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ABSTRACT Deep learning (DL) algorithms are considered as a methodology of choice for remote-sensing
image analysis over the past few years. Due to its effective applications, deep learning has also been
introduced for automatic change detection and achieved great success. The present study attempts to provide
a comprehensive review and a meta-analysis of the recent progress in this subfield. Specifically, we first
introduce the fundamentals of deep learning methods which are frequently adopted for change detection.
Secondly, we present the details of the meta-analysis conducted to examine the status of change detection
DL studies. Then, we focus on deep learning-based change detection methodologies for remote sensing
images by giving a general overview of the existing methods. Specifically, these deep learning-based
methods were classified into three groups; fully supervised learning-based methods, fully unsupervised
learning-basedmethods and transfer learning-based techniques. As a result of these investigations, promising
new directions were identified for future research. This study will contribute in several ways to our
understanding of deep learning for change detection and will provide a basis for further research. Some
source codes of the methods discussed in this paper are available from: https://github.com/lazharkhelifi/
deeplearning_changedetection_remotesensing_review.

INDEX TERMS Change detection, remote sensing images, deep learning, feature learning, weakly super-
vised learning, review.

I. INTRODUCTION
Deep learning (DL) has seen an increasing trend and a great
interest over the past decade due to its powerful ability to
represent learning. Deep learning allowsmodels that are built,
based on multiple processing layers, to learn representations
of data samples with several levels of abstraction [1]. Deep
learning enablesmodels that are composed, based onmultiple
layers, to learn representations of data samples with several
ranges of abstraction levels [1]. It may also be considered as
the analysis of models that either require a greater composi-
tion of learned concepts or functions, compared to conven-
tional machine learning models such as naive Bayes [2], [3],
support vector machine (SVM) [4], [5], random forests, [6],
[7] and the decision tree [8], [9].
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On the basis of its state-of-the-art performance, deep learn-
ing has been consequently applied to various domains, such
as computer vision [10], speech recognition [11], and infor-
mation retrieval [12]. Particularly, in the computer vision
field, deep learning has taken great leaps thanks to the recent
advances of processing power, the improvements in graphics
processors and the increased data volumes (i.e., videos and
images). Notably, the science of remote sensing (RS) has
seen a massive increase in the generation and enhancement
of digital images captured from airplanes or satellites that
cover almost each angle of the surface of the earth. This
growth in data has pushed the community of the geoscience
and remote sensing (RS) to apply deep learning algorithms
to solve different remote sensing tasks. Among these tasks,
stands out the change detection (CD) task defined in [13] as
’the process of identifying differences in the state of an object
or phenomenon by observing it at different times’. In another
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FIGURE 1. Graphical illustration of the change detection problem.

word, change detection refers to identifying the differences
between images acquired over the same geographical zone
but taken at two distinct times [14].

Change detection techniques are extensively utilized in
various applications [15] including; disaster assessment [16],
environmental monitoring [17], land management [18] and
urban change analysis [19], etc. Currently, the number of
extreme disasters caused by climate change such as drought,
floods, hurricanes, and heat waves, has revealed at the same
time a new challenge for researchers and a need for devel-
oping more effective automated change detection methods.
Motivated by those aforementioned observations, deep learn-
ing has been introduced for change detection in remote sens-
ing and achieved good performance.

Recently, various reviews that focus on deep learning for
remote sensing data have been published. These studies have
summarized the deep learning techniques adopted in all major
remote sensing sub-areas including classification, restora-
tion, denoising, target recognition, scene understanding, and
other tasks (for further details we refer the reader to [20],
[21] [22]). To the best of our knowledge, however, there is no
work that has studied the recent progress of deep learning for
the task of change detection in a specific and extensive way.
Therefore, the purpose of this present report is to provide an
overview of the state of deep learning algorithms as applied in
remote sensing images for change detection. Hence, by per-
forming a meta-analysis, we selected and categorized the
relevant papers related to DL and change detection. By doing
so, then we provide a technical review of these studies that
shed more light on the advance of deep learning for change
detection. This review will serve as a base for future studies
in this subfield of research.

The rest of this paper is structured as follows. Section
II presents the definition of the change detection prob-
lem. Section III gives a brief overview of deep learning as
well as the typical deep models used for change detection.
Section IV describes the methods and data used to review the

state-of-the-art. In Section V, we divide these previous works
into three categories; fully supervised learning-based meth-
ods, fully unsupervised learning-based methods, and transfer
learning-based methods. Section VI suggests two interest-
ing research directions to further advance the field. Finally,
Section VII outlines the conclusions.

II. CHANGE DETECTION IN REMOTE SENSING
Change detection is the operation of quantitative analysis
and determination of surface changes from phenomena or
objects over two distinct periods [13]. This process, which is a
basic technology in the field of earth observation, attempts to
distinguish the changed and unchanged pixels of bi-temporal
or multi-temporal remote sensing images acquired from the
same geographical zone or area, but at different times, respec-
tively [23], [24]. Assigning to each pixel a binary label based
on a pair or series of co-registered images represents the main
purpose of the change detection system. A positive label thus
means that the area of that pixel has changed, while a null
label represents an unchanged area (See Figs. 1 and 2) [25].
Actually, change detection represents a powerful tool for
video surveillance, mapping urban areas, and other forms of
multi-temporal analysis.

Formally, let I1 and I2 be two co-registered images, which
share the same sizeW × L and taken over the same geograph-
ical region at two separate periods t1 and t2, respectively,
using the same sensor, in the classic monomodal case:

I1 = {I1(x, y), 1 ≤ x ≤ W , 1 ≤ y ≤ L} (1)

I2 = {I2(x, y), 1 ≤ x ≤ W , 1 ≤ y ≤ L}. (2)

The primary purpose of a change detection system is to
generate an accurate binary change map (CM):

CM = {CM (x, y) ∈ {0, 1}, 1 ≤ x ≤ W , 1 ≤ y ≤ L}, (3)

where (x, y) represents the position coordinates of the pixel
indexed i. In traditional methods, this change map can be
obtained by a difference image (DI) operation, based on
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FIGURE 2. An illustration of a typical change detection results within a high-resolution satellite image [29], [30].

differencing or log-rationing function (DI = |I1 − I2|),
followed by a final analysis of the DI result.

