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ABSTRACT A decentralized Poisson multi-Bernoulli filter is proposed to track multiple vehicles using
multiple high-resolution sensors. Independent filters estimate the vehicles’ presence, state, and shape
using a Gaussian process extent model; a decentralized filter is realized through fusion of the filters
posterior densities. An efficient implementation is achieved by parametric state representation, utilization
of single hypothesis tracks, and fusion of vehicle information based on a fusion mapping. Numerical results
demonstrate the performance.
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I. INTRODUCTION
Multitarget tracking (MTT), i.e., tracking of independently
moving targets, is important for surveillance and safety
applications [1], [2]. Traditionally, it has been developed for
surveillance of the sky using ground-to-air radar sensors. An
MTTfilter allows incorporating the peculiarities of those kind
of sensors: false alarm measurements due to clutter; missed
detections; unknownmeasurement-to-target correspondence;
and target appearance and disappearance; which are all chal-
lenges that arise for radar-like sensors. In many typical MTT
scenarios, the sensor resolution is low with respect to (w.r.t.)
the target size, and a reasonable assumption is to model the
targets as points having a kinematic state (e.g., position and
velocity). An elegant way to track multiple targets is via
the Poisson multi-Bernoulli mixture (PMBM) filter [3], [4],
which preserves a PMBM form during prediction and update
steps.

With the availability of high-resolution sensors, the point
target assumption does not hold anymore, see, e.g., [5]. For
instance, a high-resolution Lidar sensor can obtain in one
scan multiple detections from a single vehicle [6] or cyclist
[7]. This is because the sensor resolution is high w.r.t. the
target (here, a vehicle) size. In such an application scenario,
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the vehicle extent needs to be modeled (and estimated) as
well in the MTT filter, leading to an extended target tracking
(ETT) filter. In ETT, extended targets (ETs) give rise to
possibly multiple noisy detections, the vehicle extent (shape
and size) is a priori unknown and may vary over time, and
the objective is to estimate the ET’s kinematic state as well
as its extent [5]. A common model for the ET extent is
based on Gaussian process (GP) modelling [8], [9]. Different
models for the target extent (shape and size) exist in ETT,
which may be classed according to complexity, ranging from
assuming a specific geometric shape [6], [7], [10] with, e.g.,
unknown translation and rotation, to models that describe
general shapes, see, e.g., [11]–[13]. Typically, more complex
models provide a richer shape description. Two popular mod-
els are the random matrix approach [10], where the target
shape is described by an ellipsoid; and a GP based approach
[8], [9], where a star convex target shape is described by a
GP. See [5] for an extensive overview of works on ETT.

For tracking multiple extended targets, several different
filters have been developed: Probability Hypothesis Den-
sity (PHD) filter [14]–[17]; Cardinalized PHD (CPHD) filter
[18]; δ-generalized labeled multi-Bernoulli (δ-GLMB) filter
[19]; and PMBM filter [3], [4]. For applications involving
tracking of vehicles see, e.g., [20]–[22]. The δ-GLMB filter
and PMBM filter are so-called multi-object conjugate priors,
meaning that if we start with the conjugate density form
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(δ-GLMB or PMBM), then all subsequent predicted and
updated densities will be of the same form. Based on the
conjugate priors, computationally cheaper, approximate fil-
ters have been presented. The labeled multi-Bernoulli (LMB)
filter is an approximation of the δ-GLMB filter, see [19]. The
Poisson multi-Bernoulli (PMB) filter is an approximation of
the PMBM filter, see [23], [24]. The PMBM conjugate prior
[23] was originally developed for point targets; a PMBM
conjugate prior for extended targets was presented in [3],
[4]. In several simulation studies it has been shown that,
compared to tracking filters built upon labeled random finite
set (RFS), the PMBM conjugate prior has good performance
for tracking the set of present target states, for both point
targets [25]–[27] and extended targets [3], [4], [28]. The
PMBMconjugate priors for point targets and extended targets
have been shown to be versatile, and have been used with
data from Lidars [29]–[32], radars [30], [31], and cameras
[31], [33]. They have been successfully applied not only to
tracking of moving targets, but also the mapping of stationary
objects [34], as well as joint tracking and sensor localization
[35]. Thus, it is well motivated to use the PMBM filter in this
work; specifically, we work with the computationally cheaper
PMB filter. Developing similar decentralized tracking algo-
rithms for the δ-GLMB or LMB filter [19] is a topic for
future work.

Neither MTT nor ETT filters are bound to single sensors.
When multiple sensors are used, fusion can provide perfor-
mance benefits. Fusion can be centralized (with a fusion
center) or decentralized. The latter approach was proposed in
[36], for fusing two multi-Bernoulli (MB) densities, though
it did not account for a Poisson point process (PPP) com-
ponent. The information exchanged can be in the form of
measurements, so that fusion can be solved by perform-
ing multiple update steps (e.g., Kalman update or likewise)
by augmenting the measurement model to incorporate all
sensors, see, e.g., [37]. When communication capacity is
limited, one can perform filtering already at the sensor and
share only target track information, e.g., the parameters of a
known posterior probability density function (PDF) family.
Fusion should then ensure that (unknown) common infor-
mation obtained by the independent tracking filters is not
double-counted, e.g., the prior target density [38]. Depending
on the type of posterior multiobject density in MTT/ETT
filtering, several sub-optimal information fusion strategies
have been developed based on, e.g, covariance intersection
(CI) for Gaussian densities. This replaces the product form
of Bayes’ rule with the Kullback-Leibler average (KLA)1. CI
(and consequently KLA) is a method to fuse information with
unknown priors in a robust way in the sense that the fused
posterior is conservative and never overconfident about the
estimates and thus implicitly sub-optimal [38], [39]. Exam-
ples of CI/KLA include fusion of Bernoulli and independent
identically distributed (IID) cluster processes posteriors [40],

1In some literature this is known as exponential mixture density (EMD).

fusion for Bernoulli filters [41], fusion for PHD and CPHD
filters [42]–[47], and fusion for LMB filters [36], [46], [48].

In this paper, we utilize and extend the shape model from
[8], [9], and integrate it into an ETT filter, which allows track-
ing of multiple ETs. The resulting ETT filter’s multiobject
posterior is of the so-called PMB form [23]. Furthermore,
we propose a novel fusion strategy that performs fusion
separately for the PPP and MB parts of the PMB density.
The implementation of the PMB filter yields a tracking filter
with low computational cost2 locally at each sensor, and
globally low computational cost through the introduction
of a fusion map based on the Kullback-Leibler divergence
(KLD) between target tracks. Simulation results demonstrate
the performance of the proposed independent ETT filter as
well as of the decentralized ETT filtering approach. The main
contributions of this paper are:
• We apply a state-of-the-art ETT filter [3], [4] and pro-
pose a novel distributed fusion strategy based on the
KLA by fusion of the filters’ posterior multiobject den-
sities of PMB form; and

• We enable low complexity in distributed fusion through
introduction of a fusion map based on KLD between
target tracks.

