
as

B̃ ,
n∨
i

IH(µ′i) =
n∨
i

H−1
(
BiH (µ′i, αBi )

)
(3)

where µ′i = µi (or µ′i =
µi
µ∗i

), µ∗i =
∧m

j Ã
j
i(x0j), and

0 ≤ µi ≤ µ∗i .
Note 6: In relation (3), αBi = αBj if and only if the

consequent part linguistic terms in the ith and jth rule are the
same.
Proposition 2: The horizontal fuzzy inference system

introduced in Definition 7 is equivalent to Mamdani’s fuzzy
inference system as long as µ′i = µi; and is equivalent to
Larsen’s fuzzy inference system provided that µ′i =

µi
µ∗i

.
Proof: Based on Proposition 1 the proof is

straightforward.
So far, the processing of a rule base, in an FIS, has been

based on extracting information from each rule using the
membership function in the consequent part combined with a
degree of truth of the antecedent part. This is also the case
in horizontal FISs. But the horizontal FIS has been estab-
lished based on horizontal membership functions which are
a special case of fractional horizontal membership functions.
Specifically, fractional horizontal membership functions are
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FIGURE 5. a) The typical inference result of a fuzzy rule. b) The fractional
inference result of a fuzzy rule represented by a fractional horizontal
membership function.

reduced to horizontal membership functions if fractional
indices assume the integer number one. Inspired by this fact,
a new generation of FISs can be established in which the
processing of a rule base is not only based on the combination
(or translation) involving the truth degree of the antecedent
part, but also based on engaging fractional indices. As a way
of illustration, let us consider the ith rule of a rule base as
Ri: If X is Ãi Then Y is B̃i; i = 1, . . . , n.
According to Definition 7, the horizontal FIS is as B̃ ,∨n
i H−1

(
BiH (µi, αBi )

)
which is equivalent to theMamdani’s

FIS B̃ ,
∨n

i

(
Ãi(x0) ∧ B̃i(y))

)
where ‘‘∧’’ means the mini-

mum operator and x0 is a crisp input. Similar to Mamdani’s
FIS, in the horizontal FIS, each BiH is clipped only by the
truth degree of the antecedent part, i.e. µ∗i , while the hor-
izontal indices αBi are free, i.e. αBi ∈ [0, 1]. Simply put,
the equivalency holds as long as the horizontal FIS is not
induced by fractional indices α∗Bi . Nevertheless, by the aid
of fractional horizontal membership functions, a new fuzzy
inference system can be established enabling us to process
the rule base using fractional indices of the consequent parts
as well as truth degrees of the antecedent parts. Specifically,
horizontal membership functions in the consequent parts can
also be clipped by fractional indices which may be viewed as
the induction of horizontal FIS by fractional indices. Thus,
a two-degree freedom to process the information in the rule
base as the knowledge base is provided. Indeed, in the sequel,
it will be shown that the degree of freedom can increase
based on the placement of fractional indices in a rule base.
Fig. 5 shows the combination of the antecedent and con-
sequent parts of the ith rule in two situations. The former,
Fig. 5 (a), shows the ith rule inference result in which the
consequent part membership function is clipped by µ∗i . The
latter depicted in Fig. 5 (b), presents the consequent part
horizontal membership function that has been clipped not
only by µ∗i , but also by the fractional index. As a result, the
new generation of fuzzy inference systems can be defined as
follows:

Definition 8: Let µ∗i ; i = 1, . . . , n, be the truth degree of
the antecedent part of the ith rule of a rule base, and B̃i ∈ E1
be the membership function corresponding to a linguistic
term in the consequent part of the ith rule. Then, the fuzzy
inference system induced by fractional indices α∗Bi ∈ [0, 1]
is called fractional fuzzy inference system (or Mazandarani’s
FIS) and defined as B̃ ,

∨n
i H−1

(
BiH (µ′i, αBi )

)
where µ′i =

µi when the base operator is minimum (or µ′i =
µi
µ∗i

when the
base operator is algebraic product operator), 0 ≤ µi ≤ µ∗i ,
and 0 ≤ αBi ≤ α

∗
Bi .

The fractional FIS (FFIS) can be also defined abstractly as
follows.
Definition 9: A fuzzy inference system in which the con-

sequent parts of the rule base consist of fractional member-
ship functions is called fractional fuzzy inference system.

The point that should be underscored is that the fractional
fuzzy inference system might be regarded as a type of fuzzy
if-then rule translation whichmay be called fractional transla-
tion rule. The FFIS might be also viewed as a new machinery
of compositional rule of inference called fractional composi-
tional rule of inference.
Proposition 3: The fractional FIS introduced in

Definition 8 with fractional indices α∗Bi = 1 is equivalent
to Mamdani’s FIS as long as µ′i = µi; and is equivalent to
Larsen’s FIS provided that µ′i =

µi
µ∗i

.
Fig. 6 illustrates a simple FFIS in comparison with Mam-

dani’s FIS. As is seen, the output membership function of the
FFIS is a fraction of that of Mamdani’s FIS. It is also easy to
see that, the FFIS output coincides the output of Mamdani’s
FIS as long as the fractional indices assume the integer num-
ber one, i.e. α∗Bi = 1. Therefore, typical FISs, i.e. Mamdani’s
and Larsen’s FISs are special cases of Mazandarani’s FIS.
Although in Definition 8 the FFIS has been presented based
on α∗Bi fractional indices, according to Note 2, it can also be
presented based on either β∗Bi fractional indices or both form
of fractional indices. Simply put, consequent parts of a rule
base can be a set of fractional membership functions B̃iα∗Bi
and B̃jβ∗Bj

where i, j are rule numbers and i 6= j. In spite of
this fact, for the sake of simplicity, the relations are presented
only based on α∗Bi fractional indices.