Change detection has been successfully used in a wide
variety of applications. In particular, in the agricultural sector,
change detection is adopted for deforestation monitoring,
disaster assessment and shifting cultivationmonitoring. In the
military field, it is now utilized in collecting information
about new military installations, movement of the enemy’s
military forces, battlefield area, and damage assessment [26].
In the civil field, change detection is used to control urban
area development and city extension [27]. Also, it is actu-
ally adopted to monitor the effects of climate changes usu-
ally associated with the increase of levels of greenhouse
gas (GHG) emissions in the atmosphere, such as changes in
mass balance and glacier facies or sea-level change.

While the change detection algorithms have shown many
benefits in various fields of applications, it faces some serious
challenges. Among these challenges, we can consider the
variation in data acquisition parameters which can affect the
process of finding the relevant changes by adding an irrel-
evant information into the data. In addition, this unwanted
change can be emerged as atmospheric features, like fog,
clouds, and dust. For example, a cloud present in one image
(at time t1) but not in the other one (at time t2) leads to
a bright patch that can be registered as a difference and
consequently affects the quality of the resulting change map.
Angles of sunlight may also present another problem related
to the presence and the direction of the shadows on the scene
[26]. Besides, vegetation growth and surface reflectance of
objects such as soil before and after rain can also affect
the result of a change [28]. Thus, a robust change detec-
tion method must be able to differentiate between relevant
changes and irrelevant changes in satellite images in addition

to the detection of temporal changes. Motivated by those
successful applications, recently deep learning techniques,
capable of extracting information from data (image or video),
have been applied to solve this problem and have achieved
good performances.

III. BRIEF OVERVIEW OF DEEP LEARNING
Deep learning (DL) algorithms, aiming at learning represen-
tative and discriminatory features from a set of data in a
hierarchical way, have received much attention from world-
wide geoscience and remote sensing communities, in recent
years. In the first part of this section, we briefly present
the deep learning history to explain the trend in its growth.
In the second part, we outline different deep network mod-
els widely designed for change detection in remote sens-
ing images. These deep networks incorporate deep belief
networks (DBNs), stacked autoencoders (SAEs), genera-
tive adversarial networks (GANs), recurrent neural networks
(RNNs), and convolutional neural networks (CNNs).

A. HISTORY
Deep learning (DL) is a particular approach of machine
learning which takes advantage of the knowledge of the
statistics, human brain, and applied mathematics statistics,
as it advanced over the last years [31]. By gathering these
pieces of knowledge, this approach relieved human experts
from formally defining all the knowledge that the computer
machine requires to resolve a particular problem. This pow-
erful approach reaches good flexibility and scalability by
representing the world as an embedded hierarchical structure
of concepts. This concept hierarchy enables the machine to
recognize complex concepts by developing them from sim-
pler ones [31]. DL is driven from the connectivity theory
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related to the functionality of our brain cells, also called
neurons, leading to the concept of artificial neural networks
(ANN). ANN is designed based on artificial neuron layers to
receive input data and transform it into outputs by applying
an activation function and learning progressively higher-level
features. The intermediate layers (in the middle of the input
and output) are often called ‘‘hidden layers’’ because they
are not directly observable from the inputs and outputs of
the system [32]. In practice, to solve complex tasks such
as change detection in remote sensing images, a neural net-
work that contains multiple hidden layers is applied. This
multiple-layered structure is addressed as a ‘‘deep’’ neural
networks (DNNs), therefore, the word‘‘deep learning’’.

As described in [31], the development of deep learning has
followed three main waves reflecting different philosophical
viewpoints. The first wave refers to cybernetics in the 1940s-
1960s, characterized by the concepts advance of biological
learning [33], [34] and application of the first models such
as the perceptron [35] which allows the training of an archi-
tecture based on a unique neuron. The second stage began
with the connectionist1 approach expanded in the 1980s-
1995s period, with back-propagation [36] to train a neural
network using one or two hidden layers. This fundamental
building block updates the weights of the connections in the
network for multiple times, by minimizing a measure of the
gap among the actual output vector of the net and the aimed
output vector [37]. While this approach works quite well
when dealing with simple applications, especially, the com-
munity of computer vision has found some issues to apply
this approach to complex problems. The main challenge
was the lack of specific computing hardware to train effi-
ciently deep neural networks (DNNs). The third wave started
in 2006 under the name of deep learning [38], [39]. Since
that time, we have seen a renewed importance in deep neural
networks benefitted to the availability of powerful computer
systems, expanded databases and new training techniques.
Currently, deep learning has received much focus in different
research areas of computer vision, including the analysis of
remote sensing images.