• We extend, in Section VI-A2, the GPmodel from [8], [9]
for the ET shape description to a multisensor scenario
incorporating the sensors’ state (position, orientation);

The remainder of this paper is organized as follows.
Section II gives some background knowledge on RFSs,
and Section III introduces the system model and the prob-
lem formulation. Section IV details the proposed ETT fil-
ter, Section V presents the decentralized posterior fusion
approach using independent ETT filters. Simulation results
are given in Section VI, and conclusions are drawn in
Section VII.

II. BACKGROUND ON RANDOM FINITE SETS
Two types of RFSs relevant for this work deserve special
attention: Bernoulli RFS, and a PPP. They can be extended
to MB RFS, multi-Bernoulli mixture (MBM) RFS and com-
bined in a PMBM RFS. These are described below, for more
details on RFSs the reader is referred to [49].

A. COMMON RFS DENSITIES
1) BERNOULLI RFS
A Bernoulli RFS X has a multiobject density [49]

f (X) =


1− r, X = ∅,
rf (x), X = {x},
0, |X | ≥ 2,

(1)

where r ∈ [0, 1] denotes the probability that a target exists
and if it exists f (x) is its PDF.

2As measured by the average time it takes for one cycle of prediction and
update.
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2) MULTI-BERNOULLI RFS
An MB RFS is the disjoint union of independent Bernoulli
RFSs indexed by i. It is fully parameterized by {ri, fi(x)}i∈I,
where I is its index set. ForX = {x1, . . . , xn}, the multiobject
density can be written as

f (X) =
∑

]i∈IX i=X

∏
i∈I

fi(X i) (2)

for |X | ≤ |I|, and f (X) = 0 otherwise. The notation, X1 ]

X2 = X means X1 ∪ X2 = X and X1 ∩ X2 = ∅.

3) MULTI-BERNOULLI MIXTURE RFS
The multiobject density of an MBM is the normalized,
weighted sum of multiobject densities of MBs, which can be
stated as [3]

f (X) =
∑
j∈J

wj
∑

]i∈IjX i=X

∏
i∈Ij

fj,i(X i). (3)

The MBM multiobject density is parametrized by
{wj,i, {rj,i, fj,i(x)}i∈Ij}j∈J, where wj is the weight of MB j, and
J is the index set of theMBs in theMBM. AnMB is therefore
a special case of an MBM with |J| = 1.

4) PPP
A PPP is a type of RFS, where the cardinality follows a Pois-
son distribution and its elements are IID. It is parametrized
by the intensity function D(x) = λf (x), where λ > 0 is the
Poisson rate and f (x) is a PDF on the single element state x.
The multiobject density of a PPP is [3], [49]

f (X) = e−λ
n∏
i=1

λf (xi). (4)

5) PMBM
An PMBM RFS is the disjoint set union of an PPP and an
MBM having multiobject density [3]

f (X) =
∑

Xu
]Xd
=X

f u(Xu)f d (Xd ), (5)

where f u(·) has multiobject density (4), and f d (Xd ) has
multiobject density (3). For |J| = 1, (5) is called a PMB
distribution.

B. RFS BAYESIAN FILTER
Similar to the random vector (RV) case, an RFS based filter
can be described, conceptually at least, within the Bayesian
filtering framework by performing a prediction step using the
motion model [2, Ch.14]

f+(X) =
∫
f (X |X ′)f−(X ′)δX ′, (6)

where f−(X ′) is the prior RFS density, f (X |X ′) is the multi-
object process model, and a Bayesian update step

f (X |Z) ∝ `(Z|X)f+(X). (7)

Here, f+(X) is the predicted RFS density, and `(Z|X) is the
RFS measurement likelihood for measurement set Z.
A typical way to estimate the set states from a Bernoulli

process with RFS density f (X) is by comparing the probabil-
ity of existence r to an existence threshold rth. For r > rth,
the target is said to exist and has PDF f (x). Its state can then
be estimated by the mean x̂ =

∫
xf (x)dx. See, e.g., [26] for

an elongated discussion on multiobject estimation.

III. PROBLEM FORMULATION AND SYSTEM MODEL
Here, we present first the problem formulation of this paper
followed by the ET state and transition model and the ET set
measurement likelihood function.

A. PROBLEM FORMULATION
We consider a scenario with Nsens sensing systems (each
composed of sensors plus filter), each collecting measure-
ments using its local sensors, to jointly surveil an environment
E where vehicles pass (c.f. Fig. 1). Our goals are (i) to
derive a low-complexity PMB-ETT filter for each sensing
system s = 1, 2, . . . ,Nsens, computing in every time step k
the posterior density fs(Xk |Zs,k:1) of the ETs, using only its
own sensors with measurement set Zs,k:1 ; and (ii) to derive
a decentralized method to combine posterior information of
ETs obtained by Nsens independent ETT filters to obtain a
global posterior density f̄w(Xk |Z1,k:1,Z2,k:1, . . . ,ZNsens,k:1)
(i.e., using only the posterior densities of each ETT filter).

FIGURE 1. Scenario with three ETs observed by two sensors with partially
overlapping FoVs.

B. ET STATE AND TRANSITION MODEL
A standard motion model for the ET is assumed, where
ET motion follows IID Markov processes with single ET
transition PDF fk+1|k (xk+1|xk ), where xk denotes the state at
time k . Targets arrive according to a non-homogeneous PPP
with intensity Db(xk ), and depart according to IID Markov
processes, where the survival probability in xk is pS(xk ).
Additionally to this, xk comprises an unknown Poisson rate
γk describing the average number of measurements generated
by the ET and the ET spatial state yk (this will become clear
in Sec. VI-A where a detailed description of the state and
transition density is provided).
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C. ET SET MEASUREMENT LIKELIHOOD FUNCTION
In one scan, a sensor receives a set of measurementsZ consist-
ing of target-generated measurements z and clutter, where the
ETs are independently detected with state-dependent proba-
bility of detection pD(x), which depends on the sensor FoV.
Clutter is modeled by a PPP with intensity κ(z) = λc(z) with
mean λ and spatial distribution c(z). Target-generated mea-
surements are modeled by a PPP with intensity γ (x)f (z|x),
where both the Poisson measurement rate γ (x) and the single
measurement likelihood f (z|x) are state-dependent. The mea-
surement likelihood for ETs {x1, . . . , xn} and measurement
set Z is

`(Z|{x1, . . . , xn})

= e−λ
∑

Zc]Z1]...Zn=Z

[c(·)]Zc
n∏
i=1

`Zi (xi), (8)

where [c(·)]Zc is shorthand for
∏

z∈Zc c(z), [c(·)]
∅
= 1 by

definition, and [3]

`Z(x) =

pD(x)e
−γ (x)

∏
z∈Z

γ (x)f (z|x), |Z| > 0,

(1− pD(x))+ pD(x)e−γ (x), Z = ∅.
(9)

Note that (i) equation (8) involves potentially multiple ETs,
leading to a data association (DA) problem; (ii) a single ET
can generate multiple measurements.