One of the important concepts which is originated from
FFISs is what might be called the fracture index. The fracture
index gives us a relative impression of the marginal behavior
of an FFIS with respect to its corresponding FIS. In other
words, as the fracture index approaches zero, the behavior of
an FFIS approaches its corresponding FIS. The fracture index
is defined based on the concepts of the left and right orders of
an FFIS. In the sequel the mentioned concepts are presented.
Definition 10: The left and right orders of a fractional

fuzzy inference system are defined respectively as r =∑p
i=1 α

∗
i

N and s =
∑q

j=1 β
∗
j

N where p and q are the number of
consequent part fractional membership functions that are in
the form of α∗ and β∗; α∗i , β

∗
j are the values of fractional

indices; and N = p + q is the number of consequent part
membership functions.
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FIGURE 6. Mamdani’s and fractional fuzzy inference systems.

Definition 11: The order of a fractional fuzzy inference
system is defined by the pair (r, s) where r and s are the left
and right orders of the fractional FIS.
Note 7: The order of an FFIS in which there are only

fractional membership functions of the form α∗ is defined

solely based on the left order as r =
∑N

i=1 α
∗
i

N . Analogously,
the order of an FFIS in which there are not any fractional
membership functions of the form α∗ is defined only based

on right order, i.e. s =
∑N

j=1 β
∗
j

N .
Definition 12: The fracture index of a fractional fuzzy

inference system of order (r, s) denoted by γ is defined as
γ = 1− (r + s).

It should be noted that according to Definition 10; r, s ∈
[0, 1] and also, 0 ≤ γ ≤ 1. When value one is assigned
to each fractional index of an FFIS, the fractional FIS is
reduced to a typical FIS. Hence, an FIS may be viewed as
an FFIS whose fractional indices value is each equal to one,
i.e. α∗i = 1, β∗j = 1, i = 1, . . . , p; j = 1, . . . , q. Since
a fractional membership function with the fractional index
α∗ = 1 is the same as the one with the fractional index
β∗ = 1, then a typical FIS is equivalent with an FFIS in which
there are only fractional membership functions of the form α∗

with α∗i = 1. Thus, according to Definition 10 and Note 7, the
order of a typical FIS is equal to one, i.e. r = 1. Therefore,
typical FISsmay be called first order fuzzy inference systems.
Furthermore, based on Definition 12, the fracture index of a
first order FIS (or a typical FIS, e.g. Mamdani’s FIS) is equal
to zero, i.e. γ = 0. It should be underscored that, as a whole,

the relation r + s = 1 holds for the first order FISs. As it
was mentioned before, the fracture index makes a sense of the
similarity of the behavior of an FFIS with its corresponding
FIS for small values of γ . Specifically, for small values of γ ,
as the fracture index approaches zero, the behavior of an FFIS
gradually approaches its corresponding first order FIS. As a
way of illustration, see Fig. 23 in Example 1.
Note 8: An FFIS is said to be corresponding to an FIS if

and only if 1. The output of the FFIS partly approaches the
FIS provided that γ approaches zero. 2. The output of the
FFIS coincides the output of FIS for γ = 0.

Now, some questions arise: How fractional indices should
be determined? What is the difference between the effect
of the two forms of fractional indices, i.e. α∗Bi and β∗Bi ,
on an FFIS output? How an FFIS should be designed by
the placement of fractional indices forms? In other words,
which combination of fractional membership functions in the
plane of consequent part membership functions should be
considered? In the sequel, the questions are answered.

How fractional indices should be determined? An imme-
diate answer is the use of an optimization algorithm - or a
learning method - for characterizing the fractional indices.
More concretely, assume ŷ(t;α∗), α∗ , (α∗1 , α

∗

2 , . . . , α
∗
n ),

t ∈ [t0, tf ] ⊆ R, is the output of a system which is controlled
(or modelled) by an FFIS whose fractional indices are α∗i ; i =
1, . . . , n, and y(t) is a desired (or taget) output. Then, with a
cost function defined, e.g. J (α∗) =

∫ tf
t0

∣∣y(t)− ŷ(t;α∗)∣∣ dt,
the fractional indices are the solution of the optimization
problem minimize

α∗
J (α∗) such that 0 ≤ α∗ ≤ 1.
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Theorem 1: Let J , D
(
y(t), ŷ(t)

)
be a cost function

where D denotes a metric defined on the space of real val-
ued functions; y(t) and ŷ(t) are the target and approximated
outputs of a system. Suppose that ŷ(t) has been obtained by
applying a typical FIS. In addition, let the approximated
output obtained by applying an FFIS - corresponding to the
typical FIS - be ŷ(t;α∗), α∗ , (α∗1 , α

∗

2 , . . . , α
∗
n ), such that

the fractional indices α∗i ; i = 1, . . . , n, are the solution of the
optimization problem minimize

0≤α∗≤1
J (α∗) = D

(
y(t), ŷ(t;α∗)

)
.