B. DEEP MODELS
1) DBNs
Deep belief networks (DBNs) are mainly built based on a lay-
erwise training model called restricted Boltzmann machine
(RBM). RBMs are stochastic undirected graphical models
containing a layer of visible variables and a unique layer of
hidden variables. Fig. 3 illustrates the graph structure of the
RBM. It is a bipartite graph that involves the link of visible
units representing observations, to hidden units that learn to
describe features based on undirected weighted connections
[40]. In this model, there are no connections permitted among
any variables in the visible layer or between any units in
the hidden layer. Mathematically, let suppose that the visible
layer v contains a set of nv binary random variables, and the
hidden layer h consists of nh binary random variables. The

FIGURE 3. A general illustration of RBM.

energy function of the canonical RBM can be formulated
as [31]:

E(v,h) = −b>v− c>h− v>Wh (4)

whereW , b and c represent learnable parameters. Theweights
W on the connections and the biases b. The weights on the
connexions and the biases of the individual units express a
distribution of probability through an energy function over
the joint states of the visible and hidden units [41]. The prob-
ability (i.e., energy) of a joint configuration is then defined
as:

p(v,h) = Z exp(−E(v, h)) (5)

where Z is the normalizing constant usually referred to the
partition function:

Z =
∑
v

∑
h

exp {−E(v, h)} (6)

Because of the restricted characteristic (i.e., feature) repre-
sentation capability of a unique RBM, several RBMs can
be stacked one by one forming a DBN that may effectively
trained to obtain a deep hierarchical modeling of the training
data [42]. Fig. 4 presents a DBN composed by stacking
multiple RBM layers.

2) SAEs
Autoencoder (AE) is considered as the principal building
piece of the stacked autoencoder (SAE) [44]. An autoencoder
is a feedforward neural network model that applies backprop-
agation, setting the objective values to be consistent (or equal)
to the inputs. This model consists of two steps an encoder h =
f (x) and a decoder that attempts to provide a reconstruction
r = g(h). On the one hand, based on a non-linear function,

1Connectionism represents a movement in cognitive science that aims to
interpret intellectual abilities through artificial neural networks [43].
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FIGURE 4. General illustration of DBN.

the encoder side projects the input vector (x) to the hidden
layer:

h = s(whx + bh) (7)

On the other hand, the decoder maps the hidden layer back to
the output layer that contains an identical number of units as
the input layer:

y = s(wyh+ by) (8)

where s(.) denotes the logistic sigmoid function (1 +
exp(−x)). wh and wy represent the input to hidden and the
hidden to output weights, respectively. In addition, bh and
by identify the bias of the hidden and output units. With the
purpose of reconstructing the error between x and y, a metric
based on the Euclidean distance is generally minimized. This
reconstruction loss is defined by:

d(x,y) = ‖y-x‖2 (9)

A typical architecture of autoencoder is presented in Fig. 5.
A stacked Autoencoder (SAE) is a neural network built on
the top of several layers of autoencoders where the output of
each hidden layer is connected to the input of the next hidden
layer. Fig. 6 shows a simple representation of a SAE.

3) CNNs
Convolutional neural networks, also known as CNNs [45], are
a special form of neural network designed for processing data
that has a known grid-like representation, for example image
data, which can be considered a two dimension (2D) grid of
pixels. Generally, the CNNs can be thought of as an extrac-
tor of hierarchical characteristics, which, on the one hand,
extracts features of diverse abstraction layers, and on the other
hand, maps the raw pixel intensities into a feature vector [46].
An architecture of a typical CNNs is illustrated in Fig. 7,
where conv, mp, and fc denote convolutional, max-pooling
and fully-connected layers, respectively. Convolutional layer

FIGURE 5. Auto-encoders.

FIGURE 6. Stacked auto-encoders.

represents the fundamental component of the CNN architec-
ture [47]. In this layer, several trainable convolution kernels
(called also filters) are applied to the previous layer [48]. The
weights of these kernels aim to connect units in a feature
map with the previous layer. As a result of convolution, local
conjunctions of features are detected and their appearance
is mapped to the feature maps. The stacking of various
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FIGURE 7. A flowchart of a conventional CNN, which consists of two convolutional layers (C1, C2), two pooling layers (P1, P2), two fully connected layers
(F1, F2) and a softmax layer (output).

convolutional layers increases the depth of networks which
makes the extracted maps more abstract. The earlier layers
enhance features, for example edges, however, the following
layers aggregate these features in the form of motifs, parts,
or objects. Formally, suppose that ml represents the filters
convolution number in layer l of the network, and xnl−1 the
2D array related to the n − th input of layer l. The k − th
output feature vector of layer l, denoted zkl , can be computed
as follows:

zkl =
[ml−1∑
n=1

wk,nl ⊗ x
n
l−1

]
+ bkl (10)

where bkl is the bias matrix,wk,nl represents a filter connecting
the n-th feature map in the previous layer (l − 1) with the
k-th feature map in layer l, and ⊗ denotes the convolution
operator. Typically, after the convolution operation a nonlin-
ear activation function is performed on each element of the
convolution result.

ykl = f
(
zkl
)

(11)

A range of activation functions has been proposed in the
literature to improve the performance of CNNs, for example
the sigmoid function [49], hyperbolic tangent function (tanh)
[50], adaptive piecewise linear activation (APL) [51], and the
popular rectified linear unit (ReLU) [52]. The convolution
process is followed by a max-pooling operation. This step
aims to replace the output of the network at some particular
positions with a summary statistic relating to the neighbor-
hood of this location [31]. The pooling operation aims to
gradually minimize, the spatial size of the output feature
maps, and hence, decreases the parameters number of the
network. Generally, there are two standard choices for the
operation of pooling: max and average. Formally, for a v× v
window-size neighbor represented by N . The average takes
the arithmetic mean of the elements in each pooling region as
follows:

pkj = |
1

Rkj
|

∑
i∈Rkj

yki,j (12)

while the max operation takes the largest element:

pkj = max
i∈Rki

yki,j (13)

where Rj is pooling region (i.e., the number of elements in
N ) and yki,j is the activation value related to the position (i, j).