IV. INDEPENDENT PMB-ETT FILTER
In this section, we briefly describe the processing performed
by each PMB-ETT (PMB-ETT) filter from [3]. We omit the
time index k for brevity. The PMB model is a combination of
a PPP describing the distribution of unknown targets, i.e., tar-
gets which are hypothesized to exist, but have not yet been
detected; and an MB which describes targets that have been
detected at least once. The target set can, therefore, be split
into two disjoint subsets X = Xu

] Xd corresponding to the
unknown target setXu (with PPP intensityDu(x), modelled as
a non-normalized mixture density with mixture components
located in the region of interest denoted E) and the detected
target set Xd with density f d (Xd ) and index set I. Hence,
the PMB density is fully described by an MB component
described by {r i, f i(x)}i∈I and a PPP component Du(x).

1) PMB-ETT FILTER PREDICTION
The predicted density is a PMB density with parameters [3,
Sec. IV], [4]

Du+ = Db(x)+
〈
Du, pSfk+1|k

〉
, (10)

r i+ =
〈
f i, pS

〉
r i, (11)

f i+ =

〈
f i, pSfk+1|k

〉〈
f i, pS

〉 , (12)

where 〈g, h〉 =
∫
g(x)f (x)dx denotes the inner product. The

proof of the prediction step can be found in, e.g., [23].

2) PMB-ETT FILTER UPDATE
We introduce the set of valid DAs A = P(M ∪ I), where M
is the index set for Z. Here, A ∈ A is a partition of M ∪ I
into non-empty disjoint subsets C ∈ A (called index cells),
with the constraint that for each C : |C ∩ I| ≤ 1 (i.e.,
measurements can only be associated with a single target).
When |C ∩ I| = 1, let the entry in C ∩ I be denoted by iC and
let CC = ∪m∈C∩Mzm contain the associated measurements.
Given the predicted prior PMB density with parameters (10),
(11), (12), and a set of measurements Z; the updated density
is a PMBM density [3, Sec. IV], [4]

f (X |Z) =
∑

Xu
]Xd
=X

f u(Xu)
∑
A∈A

wAf dA (X
d ), (13)

f u(Xu) = e−〈D
u,1〉

∏
x∈Xu

Du(x), (14)

f dA (X
d ) =

∑
]C∈AXC

=Xd

∏
C∈A

fC (XC ), (15)

Du(x) = qD(x)Du+(x), (16)

where fC (XC ) is a Bernoulli density, with existence proba-
bility and spatial distribution provided in Appendix VII-A,
together with the weights wA of each DA hypothesis. Above,
qD(x) denotes the probability that the target x is not detected
and is defined as

qD(x) = 1− pD(x)+ pD(x)e−γ (x). (17)

To reduce computational complexity, we use standard meth-
ods and truncate the space of possible partitions by clustering
measurements and consider DA w.r.t. different clusters [15],
[16], [18]. Finally, the PMBM in (13) is converted to a PMB,
which was detailed in [50] for point targets and in [24]
for ETs.

V. DECENTRALIZED POSTERIOR FUSION
Here, we present the decentralized approach to robust fusion
of posterior densities fs(X |Zs) computed by independent
PMB-ETT filters s with unknown prior densities. Fusion can
be performed after every update step of the filters or based on
a lower rate depending on the application and communication
capabilities.

A. ROBUST POSTERIOR FUSION: PRINCIPLE
Robust posterior fusion can be achieved by minimizing the
KLAbetweenRFS densities f (·) and fs(·) for s = 1, . . . ,Nsens
with respect to f (·). The KLA is defined as [45]

f̄ = arg inf
f

Nsens∑
s=1

wsD(f ‖fs), (18)

for any combinations of weights ws ∈ [0, 1] :
∑

s ws = 1.
We have introduced D(f ‖fs) as the KLD between RFS densi-
ties f (X |Z1:Nsens) and fs(X |Zs) defined as [45]

D(f ‖fs) =
∫
f (X |Z1:Nsens ) log

f (X |Z1:Nsens)
fs(X |Zs)

δX . (19)
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The fused posterior (18) is robust in the sense that it is
conservative and never overconfident w.r.t. the true target
uncertainty [38]. Problem (18) was shown to have closed-
form solution [45]

f̄ (X |Z1:Nsens ) =

∏Nsens
s=1 fs(X |Zs)ws∫ ∏Nsens

s′=1 fs′ (X |Zs′ )
ws′ δX

. (20)

Note that (20) is a generalization of the Uhlmann-Julier
covariance intersection method (c.f. [38]) for posterior RFS
densities with unknown priors [39]. The weights wi can be
chosen such that (20) is as peaky as possible [39]. An example
of fusion of three Gaussian densities with equal weights is
depicted in Fig. 2.

FIGURE 2. Example of posterior fusion with three Gaussian posteriors.

B. ROBUST PMB POSTERIOR FUSION
The posterior density of each PMB-ETT filter is a PMB,
therefore, to be able to utilize the fused posterior density as
prior for the next time step in each PMB-ETT filter, the fused
posterior should be of the PMB form, i.e.,

f̄ (X |Z1:Nsens)=
∑

Xu
]Xd
=X

f̄ u(Xu
|Z1:Nsens ) f̄

d (Xd
|Z1:Nsens ) (21)

comprised of an PPP f̄ u(Xu
|Z1:Nsens) modeling the unknown

targets and an MB f̄ d (Xd
|Z1:Nsens) modeling detected targets.

Note, for brevity we avoid the conditioning on the measure-
ment set in the remainder of this section.

A challenge in the fusion step is the fact that sensors do
not have the same FoVs (c.f. Fig. 1). In the process of fusion,
any target that is in the FoV of one sensor and has been
detected, but outside the FoV of another sensor, must be
treated carefully. In this situation, prior to the fusion, for
the first sensor the target corresponds to a detected target
represented by a Bernoulli density, whereas for the second
sensor the target corresponds to an unknown target, which is
represented by the PPP. Because of this, in the closed-form
KLA solution (20), we must fuse a Bernoulli with a part of
the PPP intensity. From this, it follows that if we solve the
KLA (18) separately for the PPP and the MB then we will
obtain incorrect results. To enable a valid fusion, we propose
the approach outlined in the following sub-sections.