Then, Jffis ≤ Jfis where Jffis = D
(
y(t), ŷ(t;α∗)

)
and Jfis =

D
(
y(t), ŷ(t)

)
.

Proof: Suppose the contrary, i.e. Jfis < Jffis. Let
α∗ , (1, 1, . . . , 1, α∗i , 1, . . . , 1) and 0 ≤ α∗i < 1 be
the fractional indices for which Jffis = D

(
y(t), ŷ(t;α∗)

)
.

Since α∗ satisfies the optimization problem, then ∀α̂∗ ∈
[0, 1], D

(
y(t), ŷ(t;α∗)

)
≤ D

(
y(t), ŷ(t; α̂∗)

)
. Let α̂∗ =

(1, 1, . . . , 1), then according to Proposition 3 we have Jfis =
D(y(t), ŷ(t; α̂∗) meaning Jffis ≤ Jfis. If Jffis = Jfis, then
the theorem is not contradicted. But, if Jffis < Jfis, then
the primary assumption is contradicted. Thus, the proof is
complete.
In plain words, Theorem 1 states that applying a typical FIS

(e.g. Mamadani’s FIS) never leads to results which are more
satisfactory than those obtained by applying a fractional FIS
(or Mazandarani’s FIS) corresponding to the typical FIS with
a particular set of fractional indices.

Another answer to the question comes from the effect of
fractional indices on the shape of membership functions and
defuzzified output. Let us consider a triangular fuzzy num-
ber B̃ clipped by a truth degree in the level of µ∗. The output
membership function - or the inference result - expands as
the fractional index α∗B approaches one; and contracts as the
fractional index approaches zero. Accordingly, there is a large
number of candidates for the crisp output, as α∗B approaches
one. The diversity of the candidates also decreases as α∗B
approaches zero. In simple terms, the exploration of a can-
didate for the crisp output becomes local. As a result, the
smaller fractional index becomes, the more exploitation of a
membership function becomes, and the more consistent crisp
(or defuzzified) output with a membership function becomes
as well. However, the more fractional index increases, the
more exploration in a membership function increases. Fur-
thermore, in a specific truth degree, µ∗, a small fractional
index leads to the loss of a high fraction of information
whose truth degree is up to µ∗. Clearly, in the case that the
truth degree is high, a small fractional index causes a portion
of high value information to be ignored in the exploitation.
Hence, determining constant fractional indices by which a
balance between exploration and exploitation is provided
may not be an easy task, if an optimization algorithm is not
applied. Nevertheless, it might be possible to characterize
fractional indices dynamically. Concretely, a fractional index
can be determined as a function of truth degree, i.e. α∗B ,
f (µ∗), f : [0, 1]→ [0, 1]. Based on the aforementioned facts,
the function f (µ∗) should be considered as a monotonically

FIGURE 7. Dynamical fractional indices.

increasing function ofµ∗. Specifically, by considering such a
monotonically increasing function, an FFIS intelligently con-
siders not only the truth degrees of information included in
membership functions, but also the volume of the information
in the process of making a conclusion. In other words, the
volume of information extracted from a membership func-
tion depends on the truth degree of information. Concretely,
a small truth degree results in a small fractional index which
means the membership function contracts. Therefore, a small
volume of information is engaged in the process of making a
conclusion. Reciprocally, a high value of truth degree leads to
the expansion of the membership function which accordingly
results in engaging a high volume of information in the pro-
cess of making a conclusion. In fact, themembership function
has been given a dynamic whose behavior is expansive for
high-value information and contractive for low-value infor-
mation. Concretely, the higher the truth degree, themore valu-
able the information, and the larger the volume of information
that is involved in the process of making a conclusion. Fig. 7
shows some of fractional indices as functions of µ∗ and their
effects on the shape of inference results for some amounts
of µ∗. What should be underscored is that considering the
function f (µ∗) as a monotonically increasing function would
not be a general rule for every applications. One of the
important criteria by which we can determine the function
f (µ∗) is the reaction trajectories map (RTM) which will be
explained later.

The next question then arises: What is the difference
between the effect of two forms of fractional indices,
i.e. α∗ and β∗, on an FFIS output? Since α∗ fractional index
clips themembership function from the lower bound, defuzzi-
fication of fractional membership function leads to an output
that decreases as the level of µ∗ does. However, since frac-
tional membership function is clipped by β∗ from the upper
bound, the crisp output increases as the level of µ∗ decreases.
As a way of illustration, let us consider the triangular fuzzy
number B̃ = (1, 2, 3) whose corresponding fractional mem-
bership functions B̃α∗ and B̃β∗ have been clipped by a truth
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FIGURE 8. The comparison of defuzzified output obtained from the two
forms of fractional indices. The red line indicates the defuzzified output.