After the pooling operation, the output feature maps of the
previous layer are flattened and provided to fully connected
layers. These layers are exploited to extract more high-level
information by reshaping feature maps into an n-dimension
vector [42]. At the last layer of the network, called the classifi-
cation layer, neurons are gathered automatically intoC output
feature maps that correspond to the number of classes. Then,
using a softmax function, the output of the classification
layer L is converted into (normalized) probability distribution
errors. Specifically, the probability distribution of classes is
produced via the following function:

pc =
exp(ycL)∑C
c′=1 exp(y

c′
L )

(14)

where the calculated probabilities are within a [0, 1] range,
and the sum of all the probabilities is equal to 1. Convolu-
tional Neural Networks (CNNs) have been well established
as a powerful class of models from a variety of computer
vision tasks [53] including change detection in remote sens-
ing images. Hence, different successful CNNs architectures
have been suggested in the literature. The current surge of
the CNNs in many tasks heavily relies on the use of modern
network architectures, such as the AlexNet [54], VGG [55],
and RESNET [56]. These modern architectures explore new
and innovative ways for constructing convolutional layers
that guarantee more efficient learning [57].

4) RNNs
Recurrent neural networks, also known as RNNs [37], are
a class of neural networks that allows processing sequential
data. Particularly, this model is enhanced by the integration
of edges that spanning adjacent time steps which introduces
the notion of time [58]. Compared to the convolutional neural
network that is specialized for processing a grid of values X
such as an input image, a recurrent neural network allows
operating over a sequence of vectors or values with the help
of a recurrent hidden state (see Fig. 8). Formally, suppose
that x(1), ..., x(n) is a sequence of vectors where xt represents
the data at the tth time step. Two activation functions define
all calculations required for computation at each temporal
sequence t:

ht = f (Whxt + Uhht−1 + bh) (15)

yt = f 2(Wyht + by) (16)

where Uh is the same matrix utilized at each time step. Via
this matrix, the hidden units in the previous step ht−1 is
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FIGURE 8. An unrolled recurrent neural network.

used to compute ht , while the current observation provides
a weighted term Whxt , which is summed with Uhht−1 and
a bias term by. Both Wh and by are typically replicated over
time. The output layer is represented by a conventional neural
network activation function applied to the linear transfor-
mation of the hidden units, and the process is repeated for
every time phase [59]. Unfortunately, standard RNNs suffer
from a critical drawback related to the vanishing gradient
problem, which makes the neural network hard to be trained
properly. To overcome this serious problem, long short-term
memory (LSTM) [60] and gated recurrent unit (GRU) [61]
were suggested. One advantage of LSTM is that it intro-
duces the notion of memory cell, a unit of computation that
replaces classical nodes in the hidden layer of a network. This
capability of memory cells able to overcome difficulties with
training encountered by earlier recurrent networks. Like the
LSTM unit, the GRU is characterized by units which control
the information flow within the unit, nevertheless, without
having a distinct memory cell [61].

5) GANs
Generative adversarial networks (GANs) were proposed by
Goodfellow et al. [62]. Given a real data (e.g., images), this
generative technique learns to produce novel data with the
same statistics as the original data. GANs are based on a
game theoretical scenario in which the generator network
must compete against an adversary [31]. A general illustra-
tion of the structure of a GAN is shown in Fig. 9. Formally,

FIGURE 9. General illustration of the structure of a Generative
Adversarial Network (GAN).

from training data x and a provided a priori distribution (i.e.,
random noise) v, the generator network directly generates
fake samples G(v). Its adversary, the discriminator network,
aims to differentiate between samples provided by the train-
ing data and samples produced by the generator. While the
discriminatorD is trained to maximize the value of log(D(x)),
indicating the probability of selecting the correct labels to the
training samples, the generator blockG is trained to minimize
log(1 − D(G(z)) [42]. Thus, D and G play a two-player
minimax game as follows:

GAN = argmin
D

max
G

LGAN (G,D) (17)

where

LGAN (G,D) = Ex∼p(x)[logD(x)]

+Ev∼(v)[log(1− D(G(v)))] (18)

Here, E denotes the expectation operator. The main goal
of training generative networks is to produce examples that
appear realistic compared to the original data. Based on that
assumption, GANs have been successfully used in different
computer vision and image processing applications.

IV. METHODS AND DATA USED TO REVIEW DL FOR CD
IN REMOTE SENSING IMAGES
A. A META-ANALYSIS PROCESS FOR DATA EXTRACTION
We searched and collected all published studies relevant
to change detection in remote-sensing images using the
deep learning approach. The search for studies was con-
ducted using the web of science database2. It is the most
trusted publisher global citation database. The generated
dataset was built using an advanced search option (search
date: April 18th, 2020) with a relevant controlled vocabu-
lary included; deep learning, change detection and remote
sensing topic, etc. All of the studies included in our
research had been published up to 2014. Ignored from
the search query were prefaces, article summaries, inter-
views, discussions, news items, correspondences, readers’
letters, comments, summaries of tutorials, panels, work-
shops, and poster sessions. This search strategy resulted
in a total of 160 unique papers, including 110 journal
articles and 47 conference papers, two early access paper
and one editorial material paper. All these included stud-
ies are summarized in one file publicly accessible via this
link: ‘‘http://www.lazharkhelifi.com/?publications=rev_cd_
dl.zip’’. It is worth noting that every article included in the
review was read in detail by the authors.

B. REFERRED JOURNALS AND CONFERENCE PAPERS
Among the set of 110 peer-reviewed journal papers, a larger
part of articles were published in the ten journals shown
in Table 1. Note that journals with only one publication are
not listed here. Overall, these 10 journals include 82 articles

2The web of science database is accessible via the following link:
https://www.webofknowledge.com/
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TABLE 1. Journals identified as pertinent, and number of relevant papers.

TABLE 2. Conferences and proceedings determined as pertinent, and number of relevant papers.

peer-reviewed journal papers related to DL change detection
and remote sensing. Regarding the number of articles pub-
lished per journal, the top five peer-reviewed journal papers
are; Remote Sensing, IEEE Transactions on Geoscience and
Remote Sensing (TGRS), IEEE Access, IEEE Journal of
Selected Topics in Applied Earth Observations and Remote
Sensing and IEEE Geoscience and Remote Sensing Letters.