Consider PMB densities with PPP intensity λs(x) and
Ns Bernoullis with parameters r is and f is (x) indexed i =
1, . . . ,Ns. Fusion of the PMB densities is simplified if all
have the same number of Bernoullis, however, in the general
case one cannot assume this. Instead, we rely on a result from
[49, Sec. 4.3.1]: any PPP with intensity λs(x) can be divided
into multiple independent PPPs with intensities λjs(x), where∑

j λ
j
s(x) = λs(x). Based on this result, for each sensor we

divide λs(x) into Ms parts such that Ns + Ms = K for all
sensors s, where parameter K is determined depending on
the number of components of the MBs. A robust choice is
K =

∑
s Ns, so that each Bernoulli component in one sensor

can be assigned to any combination of PPP or Bernoullis in
the other sensors. The FoV can be taken into account in order
to reduce K 3.
If follows from the division into K parts that the PMB

densities can be expressed as follows,

fs(X) =
∑

]
K
i=1X

i
=X

K∏
i=1

f is (X
i) (22)

where f is (X
i) is Bernoulli for i ∈ {1, . . . ,Ns} and PPP

with intensity λis(x) for i ∈ {Ns + 1, . . . ,Ns +Ms}. Note
that the sum in (22) is implicit and never has to be com-
puted; it is sufficient to represent the parameters of the
densities f is (X

i).
We are seeking the fused density f̄ (X) that minimizes the

KLA (18). Assume that f̄ (X) is of the format (22), i.e.,

f̄ (X) =
∑

]
K
i=1X

i
=X

K∏
i=1

f̄ i(X i). (23)

In [50] it is shown that, under this assumption, the minimiza-
tion problem (18) can be solved approximately byminimizing
an upper bound,

Nsens∑
s=1

ws

[
K∑
i=1

D
(
f̄ i(X)||f πs(i)s (X)

)]
(24)

where πs ∈ 5(1:K ) for all s, and 5(1:K ) is the set of all
permutations of the integers {1, . . . ,K }. For π ∈ 5 and i ∈
{1, . . . ,K } we have π(i) ∈ {1, . . . ,K } and π (i) 6= π (i′) for
i 6= i′. The fusion results will depend on how the permutations
πs are chosen, which we discuss in Section V-D.
Based on (24), we compute the K components of the fused

density f̄ (X) as

f̄ i(X) =

∏Nsens
s=1

(
f πs(i)s (X)

)ws
∫ ∏Nsens

s=1

(
f πs(i)s (X)

)ws
δX
. (25)

3In particular, we partition the deployment region into 2Nsens sub-regions,
each determined by a subset of sensors that have each partition in the
FoV. For each sub-region l ∈ {1, . . . , 2Nsens }, sensor s has Ns,l Bernoulli
components (with Ns =

∑
l Ns,l ), we determine Kl = maxNs,l and

K =
∑

l Kl .
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In summary, our proposed approach to finding the (approx-
imately) optimal fused PMB density consists of the following
steps:

1) Depending on how the FoVs overlap, we select how to
divide the PPP intensities such that the PMB densities
all have K parts, and we find permutations πs such
that the fused densities f πs(i)s (X) have a high degree of
similarity in the sense of the KL-divergence. Note that
this entails determining K , λjs(x), and πs.

2) Fuse the matched PPPs and Bernoullis, see details
below in Section V-C.

3) After the fusion of the K parts of f̄ (X), we add all the
PPP intensities such that a single PPP is obtained.

4) Lastly, we recycle any Bernoullis in f̄ (X) that have very
low probability of existence.

C. FUSION OF BERNOULLIS AND PPPs
In this subsection, we provide expressions for the fusion of
Bernoullis, fusion of PPPs, as well as the fusion of both
Bernoullis and PPPs. Lastly, expressions for fusion of Gaus-
sian densities are provided.

1) FUSION OF PPPs
Let I be an index set for PPP densities fi(X) with intensities
λi(x) = µifi(x). Fusion of densities fi(X), i ∈ I with fusion
weights wi,

∑
i∈I wi = 1, yields a PPP density with intensity

[40]

λ̄(x) =
∏
i∈I
(λi(x))wi = µ̄f̄ (x), (26a)

µ̄ = C
∏
i∈I
µ
wi
i , (26b)

f̄ (x) =

∏
i∈I (fi(x))

wi

C
, (26c)

C =
∫ ∏

i∈I
(fi(x))wi dx. (26d)

2) FUSION OF BERNOULLI RFSs
Consider Bernoulli densities fi(X) with probability of exis-
tence ri and state PDF fi(x). Fusion of densities fi(X), i ∈ I,
|I| ≥ 1, with fusion weights wi,

∑
i∈I wi = 1, yields a

Bernoulli density with parameters

r̄ =
C
∏

i∈I r
wi
i∏

i∈I(1− ri)wi + C
∏

i∈I r
wi
i
, (27a)

f̄ (x) =

∏
i∈I (fi(x))

wi

C
, (27b)

C =
∫ ∏

i∈I
(fi(x))wi dx. (27c)

3) FUSION OF BERNOULLI RFSs AND PPPs
Let I, |I| ≥ 1, be an index set for PPP densities fi(X) with
intensities λi(x) = µifi(x), and let J, |J| ≥ 1, be an index set
for Bernoulli densities fj(X) with probabilities of existence rj
and state densities fj(x). Fusion of PPPs and Bernoullis with

fusion weights wi and wj,
∑

i∈I wi +
∑

j∈J wj = 1, yields
(without approximation) a Bernoulli density with parameters

r̄ =
C
∏

j∈J r
wj
j
∏

i∈I µ
wi
i∏

j∈J(1− rj)
wj + C

∏
j∈J r

wj
j
∏

i∈I µ
wi
i

, (28a)

f̄ (x) =

∏
i∈I (fi(x))

wi
∏

j∈J
(
fj(x)

)wj
C

, (28b)

C =
∫ ∏

i∈I
(fi(x))wi

∏
j∈J

(
fj(x)

)wj dx. (28c)

The fusion in (28) holds for any PPP intensities λi(x),
however, given that a Bernoulli RFS represents zero or one
object, the fusion results will be more accurate for µi < 1.