FIGURE 9. The fuzzy closed loop control system.

degree in the level of µ∗. Suppose that the fractional indices
are constant, e.g. α∗ = β∗ = 0.6 and the crisp output is
obtained using the centroid of the area method in each µ∗

level. As is seen in Fig. 8, the defuzzified output of B̃α∗
decreases as µ∗ does, however, that of B̃β∗ increases. As a
result, the defuzzified output coming from a fractional mem-
bership function with β∗ fractional index is greater than or
equal to that coming from a fractional membership function
with α∗ fractional index.
We are now in the position to address the last question:

Which combination of fractional membership functions in
the plane of consequent part membership functions should
be considered? In an FFIS the consequent parts membership
functions are taken into account as fractional membership
functions. In addition, there are two forms of fractional mem-
bership functions, i.e. the form that deals with α∗ index and
the form that deals with β∗ index. Hence, in a fuzzy system
whose membership functions plane corresponding to the con-
sequent part consists of ‘‘m’’ membership functions, there
are ‘‘2m’’ combinations of fractional membership functions
forms. For each combination, an FFIS might be considered.
As a way of illustration, let us consider a fuzzy closed loop
control system shown in Fig. 9.

The inputs of the fuzzy system are error and derivative
of error denoted by e(t) and ė(t), respectively; and the

FIGURE 10. The rule base of fuzzy system.

FIGURE 11. Four different combinations of fractional membership
functions in the consequent part.

defuzzified output - or control signal - is u(t). The output of
the plant and the set-point have been denoted by y(t) and r ,
respectively, and K is a gain. Suppose that each inputs and
output are described by 5 linguistic terms, negative big (NB),
negative small (NS), near zero (Z), positive small (PS), and
positive big (PB). The rule base of fuzzy system has been
given in Fig. 10. Since in the consequent part, u(t) consists
of 5 linguistic terms, or equivalently 5 membership functions,
there are 32 different combinations of consequent part frac-
tional membership functions forms. Fig. 11 shows 4 out of
32 combinations in the membership functions plane of u(t)
where the forms of fractional membership functions of NB,
NS, and Z are the same but those of PS and PB are different.
Let us now compare the outputs of these FFISs with this
assumption that only the rules corresponding to the fractional
membership functions

−→
PB,
←−
PB,
−→
PS, and

←−
PS are involved.

These rules have been also highlighted in the rule base shown
in Fig. 10.
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FIGURE 12. Comparison of the output of Mamdani’s FIS and that of four different combinations of fractional membership
functions in FFIS - (a) to (e). The RTM in which fractional indices are linear functions of truth degree - (f).

Suppose that µ∗pb is the truth degree of antecedent part
corresponding to the consequent part whose membership
function has been interpreted as positive big. Additionally, let
us assume that µ∗pb decreases from one to zero. Correspond-
ingly, µ∗ps , 1 − µ∗pb is supposed to be the truth degree of
antecedent part corresponding to the consequent part whose
membership function has been interpreted as positive small;
and thus it increases from zero to one. In other words, the
motion direction of linguistic variable u(t) can be viewed as
if it is from the positive big to positive small. Simply put,
the positive control signal is moving towards near zero which
might happen when e(t) and/or ė(t) is moving towards near
zero, i.e. from RHP to LHP. The defuzzified output, u(t),
of the FFISs and Mamdani’s FIS have been illustrated in
Fig. 12 - (a) to (e). The outputs have been obtained using the
centroid of the area method. Moreover, the fractional indices
have been considered as linear functions of the truth degree,
i.e. α∗PB = µ∗pb, α

∗
PS = µ∗ps, β

∗
PB = µ∗pb, and β

∗
PS = µ∗ps.

The RTM which is the trajectories of output with respect to
the truth degree have been presented in Fig. 12- (f). As a
matter of fact, an RTM includes information corresponding
to the reaction of different forms of fractional membership

functions when they interact with each other by varying the
truth degree. In other words, the RTM carries a concept of
fuzzy system reaction intensity in the face of e(t) and ė(t)
variations. For more illustration let us consider the different
reactions of fuzzy systems for the four combinations men-
tioned before. As is seen, the FFIS output decreases with
maximum gradient when the consequent part linguistic terms
are
−→
PS and

−→
PB, i.e. both of them are in the form of α∗

fractional membership functions. This is while the FFIS out-
put decreases with minimum gradient when the consequent
part linguistic terms are

←−
PS and

←−
PB, i.e. both of them are

in the form of β∗ fractional membership functions. FFIS
outputs corresponding to the consequent parts consisting of
the membership functions

←−
PS,
−→
PB or

−→
PS,
←−
PB and Mamdani’s

FIS output take place between the outputs that decrease with
the maximum and minimum gradients. Additionally, with
←−
PS,
−→
PB or

−→
PS,
←−
PB considered in the consequent parts, the

outputs decrease with a gradient which may be either more or
less than the gradient of output obtained by Mamdani’s FIS.