We found that the topic is nowwell represented at themajor
international remote sensing conferences. Thus, among the
set of 47 conference papers, a majority of the articles were
published by the two remote sensing academic societies listed
in Table 2, namely the IEEE Geoscience and Remote Sensing
Society (IGARSS) and the Society of Photo-Optical Instru-
mentation Engineers (SPIE). The conferences with only one
publication are not listed in this table. The reader should
bear in mind that conference papers were excluded from
the present meta-analysis because many were expanded into
journal papers after presenting at the conferences (as in [20]).
In addition, after a deep understanding of the content of all
the papers, 20 journal papers that not cover the subject of this
study were also excluded.

C. BRIEF INTERPRETATION OF THE RESULTS
Several general conclusions may be drawn from the con-
ducted statistical analysis to examine the trend in the use of
DL for change detection. Trends and projections are illus-
trated in this study using histogram graphs in order to better
visualize the distribution of the data. Figure 10 reveals that
there has been a marked increase in the number of scientific
papers released on the topic since 2015. The number of
published papers is expected to grow evenmore tremendously
in the coming years. Similarly, the graph of Fig. 11 shows
that there has been an important increase in the number of
citations of those papers. Table 3 highlights the top three
most-cited papers. This exponential growth, both for the num-

FIGURE 10. Growing number of published papers related to deep
learning for change detection in remote sensing (we predict more than
100 papers in 2020).

ber of published papers and the number of citations, validates
the rapid growth of interest in the study of deep learning
for change detection in remote sensing images. Notably,
the number of journal papers on this topic now exceeds the
number of conference papers. This indicates the technical
maturity of this research area. As can be seen from Fig. 12,
the CNN model has been the most widely applied for change
detection, followed by the SAE, DBN, RNN, AEs, RBM and
GAN models. This higher popularity of CNN is probably
because it is more suitable to learn hierarchical image rep-
resentations from the input data by sequentially abstracting
higher-level features [47]. Looking at Fig. 13, it is apparent
that the SAR image type has been the most commonly used
within deep learning model for change detection, followed by
multispectral, arial, optic, heterogeneous (i.e., multi-modal),
and hyperspectral images [48]. The reason for this is, that
synthetic-aperture radar captures images using microwave
signals which can enter through clouds [63], and is therefore
more likely to have a significant advantage of being insensi-
tive to sunlight and complex atmospheric conditions [64].
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TABLE 3. The top three most-cited papers.

FIGURE 11. The number of citations per year for papers related to deep
learning for change detection in remote sensing (we predict more than
1000 citations in 2020).

FIGURE 12. Distribution of DL models used in the studies.

V. DEEP LEARNING FOR CHANGE DETECTION
IN REMOTE SENSING IMAGES
Deep learning has recently become the focus of consider-
able interest in the change detection field [20]. It aims to
automatically learn high-level features from various remote
sensing data compared to traditional hand-crafted features-
based methods [46]. Deep learning approaches for change
detection can be grouped in several ways by considering
different perspectives. In this study, therefore, the deep
learning approaches used for change detection are classified
into three groups based on the learning technique and the
availability of a training data that can be either labeled or
unlabeled. The first type contains fully supervised methods
which solve the problem by learning from a labeled training
dataset. The second type of methods contains fully unsu-
pervised methods that learn from unlabeled datasets. Both

FIGURE 13. Distribution of types of remote sensing images used in the
studies.

supervised and unsupervised methods serve at selecting the
available features that consistent with the target concept.
Hence, in supervised learning, the target concept is explicitly
correlated to class affiliation, while in unsupervised learn-
ing the target concept typically targeted through inherent
structures of the data [68]. The third type of methods con-
tains transfer learning based methods. Transfer learning is
an important machine learning technique which attempts to
utilize the knowledge learned from one task and to apply it on
another, but associated, task with the purpose to either reduce
the necessary fine-tuning data size or improve performances
[69]. Sections V-A, V-B, and V-C will outline these types of
methods 3 in detail.

A. FULLY SUPERVISED LEARNING BASED-METHODS
For a long time, it was commonly assumed that the process
of training deep supervised neural networks is challenging,
time-consuming, and too difficult to perform [46]. While the
standard learning strategy consisting of randomly initializ-
ing the weights, recently, it was found that deep supervised
networks can be trained by proper weight initialization. This
novel strategy just adequate enough for improving the gradi-
ent flow as well as the transmission of useful information by
the activations [22], [70]. The efficiency of supervised deep

3Some source codes of the methods discussed in this section are available
from:
https://github.com/lazharkhelifi/deeplearning_changedetection_remotesens
ing_review.
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networks is particularly evident in case of the availability of
large amount of labeled data used to properly train it.

In recent years, some pure supervised DL methods have
been suggested for change detection in RS images relying
on CNNs [46], [71]. These CNNs based studies have shown
superior performances to the classical state-of-art methods.
The CNNs are hierarchical models which converts the input
image into multiple layers of feature maps. These generated
maps consist of high-level discriminatory features that reflect
the original input data [22]. Based on the fully convolu-
tional networks U-Net is considered as one of the standard
CNNs architectures used for change detection task. The gen-
eral network architecture of U-Net is symmetric, having an
encoder that extracts spatial features from the image, and a
decoder that builds the segmentation map from the encoded
feature [72].