4) FUSION OF GAUSSIAN DENSITIES
When the Bernoulli state densities, and/or the PPP intensities
are Gaussian, the fused densities f̄ (·) and the normalizing
constants C can be computed exactly, see, e.g., [45, Eqn. 36]
and [51]. Let fi(x) = N (x;mi,Pi) for i ∈ I. Fusion of the
densities, with weights wi,

∑
i∈I wi = 1, yields a Gaussian

density,

f̄ (x) =

∏
i∈I (fi(x))

wi

C
= N

(
x; m̄, P̄

)
, (29a)

where

m̄ = P̄

(∑
i∈I

wi (Pi)−1mi

)
, (29b)

P̄ =

(∑
i∈I

wi (Pi)−1
)−1

, (29c)

C =
∫ ∏

i∈I
(fi(x))wi dx (29d)

=
det(2π P̄)1/2∏
i∈I det(2πPi)wi/2

× exp

[
1
2

(
m̄T P̄−1m̄−

∑
i∈I

wimTi P
−1
i mi

)]
. (29e)

D. COMPLEXITY REDUCTION
From (24), we see that we need to fuse components of the
PMBs over all permutations πs ∈ 5(1:K ). The KLD is the
lowest when the RFS densities are identical. In our applica-
tion, this meanswhen the single-target posterior densities rep-
resent the same target. To reduce computational complexity
towards finding the fused posterior density minimizing the
KLA, we propose to use the optimal permutation, denoted the
best possible fusion map. It is defined and found as follows.
Let there be two RFSs densities with index sets I1 and Is
respectively. We define the best fusion map π∗s ∈ 5(1:K ) as
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FIGURE 3. Simulation scenario with two ETs observed by two sensors
with overlapping FoVs. The ETs states are plotted every 20 time steps
(position is visualized by a bold green dot and contour by solid blue
lines).

the solution of the optimal assignment problem [52]

minimize
a

|I1|∑
n=1

|Is|∑
m=1

an,mCn,m

subject to
|Is|∑
m=1

an,m = 1, ∀n,

|I1|∑
n=1

an,m = 1, ∀m,

an,m ∈ {0, 1}, (30)

where Cn,m denotes the cost for assigning (mapping) com-
ponent n in f1(X) with component m in fs(X). To solve
(30), we can use, e.g., the Munkres algorithm [53], [54]. For
Nsens > 2 the best fusionmap is found by sequentially solving
(30) for s = 2, . . . ,Nsens.
We define the cost metric in terms of the KLD between the

PDFs of the components in f1(X) and fs(X). For a component
n ∈ I1 with PDF f1,n(y), and similarly for m ∈ Is, the cost is
defined

Cn,m =
1
2

[
D(f1,n‖fs,m)+ D(fs,m‖f1,n)

]
, (31)

which admits a closed-form expression for Gaussian PDFs.
Using the procedure above, we find the best fusion map and
use it to solve (24).

VI. NUMERICAL RESULTS
We present first the target extent model used for the simu-
lations. This is followed by the simulation setup, the used
performance metrics, and a discussion of the obtained results
using the independent PMB-ETT filter with and without
posterior fusion. As was mentioned in Section I, the only
comparable work is [36], which considered fusion of only the
MB components, but not the PPP part. Hence, it can be seen
as a special case of our proposed filter.

A. SINGLE ET MODEL
The specific target extentmodel is based on [8], here extended
to include the sensor state (including position and orientation)
in the measurement model. In the following, we describe the
ET state and measurement model, and how this leads to
extended Kalman filter (EKF) prediction and update equa-
tions that are utilized in the PMB-ETT filter.

1) ET STATE AND MOTION MODEL
The augmented state xk = [γk , yT

k ]
T of a single ET at

time k comprises an unknown Poisson rate γk of number of
measurements generated by the ET and the ET spatial state
yk . The state has prior

4 PDF

f (xk ) = G(γk ;αk , βk )N (yk ; ŷk ,Pk ), (32)

where the gamma distribution with parameters αk and βk is
a conjugate prior for the rate γk , and the Gaussian distribu-
tion with mean ŷk and covariance matrix Pk describes the
a priori knowledge regarding the ET spatial state yk . The ET
spatial state (which includes the ET center, orientation, and
extent) and motion model are based on [8] and detailed in
Appendix B. Since the measurement rate is independent of
the sensor state, the decentralized fusion of Sec. V is only
applied to the spatial state yk , while each sensor maintains
a local density of the rate γk (i.e., the average number of
measurements obtained from target with specific sensor) of
each target.

2) ET MEASUREMENT MODEL
In this section, the time index k will be omitted for the sake
of brevity. A sensor s located at ps ∈ R2 with orientation
αs observes the ET contour in its local coordinate frame.
We distinguish between three coordinate frames: a quantity
in the sensor coordinate frame is indicated by superscript S,
in the ET coordinate frame by superscript L, and in the global
coordinate frame by superscript G. A measurement zS ∈ R2

is thus

zS = h(y)+ w, (33)

where w ∼ N (0,R) with measurement noise covariance R
and

h(y) = ySc + e(θ
S )Tf (θL), (34)

where θS = 6 (zS − ySc ), e(θ
S ) is a unit vector in direction

θS , and θL = θS − ψS in which ySc and ψS are the target
location and orientation in the sensor frame of reference5.

4Note that in the augmented state PDF (32) the measurement rate γk and
the ET state (including its extent) yk are considered independent, which
is a common assumption in ETT (see e.g. [55]). Due to the sensor-to-
target geometry (e.g., for a Lidar its angular resolution and the sensor-target
distance), the estimated measurement rate of the ET is implicitly sensor
dependent, i.e., a different sensor configuration yields a different estimate
for γk . The explicit modeling of the dependence of γk on the sensor state
and yk is not considered here.

5Note that here the unknown angle θS is replaced by a point estimate,
which is a simple but inaccurate approach and can be seen as a greedy
association model [5]. It is also the approach taken by [8].
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Here, f (θL) ≥ 0 is the extent of the target along local angle
θL . We now express the observation in the global coordinate
frame. It can be shown that zS ∼ N (h̃(y), R̃) with

h̃(y) = R(αs)(yc − ps)+ e
T(θS )H f (θL)yf , (35)

R̃ = R+ k f e(θS )eT(θS ), (36)

where R(αs) is a rotation matrix, H f (θL), and k f are defined
in Appendix C.

3) ET EXTENDED KALMAN FILTER EQUATIONS
Prediction and update equations of an EKF filter using the ET
motion and measurement models are given in Appendix D.
The prediction and update equations for the measurement
rate and the predicted likelihood are also stated. All these are
utilized in the prediction and update step of the PMB-ETT
filter (c.f. Section IV).