Specifically, the use of α∗ fractional membership functions
leads to an increase in the gradient of the output that is
decreasing. In fact, they push the output downward. However,

126074 VOLUME 8, 2020



M. Mazandarani, X. Li: Fractional Fuzzy Inference System: The New Generation of Fuzzy Inference Systems

the use of β∗ fractional membership functions leads to a
decrease in the gradient of the output that is decreasing, i.e.
they pull the output upward. Analogously, the use of β∗

fractional membership functions leads to an increase in the
gradient of the output that is increasing, i.e. they push the
output up. However, the use of α∗ fractional membership
functions results in a decrease in the gradient of the output
that is increasing, i.e. they pull the output down. In the case
that RHP membership functions of control signal are active
and the control signal is increasing, then e(t) and/or ė(t) is
in the RHP and is getting far from the desired point. Thus,
by taking β∗ fractional membership functions into account
in the RHP, the control signal is pushed to increase with a
high gradient. Simply put, the FFIS is more sensitive to the
inputs linguistic terms being activated in the RHP towards
PB, and shows a fast reaction. However, in the case that RHP
membership functions of control signal are active and the
control signal is decreasing, then e(t) and/or ė(t) is in the
RHP and is approaching the desired point. Thus, the presence
of β∗ fractional membership functions in the RHP leads to
an output which decreases with a low gradient. Specifically,
the control signal decreases gradually and conservatively.
Similarly, considering α∗ fractional membership functions
in the LHP results in a control signal that conservatively
increases in the case that e(t) and/or ė(t) is in the LHP and is
approaching the desired point. Moreover, the control signal
decreases with a high gradient when e(t) and/or ė(t) is in
the LHP and is getting far from the desired point. Even-
tually, for the closed loop control system shown in Fig. 9,
the combination of fractional membership functions forms
should be such that most of RHP membership functions are
of the form that deals with β∗ fractional index, and most of
LHP membership functions are of the form that deals with
α∗ fractional index. In the case that all fractional membership
functions in the LHP and RHP are of the forms of α∗ and β∗

fractional indices, respectively, the combination is called the
aggressive combination. It should be noted that for control
structures that are different from what has been shown in
Fig. 9, other combinations of fractional membership function
forms in the RHP and LHPmight be taken into account based
on the features of the two forms of fractional membership
functions mentioned above. One remaining point is about
fractional membership functions of linguistic terms that are
neither in the RHP nor LHP, e.g. near zero. In this case, there
is no significant difference between two forms of fractional
membership functions on condition that membership func-
tion of the linguistic term is symmetric with respect to the
origin. Otherwise, α∗ fractional membership function might
be assigned to the linguistic term providing that the member-
ship function of the term leans towards the LHP. Analogously,
β∗ fractional membership function might be assigned to the
term providing that themembership function of the term leans
towards the RHP.

The point that should be underscored is that any combi-
nation of fractional membership functions forms is a design

FIGURE 13. The rule base of the closed loop control system equipped
with FFIS, the aggressive combination.

FIGURE 14. The plane of consequent part fractional membership
functions of the closed loop control system that is an aggressive
combination.

of fuzzy system. In this regard, the RTM plays a major role.
In fact, the RTM sheds light on the intensity of reactions of
any combination of fractional membership functions. Thus,
the RTM enables us to make a decision on the design of fuzzy
system based on our desirable intensity of reaction of any
system counterpart (or consequent part).
Note 9: It is noteworthy to pinpoint that the fractional

index for the fractional membership function of near zero
should be determined such that the defuzzified output coin-
cides the core of membership function if the truth degree
combined with the fractional membership function is unity.

As mentioned above, the rule base and consequent part
membership functions plane corresponding to FFIS applied
in the closed loop system can be considered as shown in
figures. 13 and 14. It should be noted that Fig. 14 shows an
aggressive combination.

Consequently, in the sequel a theorem which is more gen-
eral than Theorem 1 is given.
Theorem 2: Let J , D

(
y(t), ŷ(t)

)
be a cost function

where D denotes a metric defined on the space of real val-
ued functions; y(t) and ŷ(t) are the target and approximated
outputs of a system. Suppose that ŷ(t) has been obtained by
applying a typical FIS. In addition, let the approximated
output obtained by applying a fractional FIS - corresponding
to the typical FIS - be ŷ(t;α∗) where α∗ , (f1, f2, . . . , fn),

such that fi : [0, 1] → [0, 1], α∗ = arg
(
minimize

α∗
J (α∗)

)
and J (α∗) = D

(
y(t), ŷ(t;α∗)

)
. Then, Jffis ≤ Jfis where

Jffis = D
(
y(t), ŷ(t;α∗)

)
and Jfis = D

(
y(t), ŷ(t)

)
.
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Proof: The proof is similar to that of Theorem 1 and
hence omitted.

The importance of Theorem 2 comes from the fact that,
independent of the problem in question, one can always be
sure that, by applying FFIS, they can obtain a more satisfac-
tory result than the result that would be obtained by applying a
typical FIS on condition that the exceptional situation Jffis =
Jfis does not happen. As a matter of fact, it is very unlikely
that the optimal solution is a vector of functions which are all
constant and equal to one. Simply put, it is almost impossible
for the solution of the optimization problem to correspond to
the typical FIS. As a result, by ignoring the exceptional case,
there is always at least an FFIS which leads to results that are
more satisfactory than those a typical FIS leads to. In other
words, a typical FIS never yields to results which are more
satisfactory than those obtained by the FFIS corresponding
to the typical FIS provided that a particular set of fractional
indices is taken into account.