Jaturapitpornchai et al. [63] have proposed in detail a
U-Net-based network, which detects the novel buildings
construction in developing regions using two SAR images
captured at different times. Subsequently, the U-Net archi-
tecture was extended through a few modifications in other
works. In this regard, Hamdi et al. [73] have developed
an algorithm using a modified U-Net model for automatic
detection and mapping of damaged areas in an ArcGIS envi-
ronment. Their model was trained based on a database of
a forest area in Bavaria, Germany. Recently, an improved
UNet++ architecture was proposed by Peng et al. [74]
for end-to-end change detection of VHR satellite images.
In order, to learn multi-scale feature maps dense skip con-
nections were established between the different layers of
this architecture. In addition, a residual block strategy was
followed to facilitate gradient convergence of the network.
For change detection in hyperspectral image, a general end-
to-end two-dimensional CNNs framework, called GETNET,
was presented byWang et al. [75]. In addition, a conventional
change vector analysis (CVA) method [76] was adopted to
generate pseudo-training sets with labels.Wiratama et al. [77]
proposed a dual-dense convolutional network for recognizing
pixel-wise change on the basis of a dissimilarity analysis of
neighborhood pixels on high resolution panchromatic (PAN)
images. In their suggested algorithm, two fully convolutional
neural networks are utilized to compute the dissimilarity of
neighboring pixels. Further, a dense connection in convolu-
tion layers is performed to reuse preceding feature maps by
connecting them to all subsequent layers. Zhang et al. [78]
have introduced a fully atrous convolutional neural network
(FACNN). In this FACNN, first, an encoder which consists
of fully atrous convolution layers, is used for extracting scale
features from VHR images. Afterwards, a change map based
on pixel is generated using the classification map of current
images and an outdated land cover geographical informa-
tion system (GIS) map. Daudt et al. [79] have proposed an
integrated network based on deep FCNNs that performs a
land cover mapping and change detection simultaneously,
using information from the land cover mapping branches to
help with change detection. Zhang and Lu [80] presented a

spectral-spatialjoint learning network (SSJLN). At the first
part of this model, the spectral-spatial joint representation
is derived from the network similar to the Siamese CNN
(S-CNN) [81]. Second, these extracted features are combined
together using a feature fusion block. To explore the under-
lying information of the combined features, discrimination
learning is then performed at the last step. Liu et al. [25] have
demonstrated the complementarity of CNNs and bidirec-
tional long short-term memory network (BiLSTM) by com-
bining them into one unified architecture. While, the former
is useful in extracting the rich spectral-spatial features from
bi-temporal images, the latter is powerful in analyzing the
temporal dependence of bi-temporal images and transferring
the features of images. Similarly, Cao et al. [82] have com-
bined a deep denoising model trained on a huge number of
simulated SAR images patches with a CNNs model. While,
the deep denoising network is adopted to keep useful infor-
mation and suppress noise simultaneously, a three layers of a
CNNmodel are built to establish the feature learning process.
Contrary to previous approaches, that rely on CNNs based
models Wiratama and Sim [83] have proposed a fusion archi-
tecture combining front-end and back-end neural networks.
In order to accomplish low-level and high-level differential
detection, the fusion network contains both single-path and
dual-path networks. In addition, based on the two dual out-
puts, a two-stage decision algorithm was proposed by authors
to efficiently provide the final change detection result. This
method has shown a good performance for the identification
of changed/unchanged areas in high-resolution panchromatic
images.

B. FULLY UNSUPERVISED LEARNING BASED-METHODS
Supervised deep learning methods such as the CNNs and its
modified models have achieved satisfactory result in many
computer vision tasks due the availability of large annotated
datasets [46]. Unfortunately, for change detection task, there
are often not enough training data to build such models.
In addition, building a ground-truth map reflecting the real
change information of ground objects costs lots of time and
effort [84]. Therefore, in many cases, it is more efficient to
learn the change features generated from a remote sensing
image in an unsupervised manner [85].

Unsupervised feature-learning methods are mainly based
on models which may learn feature representations from
the patches (of images, par example) without any necessary
supervision [22]. There have been numerous enhancements
and evolution to the unsupervised deep learning approach
that has been successfully applied to recognizing remote
sensing (RS) scenes and targets. One of the most well-known
and significant approaches is to stack (or to combine) together
different shallow feature-learning methods like the Gaus-
sian Mixture model, AEs, sparse coding and RBMs [46].
In this regard, for change detection in multispectral images,
Zhang et al. [86] have proposed a new unsupervised method
combining the DBN and the feature change analysis (FCA).
Thus, to capture the useful information for discrimination
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between changed and unchanged regions and to also suppress
the irrelevant variations, the available spectral channels are
transformed into an abstract feature space via the DBN.
Then, using these learned features, an FCA is performed to
identify the different types of change. Similarly, Su et al. [87]
have introduced a novel deep learning and mapping (DLM)
framework oriented to the ternary change detection task for
information unbalanced images. In their method, two types of
neural networks are used. First, a stacked denoising autoen-
coder is applied to two input images, serving as a feature
extractor. Then, after a selection step of relevant samples,
mapping functions are generated by a stacked mapping net-
work, establishing the relationship between the features of
each class. Afterwards, a comparison between the features is
performed and the final ternary map is generated via a clus-
tering process of the comparison result. Gao et al. [88] have
proposed a novel SAR image change detection method based
on deep semi-nonnegative matrix factorization (Deep Semi-
NMF) [89] and singular value decomposition (SVD) net-
works [90]. In their suggested method, the deep Semi-NMF
is used as a pre-classification step. Following this, the SVD
network of two SVD convolutional layers is applied to obtain
reliable features, where good quality of these obtained fea-
tures effectively improves the classification performance. To
achieve more precise ternary change detection without any
supervision, Gong et al. [14] have combined SAE, CNN and
an unsupervised clustering algorithm. First, noise is removed
and key change information are extracted by transforming
difference image into a suitable feature space using SAE.
Next, an unsupervised clustering is established on the feature
maps learned by SAE. This final step aims to provide reli-
able pseudo labels for training the CNN as a change feature
classifier. Lv et al. [85] have presented a feature learning
method based on the combination of a stacked contractive
autoencoder (sCAE) and a simple clustering algorithm. In this
method, first, an affiliated temporal change image is built
using three different metrics. the aim of this strategy is to
provide more information about the temporal difference on
the pixel level. Second, homogeneous change samples are
provided by generating a set of superpixels using a simple
linear iterative clustering algorithm. Third, these generated
superpixel-samples are used as input to train a sCAE net-
work. Then, the encoded features results from the sCAE
model are binary classified to create the change result map.
Gong et al. [91] have developed a generative discriminatory
classified network (GDCN) for multispectral image change
detection. The generative adversarial networks represent the
key block of this proposed model by providing three types
of data; labeled data, unlabeled data, and new fake data.
More precisely, this GDCN composes of a discriminatory
classified network (DCN) and a generator (G). While the
DCN divides the input data into changed class, unchanged
class, and extra class (i.e., fake class), the generator recovers
the real data from input noises to provide additional training
samples. Finally, the bitemporal multispectral images are fed
to the DCN to get a final reliable change map. For change