B. SETUP
If not stated otherwise, there are two ETs present in the scene
and their visibility and number of measurements produced
per scan depend on the sensor FoV and its configuration.
We use a rectangular target of length 5 m and width 3 m to
model ETs representing vehicles. Furthermore, we use Lidar
type sensors with the following simplified sensor models.
Sensor 1 is located at pS1 = [−115, 120]T, with orienta-
tion αS1 = −45

◦, opening angle of 80◦, angular resolution
of 0.15◦, and maximum range of 300 m. We generate a
measurement when a ray from the sensor hits an ET and
add noise with covariance matrix RS1 = 0.5I2. Sensor 2 is
located at pS2 = [−105,−80]T, with orientation αS2 = 45◦,
opening angle of 90◦, angular resolution of 0.15◦, maximum
range of 300 m, and RS2 = 0.02I2. Each sensor produces
clutter measurements with rate λ = 2 and uniform spatial
distribution c(z) = U[−200, 200]2.
In the simulation, each independent PMB-ETT filter has

only access to measurements from one sensor (denoted indep.
filter). The fusion filters are independent PMB-ETT filters
(denoted fusion filter), but perform posterior fusion according
to Sec. V. We approximate the PMBM posterior by a PMB
which consists of the MB in the MBM that has the highest
weight. If not stated otherwise, posterior fusion is applied in
every time step. We set the weights ws = 1/Nsens, resulting
in a more conservative estimate than achievable. The fused
posterior is then used as the prior for the next filter itera-
tion. For comparison, an PMB-ETT filter that incorporates
measurements from all sensors is used (denoted centralized
filter). There, measurements from each sensor are incorpo-
rated separately by applying multiple sequential PMB-ETT
filter update steps. The timing of the updates for the different
filters is visualized in Fig. 4: the independent filters perform
a measurement and an update each sampling period T (see
further). The centralized filter takes both these measurements
and performs a single update each period T . Finally, the pos-
terior fusion takes the posteriors from both sensors and fuses
them each period T .

FIGURE 4. Timing of updates: blue/red circles are measurements, black
circles are posterior updates, and yellow circles represent a posterior
fusion.

For all filter variants, spatially close measurements are
clustered into measurement cells using the DBSCAN cluster-
ing algorithm [56], where we set the maximum radius for the
neighborhood to 4 m and the minimum number of points for a
core point to 4. The simulation scenario is outlined in Fig. 3.
The hyperparameters of the GP (see Appendix B) are l2 =
π/8, σ 2

f = 2, σ 2
r = 2, and 20 support points are used to track

the target extent. Note that the dimension of the ET state is 26
(xy-position, orientation, xy-velocity, angular velocity, target
extent support points). The target motion model and its model
in the filter are identical with sampling time T = 0.5 s,

F̄k =
[
1 T
0 1

]
⊗ I3, (37)

W̄k =

T
3

3
T 2

2
T 2

2
T

⊗ diag([0.01, 0.01, 0.001]), (38)

β = 0.001 in Ff (c.f. (51)), and the forgetting factor is set
to 1

η
=

1
1.11 . In the filters, the birth intensity has rate λb =

1
10 and for the spatial distribution we use a single Gaussian
centered at location x = [0, 100]T with covariance matrix
P = 30I2. The probability of ET survival is pS = 0.999,
the probability of detection is pD = 0.99. Hence, the filter is
subject to both missed detections and false alarms.

C. PERFORMANCE METRICS
Multiple target tracking performance is measured by three
errors: estimation error for localized targets, number of
missed targets, and number of false targets, see, e.g., [57,
Sec. 13.6]. The generalized optimal subpattern assignment
(GOSPA) metric [58], [59] measures all three errors, hence
we use it for performance evaluation6. Performance of the
estimated number of targets as well as their center location
is thus assessed as follows. Let sets X̂ = {x1, . . . , xn} and
Y = {y1, . . . , ym} be finite subsets ofRN , where without loss

6In tracking literature, theOSPAmetric [60] is often used. However, recent
work [61] has shown that the OSPA metric is susceptible to ‘‘spooky action
at a distance’’, which is undesirable. Hence, we do not use the OSPA metric
in this paper.
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of generality n ≤ m. Then [58], [59]

d (c,α,p)GOSPA=

(
min

In∈Fn({1,...,n})

n∑
i=1

d (c)(xi, yIn(i))
p
+
cp

α
(m−n)

) 1
p

,

(39)

where we set the power parameter p = 2, cut-off distance
c = 20, α = 2, and d (c)(x, y) = min(‖x − y‖2, c), i.e., the
minimum of the Euclidean distance and value c. To obtain
X̂ , we estimate the detected ETs from the (fused) posterior
through comparison of the probability of existence of each
Bernoulli component against the threshold rth = 0.5. The
set Y contains the true ETs. Note that we only use the mean
position of the target center (c.f. Sec. II-B).

The performance of the target extent estimation is assessed
with the intersection over union (IOU) of the true target shape
(in the global coordinate frame) and the estimated shape. Let
Ak be the true ET area in xy-dimension at time step k , and Âk
its estimate. Then, the IOU is defined as, see, e.g., [8],

IOU(Ak , Âk ) =
area(Ak ∩ Âk )

area(Ak ∪ Âk )
. (40)

Note that the IOU is, by definition, always between zero for
non-overlapping target shapes and one when they fully over-
lap. Thus a well-performing ETT filter will yield a high IOU
for every ET. For both GOSPA and IOU average performance
results were obtained by averaging over 50Monte-Carlo runs.

D. DISCUSSION OF RESULTS
Here, we first discuss the ETT filter performance with decen-
tralized posterior fusion in terms of GOSPA and IOU per-
formance metrics. This is followed by performing posterior
fusion at a lower rate. After that, we investigate the case when
more than two ETT filters are used for posterior fusion.

1) FILTER PERFORMANCE WITH POSTERIOR FUSION
In Fig. 5, the true and estimated target state is plotted for ET
2 using the different filter variants. We observe that indepen-
dent filter 1 (Fig. 5a) estimates the target state with a clear
position error (in the positive y-direction). This filter uses
measurements from sensor 1, where most of the measure-
ments provide information only from the ET’s top edge due
to the horizontal movement of the target and the sensor pose.
In the measurement model (33), occlusions caused by the ET
itself are not modeled. Due to the simple data association that
is used, the received measurements can then be explained
by an ET whose target contour is in the proximity of the
measurements and the target center is placed north of it.
In contrast, independent filter 2 and the centralized filter
estimate the target center closer to the true position (Fig. 5b
and Fig. 5c). The former filter overestimates the target size
in the direction where no measurement is provided, whereas
the latter filter utilizes measurements from both sensors and
can, therefore, estimate the target size accurately. The fusion
filter utilizes information from both sensors through posterior
fusion.

FIGURE 5. Estimated shape of one ET for different PMB-ETT filters. The
true ET center and extent is plotted (green dot, blue solid line), as well as
the estimated ones (red dot, red solid line for mean extent, red dotted
line for one standard deviation). The standard deviation of the mean is
not shown for clarity.