In the sequel, we are going to show the superiority of the
proposed FIS in comparison with other typical FISs by some
examples. Although complex examples could have been pre-
sented, our aim, in this preliminary step, is to clarify the
performance of FFIS without involving readers in the com-
plexities of examples. Thus, the main goal in the following
examples is to compare the performance of FFIS with the
typical FISs under same settings, rather than to achieve a
perfect control or fuzzy model. In the following, a particle
swarm optimization (PSO) algorithm is employed where the
following conditions are considered: 1. The maximum num-
ber of iterations is 100, 2. The population size is 50, 3. The
constriction coefficients [14] are applied. 4. The cost function
is integral of the absolute value of the error, i.e.

∫ tf
0 |e(t)|dt ,

where the error is as e(t) = y − ŷ in which y(t) and ŷ(t) are
the target (or desired) and approximated (or real) outputs of
the system under study in the time interval [0, tf ].
Example 1: Consider the closed loop control system

shown in Fig. 9. The plant is an inverted pendulum whose
mathematical model is presented by the following nonlinear
differential equations

θ̈ (t) =
g sin(θ (t))− 0.5amlθ̇2(t)sin(2θ(t))− a cos(θ (t))ū(t)

4l
3 − aml cos

2(θ (t))
(4)

where θ is the pendulum angle (in radian) from the vertical
axis, g = 9.8( m

s2
) is the gravity constant, m = 2(Kg) is the

mass of pendulum, a = 1
m+M , M = 8(Kg) is the mass of

the cart, 2l = 4 is the length of pendulum, and ū is the force
applied to the cart which is equal to Ku(t) based on Fig. 9.
The objective of the control system is to keep the pendulum
upright. The rule base is the same as that has been shown in
Fig. 13. The membership functions of inputs and output of
the fuzzy system have been presented in Fig. 15.
Using the PSO algorithm and by considering Mamdani’s

FIS in the fuzzy system, the optimal value of the gain K ∈
[0, 220] is obtained which is K = 219.7. The centroid

FIGURE 15. Membership functions of inputs and the output associated
with Example 1.

of the area has been used as the defuzzification method.
The FFIS is applied in two different cases: 1. With constant
fractional indices, 2. With dynamical fractional indices. The
constant fractional indices - which have been considered as
arbitrary values - have been presented in Fig. 16. According
to Definitions 10 and 12, the first, second and third set of
fractional indices determine, respectively, the FFIS of orders
( 1.85 ,

0.75
5 ), ( 15 , 0) and ( 25 ,

1
5 ) with respected fracture index

γ = 0.49, γ = 0.8 and γ = 0.4. The dynamical fractional
indices of the LHP and RHPmembership functions have been
considered as quadratic functions of antecedent part truth
degree. Concretely, they are in the form of α∗ = f (µ∗) = µ∗2

and β∗ = f (µ∗) = µ∗2, see Fig. 16. Moreover, the base
operator in the FFIS is the same asMamdani’s FIS. The result
of applyingMamdani’s, Larsen’s and FFISs have been shown
in figures 17, 18 and 19.

As is seen, applying the FFIS is obviously more effective
thanMamdani’s and Larsen’s FISs. In addition, Fig. 18 shows
that the settling time of the system equipped with the FFIS
is less than that of the system equipped with Mamdani’s or
Larsen’s FIS. The other point that should be noted is that
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FIGURE 16. Fractional indices associated with Example 1.

FIGURE 17. The angle trajectory of inverted pendulum controlled by
different FISs.

FIGURE 18. The angle trajectories of inverted pendulum in the time
interval [0.46, 0.55].

the fractional fuzzy inference system whose fracture index
is γ = 0.4 results in an output which is more similar to
that of its corresponding typical FIS, i.e. Mamdani’s FIS.
The previous results have been obtained in the time interval
[0, 6] with the sampling time ‘‘ 6

6000 = 0.001’’. Now, let
us consider the result of applying three different FISs in
the time interval [0, 10] with the sampling time ‘‘ 10

1500 =

0.0067’’ which is more than that considered on time interval
[0, 6]. Figures 20 and 21 illustrate the results. Therefore, all
the obtained results are in accordance with Theorems 1 and 2.
It should be noted that the structure of rule base and the

system in question have been considered the same for the
typical FISs and the FFIS. Additionally, it is noteworthy that
in the real world applications achieving a small sampling time
not only may not be always possible, but also may increase
the costs involved. As is seen, by increasing the sampling

FIGURE 19. The control signal generated by different FISs.

FIGURE 20. The control signal generated by different FISs with the
increased sampling time.

time from ‘‘0.001’’ to ‘‘0.0067’’, Mamdani’s and Larsen’s
FISs output control signals with high chattering. However,
the FFIS is capable of sustain this situation. Simply put,
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FIGURE 21. The angle trajectory of inverted pendulum controlled by
different FISs with the increased sampling time.

FIGURE 22. The fractional FIS corresponding to Example 1 with different
fracture indices.