detection in SAR images, Geng et al. [92] have proposed
SGDNNs, an unsupervised saliency guided deep neural net-
works. The first step in this model consists of extracting a
salient region from the difference image (DI), which prob-
ably belongs to the changed object. Then, a hierarchical
fuzzy C-means (HFCM) clustering [93] is established to
select samples with higher probabilities to be changed and
unchanged. Using these pseudotraining samples, a DNNs
based on the nonnegative-and Fisher-constrained autoen-
coder are applied to get reliable final detection. Li et al.
[94] performed change detection for hyperspectral images
using a novel noise modeling-based unsupervised fully con-
volutional network (FCN) framework. Specifically, their sug-
gested deep CNN is trained using the change detection maps
of existing unsupervised change detection methods, while
the noise is removed during the end-to-end training process.
Recently, Huang et al. [95] have proposed a new unsuper-
vised algorithm based on deep learning called ABCDHIDL
to automatically detect the building changes from multi-
temporal high-resolution remote sensing (HRRS) images.
In this algorithm, initially, a convolution operation is adopted
for two reasons; first, to extract the spatial, texture and spec-
tral features and second to generate a combined low-level
feature vector for each pixel. Then, the unlabeled samples
are injected to pre-train a DBN network, where its param-
eters are optimized by jointly using the extreme learning
machine (ELM) classifier [96]. To further improve the detec-
tion process, labeled samples are offered by an automatic
selection based on a morphological operation.

C. DEEP TRANSFER LEARNING BASED-METHODS
In many remote sensing applications, it is so expensive or
impossible to recollect the required training data and rebuild
the models [97]. In particular, for the change detection task,
there are often not enough training data that accurately rep-
resent the real change information of ground objects. There-
fore, it is important to reduce the requirement and effort to
recollect the training data. In that context, transfer learning
or knowledge transfer among task domains can be a reliable
solution.

Transfer learning is defined as the capability of extracting
knowledge from one or more source tasks and applying it to
a novel or target task [97]. Formally, given a source domain
DS with a related source task TS and a target domainDT with
a corresponding task TT , transfer learning is the proceeding
of improving the target predictive function fT (.) by utilizing
the corresponding information from DS and TS , where DS 6=
DT or TS 6= TT [98].

There are two basic approaches currently being adopted
in research into transfer learning. The first approach consists
of using the outputs of one or more layers of a network
(such as AlexNet or resnet-101) trained on a different task
as generic high dimensional feature detectors and training a
new shallow model based on these features [99]. The second
approach is more involved, which consists of fine-tuning the
network pre-trained in general images. Hence, final layer
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(for classification/regression) is not just replaced, but also,
previous layers are retained again [100]. Following this for-
mer approach, Hou et al. [101] have transferred a CNNs
already pre-trained on large-scale natural image data set (e.g.,
ImageNet [102]), to a RS domain. Specifically, to get bet-
ter results they fine-tune the VGG-16 [55] to adapt it to
their optical RS images on an aerial image dataset (AID)
[103]. Similarly, Venugopal et al. [104], have resorted to a
ResNet-101 [105] network as a pretrained model, and they
fine-tuned parameters based on a dilated convolutional neural
network (DCNN) which detects the changes between the two
images. Afterwards, the classified result is determined from
the final feature map as unchanged and changed areas. To
solve the change detection problem in optical aerial images,
Zhang et al. [106] proposed a new method based on deep
Siamese semantic network trained using an improved triplet
loss function. First, a DeepLabv2 [107] model pretrained on
large-scale image data set (e.g., PASCAL VOC 2012 dataset
[108]), was transferred to the network, due to the difficulty
of directly training the Siamese network. Based on this strat-
egy, the network has achieved a comparable performance
with limited computational cost and minimum training sam-
ples. This change detection method is based on four steps;
First, In order to perform a radiant correction to the two
coregistered images, the input bitemporal images are pre-
processed using histogram matching. Second, the prepro-
cessed pair images are fed to the deep Siamese semantic
network in order to generate two feature maps. Following
this, a resizing operation is applied for two semantic feature
maps by a bilinear interpolation. Afterwards, a distance map
is obtained by computing the Euclidean distance between
semantic feature maps. Finally, a simple threshold segmen-
tation method is used to separate the distance map, and there-
fore, to generate the final change detection result. Fang et al.
[109] proposed a novel hybrid end-to-end framework named
dual learning-based Siamese framework (DLSF) for change
detection from very high resolution (VHR) images. This
framework consists of two parallel streams which are dual
learning-based domain transfer and Siamese-based change
decision. While the first path is aimed at reducing the domain
differences between two paired images and maintaining the
intrinsic information by translating them into each other’s
domain, the second path is aimed at learning a decision strat-
egy to decide the changes in two domains, respectively. Yang
et al. [64] have adopted the concept of change that is learned
from the source domain to the target domain by reducing
the distribution discrepancy between two domains. In their
model, the pretraining stage includes two tasks; a supervised
change detection in the source domain using U-Net archi-
tecture and a reconstruction network in the target domain
without labels. The lower layers are shared between the two
tasks, however, the final layers related to each task are trained
separately. After the pretraining step, reliable labels that are
chosen from a CD map, are used to fine-tune the change
detection network for the target domain. Although training
data are limited in the task of sea ice change detection, in the

work of Gao et al. [110] a large data set was used to train
a transferred multilevel fusion network MLFN, in addition,
a fine-tune strategy was utilized to optimize the network
parameters.