In Fig. 6, the true and estimated measurement rate γ is
plotted over time. We can observe that the true measurement
rate of the ETs is varying over time. Although only a simple
process model for the measurement rate is used in the filters,
they can correctly track the rate. This is true for all filter
variants except for the centralized filter. This filter performs
two sequential filter update steps using measurements from
different sensors. Since the number of measurements for an
ET are different for each sensor, it follows that after central-
ized fusion the filter estimates the measurement rate of the
ET as the average of the two.

In Fig. 7, the average GOSPA is plotted over time for
the simulation scenario illustrated in Fig. 3. The centralized
filter has the best performance followed by the fusion filter.
Independent filter 2 has superior performance compared to
the independent filter 1. Note that independent filter 1 is
provided with measurements from sensor 1, which has a
higher measurement noise compared to sensor 2.

In Table 1, the average IOU is stated for the different ETs
and filter variants. We observe that the IOU for ET 2 is low
with independent filter 1 due to the misplaced target center,
and with independent filter 2 due to the overestimation of
the target size. The fusion and the centralized filter show
comparable performance.

2) LOW RATE POSTERIOR FUSION
In a real system, it may not be feasible to perform posterior
fusion after every filter update step. This can occur when
the computers on which the filters run are geographically
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FIGURE 6. The true and estimated measurement rate for each ET and sensor/filter is plotted over time.

TABLE 1. Average IOU.

TABLE 2. Average GOSPA.

separated and need to communicate over the wireless chan-
nel. Therefore, it is worthwhile to investigate the filter perfor-
mance when posterior fusion is performed only every N time
steps.

In Table 2, the average GOSPA is stated for different values
of N . We see that with increasing N the performance of
the fusion filters deteriorates, since the information transfer
(through fusion) between the filters over time is too low.
Fusion filter 1 has worse performance compared to fusion
filter 2 for N ≥ 15, since it is equipped with the low-quality
sensor 1.

3) POSTERIOR FUSION WITH MORE FILTERS
In Sec. V, we proposed a procedure to fuse PMB posteriors
when there are more than two independent PMB-ETT filters.
We implement this sequentially, where first posteriors from
two filters are fused. The outcome is then used to fuse with
a not yet fused posterior from one of the remaining filters.
This process is repeated until all filter posteriors have been
incorporated.We placed four sensors at pS1 = [−150,−80]T,
pS2 = [−150,−50]T, pS3 = [−150,−20]T, and pS4 =
[−150, 10]T all with overlapping sensor FoVs towards the
ETs. The remaining sensor parameters are the same as for
sensor 1 used in the previous simulations. In Table 3, the aver-
age GOSPA, as well as the average IOU per ET are stated for

FIGURE 7. The average GOSPA value is plotted over time. Posterior fusion
is performed in every time step.

TABLE 3. Multiple posterior fusion.

a single independent PMB-ETT filter (no fusion), two filters
with posterior fusion performed after every filter update,
and four filters with posterior fusion. With posterior fusion,
performance increases, visible by a decrease of the GOSPA
value. Also, the average IOU increases for all ETs with
posterior fusion. Furthermore, fusion of two filter posteriors
and four filter posteriors show similar performance in this
scenario. Note, however, that for the IOU of ET 2, two sensors
perform slightly better than four sensors. We believe this can
be ascribed to the randomness of the simulations.

VII. CONCLUSIONS
We proposed a low-complexity decentralized ETT filter that
is capable of estimating the presence, state, and shape of ETs
accurately. It operates by combining the multiobject densities
of PMB form computed by independent ETT filters. Fusion
is performed in the minimum KLA sense yielding a fused
posterior which is conservative but never overconfident about
the estimated states. A low-complexity implementation is
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highlighted, which permits the use of an optimal fusion map-
ping between pairs of sensors. The fusion map was identified
as the solution of a linear optimal assignment problem based
on a cost matrix comprised of the symmetric KLD between
target state estimates.

In the simulation results, we observed how the independent
PMB-ETT filters together with the GP target extent model are
capable of estimating the state and shape of the present ETs.
Furthermore, we observed that fusion of the filters posterior
permits a holistic view of the surveillance region spanned
by all sensors combined. This resulted in a reduced state
estimation error quantified by the GOSPA distance metric,
and for the ET shape estimation by an increased area overlap
quantified by the IOU value.

Additional work is needed to evaluate the performance
when the number of targets in the FoV is varying and FoVs
are partially overlapping.

APPENDIX
A. ET-PMB PARAMETERS
Following [3, Sec. IV], we find that

wA =

∏
C∈A LC∑

A∈A
∏

C∈A LC
, (41)

LC =



κCC +
〈
Du+, `CC

〉
, if C ∩ I = ∅, |CC | = 1,〈

Du+, `CC
〉
, if C ∩ I = ∅, |CC | > 1,

1− r iC+ + r
iC
+

〈
f iC+ , qD

〉
, if C ∩ I 6= ∅,CC = ∅,

r iC+
〈
f iC+ , `CC

〉
, if C ∩ I 6= ∅,CC 6= ∅.

(42)

The density fC (XC ) in (15) is a Bernoulli density with
parameters

rC

=



〈
Du+, `CC

〉
κCC +

〈
Du+, `CC

〉 , if C ∩ I = ∅, |CC | = 1,

1, if C ∩ I = ∅, |CC | > 1,

r iC+
〈
f ic+ , qD

〉
1− r iC+ + r

iC
+

〈
f iC+ , qD

〉 , if C ∩ I 6= ∅, CC = ∅,

1, if C ∩ I 6= ∅, CC 6= ∅,

(43)

fC (x)

=



`CCD
u
+(x)〈

Du+, `CC
〉 , if C ∩ I = ∅,

qD(x)f
iC
+ (x)〈

f iC , qD
〉 , if C ∩ I 6= ∅, CC = ∅,

`CC (x)f
iC
+ (x)〈

f iC+ , `CC
〉 , if C ∩ I 6= ∅, CC 6= ∅.

(44)

B. ET SPATIAL STATE AND MOTION MODEL
1) SPATIAL STATE
The ET spatial state including target extent is given by

y = [(ȳ)T, (yf )T]T, (45)

where

ȳ = [(yc)
T, ψ, y∗T]T (46)

comprising the ET center yc, the ET orientation ψ , and any
additional quantities (e.g, velocity) in y∗. The variable yf

models the target extent, following [8]: Let u denote the local
angle w.r.t. the ET orientation and yfi denotes the unknown
target extent along input (angle) ui, for a fixed and finite set
of N angles. Then

yf = [yf1 , . . . , yfN ]T. (47)

This vector is modeled as a zero-mean GP [62], [63]

yf ∼ GP(0,K (u,u)) (48)

with covariance matrix [K (u,u)]i,j = k(ui, uj), in which
k(·, ·) is a periodic kernel function. The input of the GP is
u = [u1, . . . , uN ]T, and the output is yf . We utilize the
periodic kernel function proposed in [8]

k(u, u′) = σ 2
f exp

−2 sin2
(
|u−u′|

2

)
l2

+ σ 2
r , (49)

where σf , l, and σr are the (known) model hyper-parameters.
This function is 2π periodic, i.e., k(u + 2π, u′) = k(u, u′),
and, thanks to σr , star convex object shapes of different sizes
can be described. See [8], [9] for further details and different
choices for the kernel function to describe the extent of an ET
with the help of a GP.