FIGURE 23. The effect of fracture index on the behavior of a fractional
FIS.

there are sets of fractional indices by which the FFIS outputs
the control signal without chattering or with a chattering
alleviated to a great extent, in comparison with Mamdani’s
and Larsen’s FISs outputs. It should be pinpointed that the
results have been obtained based on the arbitrary fractional
indices and that they are not optimal. Additionally, in order
to show the effect of fracture index, an FFIS with different
fracture indices shown in Fig. 22 have been considered and
applied in the closed loop system. As was stated previously
and illustrated in Fig. 23, the output of the system equipped
with the FFIS comes close to that equipped with Mamdani’s
FIS as the fracture index approaches zero, for small values
of γ . As a matter of fact, one of the advantages of fracture
index is that it helps us to fine tune the output.
Example 2: The purpose of this example is to make a com-

parison between FFIS, Mamdani’s and Larsen’s FISs using
the well-known Mackey-Glass chaotic time-series prediction

FIGURE 24. The membership functions of the output x(t) corresponding
to Example 2.

FIGURE 25. The rule base corresponding to Example 2.

benchmark dataset. The chaotic time-series considered in
this example comes from the following delay differential
equation:

ẋ(t) =
0.2x(t − τ )

1+ x10(t − τ )
− 0.1x(t)

where x(0) = 1.2, τ = 17 and x(t) = 0 for t < 0. Using
the fourth-order Runge-Kutta method, 1000 input-output
data pairs of the format: [x(t − 24), x(t − 18), x(t − 12),
x(t − 6), x(t)] have been extracted where 24 ≤ t ≤ 1023,
x(t) is the output and the former four variables are inputs.
Specifically, the FISs make an approximation of the function
f : R→ R such that x(t) = f (x(t−24), x(t−18), x(t−12),
x(t−6)). In the 1000 input-output data pairs, the first 500 pairs
are considered as the training dataset to build the fuzzy model
of the time series, while the remaining 500 pairs have been
used to test the validity of the fuzzy model. Here, 3 mem-
bership functions have been considered for each input and
the output. The membership functions corresponding to the
inputs x(t − 24), x(t − 18), and x(t − 12) are the same
and have been taken into account as Gaussian membership
functions Ã1 = G(0.274, 0.219), Ã2 = G(0.274, 0.766),
and Ã3 = G(0.274, 1.314). The membership functions of
x(t− 6) are as B̃1 = G(0.267, 0.246), B̃2 = G(0.267, 0.780),
and B̃3 = G(0.267, 1.314). Fig. 24 shows the membership
function of the output x(t). By the use of the simplest fuzzy
look-up tablemethod, the fuzzy rules have been obtained. The
number of fuzzy rules used for this case is 81 that have been
presented in Fig. 25. In the figure, a rule like: if x(t − 24) is
Ãi and x(t − 18) is Ãj and x(t − 12) is Ãk and x(t − 6) is B̃m
then x(t) is C̃p has been expressed in the format (i, j, k,m, p).

The performance criterion by which the comparison
between FISs has been made is the 2-norm of the error
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FIGURE 26. The results obtained from applying FISs on the training data.

e(t) = x(t)− x̂(t), t0 ≤ t ≤ tn, i.e. J , ||e(t)||2 =√∑tn
t=t0 e

2(t), where x̂(t) is the estimated value of x(t)
coming from the fuzzy model. The ‘‘AND’’ operator in the
antecedent parts has been taken into account as the algebraic
product operator. Moreover, the base operator in FFIS is the
same as Mamdani’s FIS. Additionally, the fractional indices
of the membership functions corresponding to the consequent
parts have been considered, arbitrary, as α∗c1 = 0.5, α∗c2 = 0,
and α∗c3 = 0.6 which means the fractional fuzzy inference
system is of the order 1.1

3 with the fracture index γ =
0.63. Figures 26, 27, and 28 show the results obtained by
applying FISs on the training data, test data and all the data,
respectively. As is seen, in the prediction of Mackey-Glass
chaotic time-series, FFIS with the performance J = 4.68
outperformsMamdani’s and Larsen’s FISs with the respected
performances J = 5.96 and J = 5.28.
Example 3: To draw another comparison between the per-

formance of typical FISs (Mamdani’s and Larsen’s FISs)
and the fractional FIS, they are employed to predict the
number of people who have been infected with Coronavirus
Disease 2019 (COVID-19) in Europe. The dataset used in
this example has been drawn from European Centre for
Disease Prevention and Control (ECDC) [15], [16] and con-
tains the data of the confirmed cases between 01-03-2020
and 22-06-2020. It is assumed that the data could be con-
sidered as time series data with 102 input-output data pairs
of the format: [x(t − 12), x(t − 8), x(t − 4), x(t − 1), x(t)]
where x(t) is the output and the former four variables are
inputs.

Based on health experts recommendation and reports,
about 14 days provides enough time to know whether
a person has been infected by COVID-19 or not. Here,

FIGURE 27. The results obtained from applying FISs on the test data.

FIGURE 28. The results obtained from applying FISs on all the data.