VI. PROMISING RESEARCH DIRECTIONS
To advance the progress of the change detection task, in this
section, we suggest two important directions for research,
specifically deep reinforcement learning and weakly super-
vised change detection.

A. DEEP REINFORCEMENT LEARNING
Due to the lack of sufficient labeled training databases for
the supervised change detection task, the description capa-
bility of the features generated by deep learning methods
may become limited or even impoverished. Recently, deep
reinforcement learning [111], [112] [113] has become the
focus of considerable interest in the field of machine learning
and has shown an excellent potential and great performance
in various domains of computer vision such as autonomous
driving [114], [115], object tracking [116], [117], person
re-identification [118], [119], etc.

Deep reinforcement learning combines deep neural net-
works with a reinforcement learning architecture, where
intelligent machines can learn from their actions similar to the
way humans learn from experience. Reinforcement learning
enables software-defined agents to learn from the environ-
ment on the basis of random exploration and to adjust the
best possible actions based on continuous feedback in order to
attain their goals. Actions that get them to the target outcome
are rewarded (i.e., exploitation) [120]. Formally, it consists
of a finite number of states si which represent agents and the
environment, actions ai realized by the agent, probability Pa
of moving from one state to another on the basis of action ai,
and reward Ra(si, si+1) corresponded to the move to the next
state si+1 with action a. To predict the best action as given by
the function D(s, a), balancing and maximizing the current
reward R and future reward α · max[D(s′, a′] is necessary.
Where α in the equation denotes a fixed discount factor.
Hence, this function D(s, a) is represented as the summation
of current reward R and future reward α · max[D(s′, a′)] in
the following way [120]:

D(s, a) = R+ α ·max[D(s′, a′)] (19)

Reinforcement learning is particularly dedicated to solve
problems consisting of both short-term and long-term
rewards, for example, games such as go and chess, etc.
However, combining reinforcement learning and deep net-
work architecture together yields deep reinforcement learning
(DRL), which extends the use of reinforcement learning to
robustly solve more difficult games and other challenging
problems [121]. Deep reinforcement learning not only pro-
vides rich representations characterized by a higher num-
ber of hidden layers of deep networks, but also, presents
a reinforcement learning-based Q-learning algorithm 4 that
maximizes the reward for actions taken by the agent [121].
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Fu et al. [122] have shown the feasibility of using deep
reinforcement learning for remote sensing ship detection task.
Recently, Li et al. [123] have proposed an interesting aircraft
detection framework based on the combination of a CNN
model with reinforcement learning. Similarly, the change
detection process can be solved as an action-decision prob-
lem based on a sequence of actions refining the size of the
changed regions between two input images.

B. WEAKLY SUPERVISED CHANGE DETECTION
Considering the high cost of the data labeling operation,
in many computer vision tasks, it is hard to get strong super-
vision information, (e.g., a dataset with fully ground-truth
labels) [125]. Notably, in remote sensing images, the man-
ual annotation of objects is generally expensive and some-
times unreliable. Particularly for the change detection task,
the changed regions are very small, the background is often
cluttered and complex, and the images may be taken by
different sensors [126]. However, training a change detection
framework based on weakly supervised learning (WSL) can
alleviate the need for manual annotation. Weakly supervised
data include a small quantity of accurate label information,
that differs from data in traditional supervised learning [127].
In general, there are three classes of weak supervision [125]:

• Incomplete supervision when a minimum quantity data
(among the training data) is provided with labels, which
is inadequate to successfully train a learner.

• Inexact supervision is when some supervision informa-
tion is available, however, not as accurate as required
(i.e., only coarse-grained label information is provided).

• Inaccurate supervision relates the case in which the out-
lined labels are not really ground-truth and suffer from
errors (i.e., learning with label noise).

Recent progress in the geospatial object detection field [128],
[129] has shown the feasibility of using weakly supervised
learning. Similarly, it will be interesting to explore the poten-
tial of WSL-based change detection models accurately for
identifying the changed regions between two images. How-
ever, the performance of existing WSL-based methods in
remote sensing images is still far from satisfactory. For exam-
ple, accurate position of the change cannot be yielded in
detection of building changes [130]. Much effort also needs
to be made to establish more efficient methods to improve the
detection accuracy [126].

VII. CONCLUSION
Recently, deep learning-based change detection in remote
sensing field has drawn significant attention and obtained
good performances. Deep learning based methods can auto-
matically learn complex features of remote sensing images
on the basis of a huge number of hierarchical layers,
in contrast to traditional hand-crafted feature-based methods.

4Q-learning is a reinforcement learning algorithm required to find an
optimal action-selection strategy to maximize the sum of the discounted
rewards. [124].

In this work, publications related to DL in remote sensing
images were systematically analyzed through a metaanalysis.
In addition, a deeper review was conducted to describe and
discuss the use of DL algorithms specifically in the field of
change detection, which differentiates our study from previ-
ous reviews on DL and remote sensing. Thus, several deep
models that are often used for change detection are described.
In addition, we concentrate on deep learning-based change
detection approaches for remote sensing images by providing
a general overview of the existing methods. Specifically,
these deep learning-based methods were divided into three
groups; fully supervised learning-based methods, fully unsu-
pervised learning-based methods and transfer learning-based
methods. Besides, we have also proposed two promising
future research directions. Therefore, a further study with
more focus on deep reinforcement learning andweakly super-
vised change detection methods are strongly suggested.
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