2) MOTION MODEL
Extending Sec. III-B, the ET follows the linear dynamic
model

ȳk+1 = F̄k ȳk + w̄k , (50)

where F̄k denotes the state transition matrix, and w̄k ∼
N (0, W̄k ) with process noise covariance W̄k . The motion
model of the ET contour is [8]

yfk+1 = F fk y
f
k + w

f
k , (51)

where F f = e−βT IN with IN denoting the identity
matrix of dimension N , and wfk ∼ N (0,W f ) with
W f
= (1− e−2βT )K (uf ,uf ). Here, β ≥ 0 denotes the for-

getting factor allowing to accommodate targets with extents
that change slowly, and T is the sampling time.

According to (32), the measurement rate of the ET is
assumed independent of the ETs’ spatial state. To allow the
measurement rate to change over time an exponential forget-
ting factor 1/η is used in the motion model, where the pre-
dicted rate is given by the motion of the gamma distribution
parameters with [3], [55]

αk|k−1 = αk−1/η, (52)
βk|k−1 = βk−1/η. (53)
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C. PROOF OF (49)–(50)
Due to the GP model, we follow [8] and express f (θL) as

f (θL) = H f (θL)yf + ef , (54)

H f (θL) = K (θL ,uf )[K (uf ,uf )]−1, (55)

in which ef ∼ N (0, k f ) with

k f = k(θL , θL)− H f (θL)K (θL ,uf )T. (56)

Separating signal and noise contribution, and expressing
the local states in the global frame of reference through

ySc = R(αs)(yc − ps) (57)

ψS
= ψ − αs, (58)

where R(α) denotes the rotation matrix

R(α) =
[
cos(α) − sin(α)
sin(α) cos(α)

]
, (59)

we find that with the GP contour model measurement zS in
(33) has mean and covariance given by (35)–(36).

D. ET PREDICTION AND UPDATE STEPS
Here, we first describe the EKF prediction and update steps
for the ET’s spatial state. This is followed by the update
step of the ET measurement rate, and lastly the predicted
likelihood utilized in the update step of the PMB-ETT filter
for the ET state model of Section III.

1) EKF PREDICTION AND UPDATE EQUATIONS
With the linear ETmotionmodel the standard EKF prediction
step with initial state y0 ∼ N (ŷ0,P0) is [37]

ŷk|k−1 = Fk ŷk−1, (60)

Pk|k−1 = FkPk−1FT
k +Wk , (61)

where Fk = blkdiag(F̄k ,F
f
k ), and Wk = blkdiag(W̄k ,W

f
k ).

We now extend the EKF update steps derived in [8] to
incorporate the (known) sensor state (position ps and orien-
tation αs). The standard EKF measurement update equations
for a detection zk are [37]

Hk =
d
dyk

h̃(y)|y=ŷk|k−1 , (62)

Sk = HkPk|k−1HT
k + Rk , (63)

Kk = Pk|k−1HT
k S
−1
k , (64)

ŷk = ŷk|k−1 + Kk (zk − h̃(ŷk|k−1)), (65)

Pk = Pk|k−1 − KkHkPk|k−1, (66)

where h̃(·) was defined in (35) and (36). To linearize the
measurement function, we need to compute [8]

Hk =
[
dh̃(y)
dyc

,
dh̃(y)
dψ

,
dh̃(y)
dy∗

,
dh̃(y)
dyf

]
, (67)

where in our case dh̃(y)
dy∗ = 0. We get

dh̃(y)
dyf

= e(θS )H f (θL), (68)

dh̃(y)
dψ
= e(θS )

d
dψ

H f (θL)yf , (69)

d
dψ

H f (θL) = −
∂

∂u
H f (u)

∣∣∣∣
u=θL

, (70)

where [8]

dH f (u)
du

=
d
du
K (u,uf )[K (uf ,uf )]−1, (71)

dK (u,uf )
du

=
d
du

[k(u, uf1), . . . , k(u, u
f
N )], (72)

dk(u, ufi )

du
= −

1
l2

sin(u− ufi )k(u, u
f
i ). (73)

Further,

dh̃(y)
dyc

= R(αs)+
d
du
e(u)

∣∣∣∣
u=yc

(H f (θL)yf )T + e(yc)

×

(( d
du
H f (u)

∣∣∣∣
u=θL

)T d
dw
θL(w)

∣∣∣∣
w=yc

)T

yf

T

,

(74)

where [8]

d
du
e(u) =

(zS − u)(zS − u)T

‖zS − u‖3
−

1
‖zS − u‖

I2, (75)

d
dw
θL(w) =

1
‖zS − ySc‖2

×

[
zSY − ySc

Y
,−(zSX − ySc

X )
]
R(αs). (76)

Here, the superscript bX and bY correspond to the first and
the second dimension of the vector b. Furthermore, we wrote
e(yc) for e(θ

S ) to indicate the state dependency.
To update the ET spatial state by a set of detections W =
{zk,l}

nk
l=1, we augment the measurement vector

zk = [zTk,1, . . . , z
T
k,nk ]

T, (77)

where

Rk = diag(Rk,1, . . . ,Rk,nk ), (78)

h̃k (yk ) = [h̃k,1(yk )
T, . . . , h̃k,nk (yk )

T]T. (79)

2) ET MEASUREMENT RATE
The predicted ET measurement rate γk|k−1 has parameters
αk|k−1 and βk|k−1 (c.f. (32), (53)), which are updated for a
set of detectionsW by [3]

αk = αk|k−1 + |W |, (80)

βk = βk|k−1 + 1. (81)
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3) PREDICTED LIKELIHOOD FOR ET-PMB FILTER
The predicted likelihood, used in the update step of the
PMB-ETT filter (c.f. Sec. IV-2 and Appendix A), for a set
of detectionsW for a single ET is

`W =
0(αk )β

αk|k−1
k|k−1

0(αk|k−1)β
αk
k

|W |∏
l=1

N (zk,l − h̃(ŷk|k−1,l), Sk,l), (82)

where 0(·) denotes the gamma function.
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