FIGURE 29. The membership functions of the inputs corresponding to
Example 3.

the maximum delay has been assumed to be 12 days.
Analogous to what has been carried out in the previous
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FIGURE 30. The rule base corresponding to Example 3.

FIGURE 31. The results obtained from applying FISs on the training data.

example, in the 102 input-output data pairs, the first 51 pairs
are considered as the training dataset to build the fuzzy
model, while the remaining 51 pairs have been used to test
the validity of the fuzzy model. Three membership func-
tions have been considered for each input and the output.
Fig. 29 shows the membership functions corresponding to
the inputs. The membership functions that correspond to
the output are triangular membership functions as B̃1 =
(7111, 7111, 22180), B̃2 = (7111, 22180, 22180) and B̃3 =
(22180, 37260, 37260). The number of fuzzy rules for this
case is 81 illustrated in Fig. 30. The presentation of the
rules follows the format that was explained in the previous
example.

FIGURE 32. The results obtained from applying FISs on the test data.

The performance criteria by which the comparisons
between FISs have been made are as J1 , ||e(t)||2

104
and J2 ,

||
e(t)
x(t) ||2 where e(t) = x(t) − x̂(t), and x̂(t) is the estimated

value of x(t) coming from the fuzzy model. The ‘‘AND’’
operator in the antecedent parts has been taken into account as
the algebraic product operator. In addition, the base operator
in FFIS is the same as Mamdani’s FIS. Furthermore, the
fractional indices of the membership functions corresponding
to the consequent parts have been considered arbitrary; as
α∗b1 = 1, α∗b2 = 0, and α∗b3 = 1. It should be noted that
since α∗b1 = α∗b3 = 1, then, according to Proposition 3
and Note 4, the function of fuzzy rules of fractional FIS
and Mamdani’s FIS in which the consequent part member-
ship functions are B̃1 or B̃3 is the same. Figures 31, 32,
and 33 show the results obtained by applying FISs on the
training data, test data and all the data, respectively. As is
seen, in the prediction of the number of people who have
been infected with COVID-19, FFIS with the performance
criteria J1 = 3.57, J2 = 1.87 outperforms Mamdani’s
and Larsen’s FISs whose respected performance criteria are
J1 = 4.66, J2 = 2.25 and J1 = 4.02, J2 = 1.94.

126080 VOLUME 8, 2020



M. Mazandarani, X. Li: Fractional Fuzzy Inference System: The New Generation of Fuzzy Inference Systems

FIGURE 33. The results obtained from applying FISs on all the data.

Consequently, the obtained results are in accordance with
Theorems 1 and 2.

IV. CONCLUSIONS
Fractional fuzzy inference system as the new generation
of FISs was introduced in this paper. It was shown that
an FFIS extracts the information included in a rule base
in a way different from what a typical FIS does. With
dynamical fractional indices considered, the information is
extracted intelligently. In other words, the higher the truth
degree of information, i.e. the more valuable the information,
the more significant the volume of the information that is
involved in the process of making a conclusion (or a deci-
sion). Moreover, by determining optimal fractional indices,
the intelligent process tends towards the optimal use of infor-
mation. Theorems 1 and 2 showed that there is always at
least an FFIS whose application leads to results that are by
far more desirable than those obtained by the typical FIS
corresponding to the FFIS.

This is while, by replacing a typical FIS with an FFIS in a
system, no changes are made in the general structure of the

system. In this paper, the concept of the RTM was explained
and illustrated with some figures as well. In fact, an RTM
includes information about the different outputs of a fuzzy
systemwhere fractional membership functions assume differ-
ent dynamical fractional indices. The information shows how
fast or slow the output of the fuzzy system reacts to the error
and its derivative while they are approaching or becoming
far from the desired point. Thus, the RTM helps decision
makers to design and choose their desired FFIS. It was also
demonstrated that by the use of the concepts of the left and
right orders of an FFIS, typical FISs may be viewed as the
FISs of first order, i.e. integer order FISs. The concept of
the fracture index defined based on the left and right orders
enabled us to have an impression of the behavior of an FFIS
with respect to its corresponding first order FIS. As a matter
of fact, if the output of a first order FIS is at disposal, the
fracture index of an FFIS, for small γ values, might serve as
a means to place in evidence a similarity indicator of the FFIS
output with the integer order FIS output. The other advantage
of fracture index is that it might be applicable for making a
fine tune of outputs as was illustrated in Fig. 23.

Eventually, FFISs open an uncharted territory to design
fuzzy systems and revisit almost all the applications of fuzzy
systems. Simply put, in the light of FFISs, so many appli-
cations can be considered in which applying FFIS yields
to more satisfactory results than ever before. The fields in
which FFIS can prove applicable include fault detection [17],
control systems [18], [19], handoff decision algorithms [20],
internet of thing [21], risk assessment [22], [23], evaluating
the quality of experience [24], decision support systems [25],
fuzzy clustering and classification [26], [27], fuzzy image
processing [28], fuel cell stack problem [29], educational
systems [30], fuzzy modelling [31], psychology [32], emo-
tion categories [33], packet scheduling algorithms [34], mul-
tiobjective optimization problem [35], decision-making [36],
heuristic algorithms [37], etc.
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